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The memory-function approach is applied to the relativistic two-particle problem. We thus obtain

integral equations similar to the Bethe-Salpeter equation, taking all retardation effects fully into ac-
count and eliminating the relative time variable. The formalism is studied for scalar Klein-Gordon
fields as well as for spinorial Dirac fields. For both cases the memory function and the integral ker-

nels are calculated for a given model explicitly. The scalar-scalar model of Cutkosky is treated in

detail and numerical binding energies are obtained, very close to those of the original Bethe-Salpeter

equation, thus showing the extreme importance of retardation effects. As an example for Dirac
fields the memory function for a proton-antiproton pair interacting via exchange of a m is establish-

ed.

I. INTRODUCTION

In relativistic quantum field theory bound states or res-
onances are identified with poles appearing in the Green's
functions. A simple relativistic generalization of the
Schrodinger equation. for bound states of two particles is
unfortunately not available except for the limiting case of
a particle in a static external potential (Dirac or Klein-
Gordon equations).

The problem in a relativistic treatment is twofold: On
the one hand we cannot disregard effects of retardation-
a supplementary relative time appears —and on the other
hand we have to take into account the quantum character
of the field describing the interaction (e.g. , the elec-
tromagnetic field in positronium). Thus one cannot avoid
determining the two-particle Green's function. Bethe and
Salpeter' proposed an equation in 1951 (the Bethe-
Salpeter equation) which calculates this propagator by an
iteration process as the sum of all Feynman diagrams.
Because of this perturbation-theoretical method, in prac-
tice one is of course restricted to approximate calculations
only. The advantage of the Bethe-Salpeter equation is,
however, that the iteration process nevertheless takes into
account an infinite sum of Feynman graphs when calcu-
lating the Green's function.

But even for the most simple forms of the Bethe-
Salpeter equation its (numerical) solution gives rise to
enormous difficulties. The problem comes from the rela-
tive time variable mentioned above which comes along
with the relativistic retardation effects. Thus people soon
searched for methods to get rid of this difficulty, and
several approximations for the Bethe-Salpeter equation
have been proposed. The first was due to Salpeter him-
self and is the instantaneous approximation. Another
group of approximations are the quasipotential approxi-
mations, being similar in form to the more familiar
Schrodinger, Klein-Gordon, or Dirac equations. In par-
ticular, the instantaneous approximation has often been
used, e.g., to calculate the spectrum of positronium. A
complete list of references up to 1969 concerning the

Bethe-Salpeter equation is given in the paper of Naka-
nishi. Interesting more recent discussions may be found
in the review papers of Stroscio' and Bodwin and Yen-
nie. " The progress of the last few years in quark spec-
troscopy' ' renews interest in a relativistic description
of bound states. Here the instantaneous approximation
has been used, too. '

In the case of positronium and a coupling constant to
the electromagnetic field of A, = », the instantaneous ap-
proximation yields good results. But it is not evident
whether it is appropriate for calculating the meson spec-
trum, the coupling constant between quarks and gluons
being of the order of unity. Indeed, for a second-order
kernel, model calculations' indicate very important
differences for A, = 1 (more than a factor 2 for the binding
energies) between the Bethe-Salpeter equation and the in-
stantaneous approximation. The quasipotential approxi-
mation of Blankenbecler and Sugar yields for two equal
masses the same results as the instantaneous approxima-
tion and the one of Todorov reveals even more important
differences with the Bethe-Salpeter equation. Therefore it
seems to be desirable to look for an approximation yield-
ing results very close to the Bethe-Salpeter equation but
avoiding the problem of the relative time. This will be
done in this paper.

In Schrodinger-type many-body problems the so-called
effective potentials are often introduced with the help of
the Feshbach formalism. These effective potentials de-
pend only on the one energy which appears also in the
Schrodinger equation as an eigenvalue of the Hamilton
operator. For nonrelativistic many-body correlation func-
tions this has been modeled in introducing integral equa-
tions whose kernel also only depends on one energy, i.e.,
there is no other relative energy corresponding to a rela-
tive time variable. This is generally known as the Mori or
memory-function approach. ' Here we want to generalize
this formalism to the relativistic many-body problem.

In Sec. II we briefly recall the Bethe-Salpeter equation
and the instantaneous approximation for the scalar-scalar
model of Cutkosky. This is the only mode1 for which
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the Bethe-Salpeter equation with a second-order kernel
(ladder graph) can be solved numerically quite easily
without approximation. This is why this model will con-
tinue to serve as a reference also in Sec. IV.

In Sec. III we schematically outline the theory of the
memory-function approach and in Sec. IV we make this
explicit for the scalar-scalar model of Cutkosky. In Sec.
IV A we neglect all vacuum correlations to make the cal-
culations more transparent. In Sec. IVB, however, all
vacuum correlations are taken into account and the rela-

tion with the Bethe-Salpeter equation is discussed. In Sec.
IVC numerical results are presented and discussed, and
compared with those of the Bethe-Salpeter equation and

the instantaneous approximation.
In Sec. V we show how the formalism developed may

be extended to interacting Dirac fields (strong interaction
of protons, quantum electrodynamics, perturbative quan-
tum chromodynamics, etc.). Section VI is devoted to the
conclusions and in an appendix we give some details con-
cerning the numerical method used in Sec. IV.

II. THE BETHE-SAI.PETER EQUATION
AND THE INSTANTANEOUS APPROXIMATION,

CUTKOSKY'S SCALAR-SCALAR MODEL

We define the two-particle propagator by
G (x],xz,x'»xz )

= —«
l
TW]«])02(xz)41(x 1 )02(x2 (2.1)

G =Gp+ GpKG

or explicitly

(2.2a)

where x;=(t;,x;). P; is the field of particle i, T is the
chronological operator, arid

~
0) is the physical (i.e.,

correlated) vacuum. The corresponding free propagator
Go is obtained by replacing the fields and the vacuum by
the corresponding quantities without any interaction.
However, we suppose that all masses are already physical
ones. Thus one can drop all graphs contributing only to
mass renormalization.

In the Bethe-Salpeter equation

G(x] xz x] xz)=Go(x]»z»] xz)+ J Go(x] xz y] yz)&(y] yz, z']»z)G(z'] z'z»] xz)d y]d yzd z]d &z (2.2b)

X(x ],xz ) = (0
~
Ty](x ] )yz(xz )

~

X )

satisfying the homogeneous Bethe.-Salpeter equation

X(x] xz) f Go(x] xz y] yz)+(y] yz +I +2)

(2.3)

the integration over y& and y2 is trivial, Gp containing
corresponding 5 distributions, but the integrations over zI
and z2 are real ones over the spatial coordinates z& and z2
and over the two time variables z& and z2.

One defines the Bethe-Salpeter amplitude for a bound
state

~
X ) as

cording to

X(p,&)=5(P &)X~(p)— (2.8)

K(x],xz,x],xz)= 6 (x] —x'] )|] (xz —xz)

because total momentum is conserved.
The sum of all irreducible Feynman diagrams constitut-

ing the kernel E being unknown one usually restricts one-
self to the so-called ladder approximation for which only
a single exchange of the particle of mass p contributes to
E (see also Fig. 1):

XX(~],zz)d y]d yzd ~]d zz . (2.4) X]AF(x] —xz,p) . (2.9)

~.t[g]:0]«)0](x):+gz02(x)02«):]+«)
We define the dimensionless coupling parameter A, by

g)g2 ——16mm(m2A, .

(2.5)

(2.6)

Generally it is more convenient to work in momentum
space and to introduce total and relative variables by

X=ax] ~(1—a)xz, x =x]—xz,
P=p]+Pz P =(1 a)P] aPz- —
0&e(1,

(2.7)

and to factorize out of all quantities a 6 distribution ac-

For a given Lagrangian the kernel K may be computed by
perturbation theory. We consider as a simple model the
one of Cutkosky which has been widely used for several

applications. ' It describes two complex scalar fields

P](x]) and Pz(xz) of masses m] and mz interacting
through a real scalar field %(x) of mass p with an interac-
tion Lagrangian

With this kernel, the Bethe-Salpeter equation reads

[(aE+p) —m] ]I[(1—a)X —p] —mz )X~(p)

16&iI]m2X X~(p')
4

' . 2 2
d p(2') (p —p') —

]M +is
(2.10)

In the center-of-mass system (K=O) the binding energy
B is obtained after solving this equation as
Xp —m, +m, —B.

It is only for @=0 where this equation is easily solvable
due to the resulting O(4) symmetry. After a Wick rota-
tion and a stereographic projection on a unit sphere, Cut-
kosky was able to transform (2.10) into an ordinary dif-

(a}

FIG. 1. The irreducible kernel in the ladder approximation
(a) and resulting contributions to the propagator 6 (b).
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ferential equation of second order (for details see
Cutkosky's paper or the book by Itzykson and Zuber ").
This differential equation can be easily solved. The bind-
ing energies obtained by Silvestre-Brac et ah. will be
used as a reference later on in this paper.

As soon as the problem becomes more complicated
(e.g., positronium) the Bethe-Salpeter equation, even in the
ladder approximation, cannot be solved exactly. The dif-
ficulty is most closely related to the presence of the rela-
tive time variable t, = t

&

—t2. Clearly, in the Bethe-
Salpeter amplitude (2.3)

X(x 1x 2)=X(t ,1X1t,2 x)2. (2.11)

x& and x2 are the spatial coordinates of the two particles
considered, but what is the meaning of t& and t2?

Physically one is interested to know the probability am-
plitude at one time to find particle 1 at x1 and particle 2
at x2, i.e., one wants to know 7 only for t =t] ——t2, t„=0.

The instantaneous approximation consists in putting
Po =Po 1n K(P,P,P', P') =K(Po, P,P,Po, P', P') (the ex-
change of the particle of mass p becomes instantaneous)
and to integrate X over po (corresponding to set t„=0):

~'x(p)= f&x(po p)dpo (2.12)

o1;(p)=(m; +p')' ' (2.13)

(where a remaining po integration has been performed in
the upper or lower complex half plane).

Determining the values of Ko that admit a solution
yields again the binding energies. The nonrelativistic lim-
it of (2.13) is the Schrodinger equation with a Yukawa po-
tential. Equation (2.13) can be solved numerically; after
angular decomposition and going to a discrete hmit one is
left with a diagonalization of a nonsymmetric matrix
which is easily performed. More details and the numeri-
cal results are found again in Silvestre-Brac et al. '

III. OUTLINE OF THE GENERAL THEORY

Our claim here will be that instead of Eq. (2.2) which
are in fact three coupled equations for three different time
orderings in

Thus, (2.10) becomes (i.e., in the ladder approximation)

o11(P)o12(P)
IKo' —t ~1(p)+~2(p)]'I ~'~(p)~ o11 P +o12 P

16am 1m 2 3
@x(p')

d p
(2m. )" (p —p') +p —ie

with

6 ( t 1 ~ x1i t2 ~ x2~ t 1 ~ x1,t 2, x2 )

= —(0
~
Tp(t1, X1)p(t2, X2)p (t'1, X', )p (t2, x2)

~
0)

(3.1)

(corresponding to the u, s, and t channels in the relativis-
tic case and to two possible particle-hole channels and one
particle-particle/hole-hole channel in the nonrelativistic
case) we can estabhsh integral equations for Green's func-
tions characterizing each of the three channels separately.
This can be achieved in setting the different times in (3.1)
equal pairwise. For example, t& ——t2 and t&

——t2 corre-
sponds to the particle-particle (pp)/hole-hole (hh) channel
or t, =t2 and t2 t1 to——one of the two possible particle-
hole (ph) channels (we do not make the distinction any
more, unless necessary, between the relativistic and nonre-
lativistic case, assuming that the notation pp and ph is
self-evident in both cases. )

To be specific let us consider the pp/hh channel, every-
thing being completely analogous in the ph channels (in
Sec. V a ph channel is treated explicitly). We therefore
will study the function

6 ( t t ~X1~X2~X1~X2 )

= —(0
~
Tp(t, X1)p(t, x2)(p "(t',x', )p (t', x2)

~
0) .

(3.2)

%'e do not introduce a new symbol but think that the
Green s functions are sufficiently characterized in specify-
ing their arguments. [Often we will write simply
6(t t') for 6 a—ccording to (3.2) and 6(t1, t2, t'1, t2) for
6 of (2.1).] The spectral representation of 6 (t —t') yields
the bound and scattering states of the pp/hh (particle-
particle/antiparticle-antiparticle) pair and we will estab-
lish an integral equation for this function analogous to the
Bethe-Salpeter equation. We only want to outline the
principle here. More detailed derivations can be found for
the nonrelativistic case in the paper of Mori ' (condensed
matter) and the papers of Werner, Schuck, ' Schuck
and Ethofer, or in a textbook by Ring and Schuck.
The relativistic case is treated in detail in the next two
sections. The basic idea is also similar to those developed
by Log unov and Tavkhelidze and by Fishbane and
Namyslowski.

Let us thus derive an equation of motion for the spatial
Fourier transform of 6 of (3.2), 6(t —t', k1, k2, k3 k4).
First we have to find the "inverse" operator of the free
part Go of G. Go '(t —t') contains time derivation
operators d/dt. Then we calculate Go '6 with the help
of the Heisenberg equations of motion for the field opera-
tors in 6:

f Go (t —t, k1,k2, k1,k2 )6(t"—t', k1,k2, k1,k2)dt"d k 1'd k2 ——X(t —t', k1,k2, k1,k2)+R (t —t', k1,k2, k1,k2) (3.3a)

or in a symbolic "matrix" notation

Go G=Pf+R . (3.3b)

1V is simply Go Go (in contrast to the usual definition)
and R contains all other terms. In principle R is com-

pletely determined by (3.3): R =Go '(6 —Go), and its ex-
plicit form can easily be found using the Heisenberg equa-
tions for P and P . If no interaction were present, 6=Go
and R =0. Indeed, R explicitly contains the coupling
constant to first order. In the next section we will show
that it is in fact of second order in the coupling constants.
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Because we restricted the propagators to a specific
channel, K=Gp 'Gp is not the identity in the Hilbert
space of all possible states, but the projector onto the sub-
space that corresponds to the channel under consideration.
It is only in this sense that Gp

' is the inverse of Gp
(more exactly, Gp

' is the pseudoinverse of Gp). Thus, in
general, the inverse of X does not exist, but one can apply
the usual procedure of diagonalization and elimination of
eigenvalues zero, which means nothing else than the re-
striction to the subspace X is projecting on.

Now it is easy to establish an integral equation for G.
Defining the pseudoinverse. 6 ' as the inverse of G in the
corresponding subspace and taking into account that
GpGp 'G=G and GpX=Gp Eq. (3.3) yields upon left
multiplication with Gp

G =Gp+ GpMG,

with

(3.4a)

(3.4b)

and combining this with (3.4b) yields an integral equation
to determine the complete M:

M =RGp ' —RM . . (3.6)

This equation may either be solved exactly or M is ob-
tained as a perturbation series

M is usually called the memory function or mass operator
If one does not want to go beyond a second-order kernel
one can approximate G ' by Gp

' to obtain M =RGp
In general we obtain from (3.4a)

(3.5)

(2.2) that —after Fourier transformation in the time
variable —it depends only on one energy: the total energy
in the channel considered. Every relative energy or rela-
tive time is eliminated, but without having introduced (as
does the instantaneous approximation) any further ap-
proximation. Thus we get

G (&)=Gp(&)+ Gp(E)M(&)G (&), (3.8a)

where only spatial variables are integrated. For bound
states it reduces to an "eigenvalue problem" of the usual
type with an energy-dependent potential M(E): If X is
the wave function of a bound state of energy E it obeys
the homogenous equation corresponding to (3.8a):

X(E)=Gp(E)M(E)X(E) . (3.8b)

IV. THE MEMORY FUNCTION IN
CUTKOSKY'S MODEL

In the choice of approximations for M we have to be
guided by our physical intuition (unless we have a small-
ness parameter) as is always the case for approximate
forms of the Bethe-Salpeter equation. In the nonrelativis-
tic many-body theory a well known and often very useful
approximation in the ph channel to Eq. (3.8) is the
random-phase approximation (RPA) or equivalently the
summation of the infinite series of ph bubbles. This ap-
proximation implies replacing M (E) by an energy-
independent (static) potential.

In the next section we will describe a relativistic model
that gives an energy-dependent M due to a one-boson ex-
change. This corresponds to developing M (E) up to
second order in the coupling constants.

M =RGp ' —R(RGp ')+RR (RGp ')— (3.7)

This situation is of course the same as for the kernel K of
Eq. (2.2): because one cannot calculate all irreducible
graphs, K is never given exactly (in the last section we
choose the ladder approximation). Indeed, we will see in
the following section that we can establish a one to one
correspondence between the perturbation series of K and
M (one-boson exchange for example).

Equation (3.4a) has the decisive advantage over Eq.
I

A. Neglecting vacuum correlations

In this section we want to calculate the memory func-
tion M(E) for Cutkosky's model, i.e., for a theory of two
complex scalar fields P~ and $2 interacting through a real
scalar field g as we described in Sec. II and with a La-
grangian given by (2.5). For the expansion in momentum
space of the field operators we adopt the conventions of
Bjorken and Drell

3

p;(t, x)=1,, [a;+(t,k)e'" +a; (t, k)e ' ], i =1,2 and cp't, =(m; +k )'
[(2~) 2cp'k]'

(4 1)

P(t,x)=g (t,x)= I [b(t, k)e' +b (t, k)e '""] with cp~q (p, +k )'~——
[(2~)'2'"„]' ~

(4.2)

Here and in what follows we no longer distinguish three-vectors because we always write time and spatial variables

separately, so that no confusion is possible. For example, e'" means e'"'".
We have the following equal-time commutation relations:

[a;+(t,k),aj+ (t,k')] = [a; (t, k), at~ (t, k')] =5; 5 (k —k') . (4.3)

All + operators commute with all —operators at equal times as well as all operators of particle 1 with those of particle
2.

The uncorrelated vacuum (and in this section we will just say "the vacuum") is defined by

a; (t,k)
~

0) =a; (t, k)
~

0) =b(t, k)
~

0) =0 (4.4)

for all t and k. Qf course, the Hermitian conjugate relations hold, too. The Heisenberg equations of motion for any
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operator /I (t) are

A(t)=e' I' ' I/1(t')e ' I' ' ', i A(t)=[/I (t),H], H=HD+H;„„H;„,= —fW;„,(t,x)d x .
dt

Inserting the expansions in momentum space of the fields we obtain

Ho ——g fd k co'k[a;+(k)a;+(k)+a; (k)a; (k)]+fd3k co~&bt(k)b(k)

(4.5)

(4.6)

d'k Id'k2
HmI +gi f [(2 )38

'

]I/2
a;+(kI )a;+(k2)b(kI —k2) a;+(kI)a;+(k2)b (k2 —kI)

+ '+
p )

I/2

a; (k2)a; (k I )b(k2 —kI ) a; (k2)a; (k, )b (k, —k2)

( p )I/2 ( p )I/2

a;+(kI)a; (k2)b(kI+k2) a; (kI)a;+(k2)b (kI+k2)
( p )

I/2 y,
)
I/2

a'+(kl )a' —(k2)b ( ' k1 k2) ' —(kl ) ia+(k )2b( kl k2)

( p )
I/2 p )

I/2 (4.7)

The first four expressions correspond to vertices where a + or —quantum of the field pI or $2 is scattered by a quan-
tum of the field 4, the fifth corresponds to pair creation, the sixth to pair annihilation, the seventh and eighth to vertices
of vacuum bubbles (vacuum correlations). In formulas (4.6) and (4.7) we dropped the time argument for simplicity and
also wrote coI instead of cok . It is evident that H is completely symmetric under permutation of + and —operators, or

l

equivalently, the theory is invariant under charge conjugation. With the help of (4.3), (4.5), (4.6), and (4.7) we want to es-
tablish the equations of motion for the a and b operators because we will need them later on:

i aI+(k)=co'ka;+(k)+c/ k [a;+(k3)+a; ( —k3)][b(k —k3)+b (k3 —k)],
t '+

d k3f (k, k3)
ckk f(k k3)=g.

)38 1 I P ]I/2

(4.8)

(4.9)

Due to the invariance of the Hamilton operator under charge conjugation we obtain the corresponding equation for a;
from (4.8) by exchanging all + and —operators. It is easy to establish some rules for expressions of the form (4.9)
which wi11 be needed in what fo11ows:

(I) ckk f(k3)=ck, —k f(—k3»

(11) c'
k k, k,f(k, k3) =ck+k, k,f (k, k3),

(111) C k+k3 k3f (kik3)=Ck k3 k3f (kik3) i

(1v) ck k3f (k, k3) =c k k3f (k,k3),

(v) c —k+k3, k3f ( k+k3~k3) ck+k3, k3f (k3ik +k3)

To find (d iBt )a, + we have to calculate i (8/'Bt) [b (k —k3 )+b (k3 —k)]. One gets

(4.10)

i b (k4) = [b (k4),H] =cok b (k4)+ gt c/, k, k, [a;+ (k3 —k4)a;+(k3)+a; (k4 —k3)a;+(k3)]

+c/, +k k [a; (k3)a; (k3+k4)+a;+( —k3 —k4)a; (k3)]I . (4.11)

With the rules (4.10) it is easy to show that this is symmetric in + and —operators as it should be because of the corre-
sponding symmetry of the Hamilton operator. Taking the Hermitian conjugate and substituting —k4 for k4 we get an
analogous equation for bt( —k4). Using the rules (4.10) one shows that all terms containing a; operators are exactly the
same as in (4.11), but with a reversed sign, thus they cancel and we obtain simply

i [b(k —k3)+b (k3 —k)]=cok I, [b(k —k3) —b (k3 —k)] .
Bt

Using (4.8), the corresponding equation for a;, (4.12) and the rules (4.10) (8 /Bt )a;+ is given by

(4.12)



2050 ADEL BILAL AND PETER SCHUCK 31

2

z a;+(k) = (cok) a;+(k)+ct k, [(cok+cok, )a;+(k3)+(cok —~ok )a; ( —k3)][b (k —k3)+b (k3 —k)]t' '

+ck k, tok k, [a;+(k3)+a; ( —kz)][b(k —k, ) —b (k, —k)] . (4.13)

The corresponding equations for a;, a;+, and a; are again obtained by interchanging all + and —operators or by
taking the Hermitian conjugate. We abbreviate the inhomogeneities in the differential equations (4.8) and (4.13) by
p;+(k) and j;+(k). j; (k) is obtained from j;+ by interchanging + and —operators, p;+(k) is the Hermitian conjugate
of p;+(k), etc. Thus we can summarize the equations of motion as

i a;+(k) =co'ka;+(k)+p;+(k), i a; (k) =to'ka; (k)+p; (k),

i a;+ (k) = —soka;+ (k) —p;+ (k), i a; (k) = —soka; (k) —p; (k),i f f . ~ 4 i
(4.14)

with

p;+(k) =ct, k [a;+(k3)+a; ( —k3)][b(k —k3)+b (k3 —k)] (4.15)

82 ~ C)2

z
a;+(k)=(to'k) a;+(k)+j;+(k), — a; (k)=(cok) a; (k)+j; (k),

a2 ~ a2
a;+(k)=(co'k) a;+(k)+j;+(k), — a; (k)=(co'k) a; (k)+j; (k),

(4.16)

with

j;+(k)= ckk, [(cok+toj,, )a;+(k3)+(co'k cok, —)a; ( —k3)][b(k —k3)+b (k3 —k)]

+cI, k cok k [a;+(k3)+a; ( —k3)][b(k —k3) b (k3 k)], (4.17)

where c' is given by (4.9). The p; and j; contain one coupling constant explicitly because c' does so. Using the rules
(4.10) it is easy to see that

p; ( —k) =p;+(k), p;+ ( —k) =p; (k) (4.18)

and

j;+(k)+j; ( —k) =2cokp;+(k) . (4.19)

Now we can define the equal-time propagator (or two-time Green s function) in the particle-particle/hole-hole channel as
in (3.2). Inserting the momentum-space expansions of the fields P&, Pz, P&, Pz and taking into account (4.4) (i.e., in this
paragraph we define the propagator with the uncorrelated vacuum) yields

G(t —t,x(,xz,x ),xz )= —I [(2m)' 16co&rozco~ coz ]'~

X I 8(t —t')(0
~
a&+(t k& )az+(t kz)a, +(t', k& )az+(t', kz ) ~0)

Xexp[i(k]x] +kzxz —k]x] —kzxz )]

+8(t' t)(0
~
a~ (t', k& )az —(t', kz)at (t, ki)az (t, kz)

~
0)

X exp[i(k &x & +k zx z —k &x, —kzx z )] J . (4.20)

Qther vacuum expectation values do not appear because all operators of the field 1 commute with all operators of the
field 2 at the same time and a+ annihilates the uncorrelated vacuum. We d«ine Fouri««»««matio»y

(f(t t')) =f(E)=(2~) '~' f—f(t t')e' «, —
(4.21)

~~—](f(E)) f(t tl) (2 ) 1/zf f(E) IE(f f )dE
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and

f(x1,x2,x1,x2)=(2m) fd k1d k2d k'1d kzf(k1, k2, k'1, k2)exp[i(k1x1+k2x2 —k1x'1 —k2x2)],

f( k1, k2, k'1, kz)=(2n. ) f d k1d k2d k'1d k2f(x1,x2,x'1,x2)exp[ i(—k1x1+k2x2 k—1xl —k2x2)] .
(4.22)

However it is advantageous to adopt the convention that for a Green's function like (4.18) we do not define
G (t —t', k1,k2, k'1, k2 ) as the Fourier transform of (4.18) in the sense of (4.22), but apply this definition only for the first
term, proportional to 8(t t'),—while for the second one, proportional to 8(t' t), t—he sign of the exponent in (4.22) will
be reversed. If we further introduce the abbreviation

11'22': ( P11P11'~2~2')
—]./2

we obtain

k1 k2 k1 k2 ) d11'22 [ 8(t —t')(o
I
a1+(t k1)&2+(t k»a1+ (t' k1)&2+(t k2 )

l
0&

+8(t' —t)(0
~
~1 (t', k'1 )a2 (t', k2)~1 (t, k1)~22 (t, k2)

~
0)] .

(4.23)

(4.24)

We see that G(t —t', k1,k2, k'1, k2) describes for t & t' the creation of two particles at t' with momenta k'1 and k2 and
their destruction at t with momenta k1 and k2, and for t & t the creation of two antiparticles at t with momenta k1 and
k2 and their destruction at t' with momenta k'] and k2.

Because at a given time we always write first the a] and then the a2 operator we will drop the indices 1 and 2 in what
follows unless this may cause confusion. The two operators on the left have unprimed arguments and the two on the
right have primed ones if this is so for the 8 function [i.e., when the factor is 8(t —t )] and the other way round. Thus it
is clear that 8(t" t')(a a—a a ) means

8(t"—t')(0
~
a1 (t",k1')a2 (t",k2')a1 (t', k'1 )a2 (t', k2)

~
0) .

And finally we simply write ( . ) instead of (0
~

. .
~

0).
Equation (4.24) then reads

G(t —t', k1,k2, k1,k2)= —d„22 [8(t t')(a+a+—a+a+ )+8(t' t)(a a a —a )] . (4.25)

To obtain the free propagator Gp(t t') from—(4.25) we only have to observe that without any interaction (g1 ——g2
——0)

the temporal evolution of the operators is simply given by

a;+(t, k)=e a;+(O, k), a;+(t,k)=e "a;+(O,k),
and that for the equal-time vacuum expectation values (with the uncorrelated vacuum) we have

( g 1+g 2+ g 1+g 2+ ) ~ q,
—5 ( k 1

—k '1 )5 ( k 2
—k 2 )

and thus for Gp(t t'), —
I

Gp(t —t', k1,k2, k'1, k2)= (4co1co2)—'5 (k1 —k1)5 (k2 —k2)[8(t t')e —' ' +8(t' t)e ' ' — ] .

(4.26)

(4.27)

(4.28)

If fields 1 and 2 are identical we have to replace 5 (k1 —k'1 )5 (k2 —k2 ) by 2Id» 22, where Id is a symmetrized 5 distri-
bution:

Idl1'22' —Y[5 (kl k 1 )5 (k2 k2 )+5 (kl k2 )5 (k2 k1 )1 .

However, to keep our formulas as short as possible we will assume that fields 1 and 2 are not identical. If they were one
obtains the corresponding formulas by replacing always 5 (k1 —k1 )5 (k2 —k2 ) by Id1122 (up to a factor 2 or —,

'
) in what

follows.
We want to calculate the Fourier transform of (4.28) with respect to the time variable: Gp(E). «cording «(4.21) we

obtain

Gp(E, k1,k2, k1,k2 ) =- i ~i+~2
, 5 (k1 —k'1 )5 (k2 —k2) .

(21r )
' 2tp1co2 E —( p11+co2)

The inverses (pseudoinverses) Gp '(E) and Gp '(t t') are defined by-

f Gp (E,k1,k2, k1,k2 )Gp(ÃkI ~k2 ~kl ~k2)d kid k2 =5 (kl kl )5 (k2 2

f G, —(t t",k„k„k,",k,")G,(t" t', k, ',k, ,k, ,k, )dt "d'k,"d'k,"=5(t —t')5'(k1 —k1)5 (k2 —
2 ) .

It is easy to obtain Gp '(E),

(4.29)

(4.30)

(4.31)
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Go '(E,k],k2, k'], k2 ) =i(2')'~ [E (—co]+co2) ]5 {k]—k'] )5'(kp —kp ) .
CO~+ C02

Go '(t t'—) is then given by (2m. )
' times the Fourier transform of Go '(E),

(4.32)

I 3 2CO] CO2

GQ (t —t', k],k2, k'], k2)=i5(t —t')5 (k] k']—)5 (k2 —k2)
67 ~+ F02

a2 —(co ] +co2)
Bt

(4.33)

An equivalent form is also

t
E—2 2' ic02 t

Go (t —t', k],k2, k],k2 ) = —
2

—(co]+co2) l'5lt t')5—(k] —k] )5 (k2 —kp) .
Bt CO~ +C02

(4.34)

Of course, one can check directly that Go '(t t') fr—om (4.33) and Go(t t') fr—om (4.28) fulfill Eq. (4.31).
According to our general discussion in Sec. III we now have to calculate Go 'G. Go '(t t') c—ontains the operator

c} /Bt' and G(t t') is gi—ven by (4.24) or (4.25). We thus have to know first and second derivations of the a operators
with respect to time. They have already been given in formulas (4.14) to (4.17). We obtain

, G(t —t', k],k2, k'], kp) = —d]] 22 i ~' [0(t ——t') &a+a+a+a+ &+&(t' t) &a —a a a &]
Qt 2 Bt Bt

= —d]] 22i i5(t —t')(&a+a+a+a+ &
—&a a a a &)

8
at

+ 6(t t')i &—a+a+a+a+ &+8(t' t)i &a —a a a

= —d» 22 0+i5(t t') i &a+—a+a+a+ & i —&a a a a

+8(t t') — —&a+a+a+a+ & + B(t' t) — —&a a a a
Bt

We have

5{t—t')(&a+a+a+a+ &
—&a a a a &)=5(t —t')[5 (k] —k'] )5 (k2 —k2) —5 (k] —k'] )5 (k2 —k2)]=0

And furthermore

(4.35)

i &a+(t)a+(t)a+(t')a+(t') & i &a (t—')a (t')a (t)a (t) &

c}t

=(co]+co2)&a+a+a +a+ & + &p+ a+a +a + & + &a+p+a +a + &

+(co]+co2)&a a a a &+ &a a p a &+ &a a a p & . (4.36)

Because of the factor 5(t t ) all times are equ—al in this expression and thus &a+a+a+a+ & and &a a a a & reducet n

to 5 (k] —k] )5 (k2 —k2) each, and the terms containing one p are zero because they contain a b and a b operator
which commutes with all a operators at the same time t, and therefore we end up with &0

~

b or b
~

0& which are both
zero (of course, this is true only with an uncorrelated vacuum as dealt with in this subsection). The other terms yield

(a~(()a~(()a~((')a~((')) =(t'
a2

a+ a+a+a+ + a+ a+ a+a+ +2 i a+, i — a+ a+a+
Bt Bt Bt

= (co, ) &a+a+a+a+ &+ &j+a+a+a+ &+(co2) &a+a+a+a+ &
2 2

+ &a+j+a+a+ &+2co,co,&a+a+a+a+ &+2co, &a+p+a+a+ &

+2~,&p+a+a+a+ &+2&p+p+a+a+ &

= (~]+~2) & +a+ + + &+ &J+a+a+a+ &+ &a+J+a+a+ &
2

+2~]&a+p+a+a+ &+2~2&p+a+a+a+ &+2&p+p+a+a+ & (4.37)
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and in a completely analogous way,

2&a a a a &=(co~+coz) &a a a a &+&a a j a2

Bt

+ &a a a j &+2co&&a a a p &+2coz&a a p a &+2&a a p p (4.38)

We define the Green's functions

G(t —t', j(k~), k2, k~, k~)= d—~&22 [&(t t'—)&j+a+a+a+ &+&(t' —t)&a a j a &]

and G (t t', k—„p(k2 ),k &,k z ), etc. , in the same manner and taking into account (4.33) and (4.34) we obtain

jGo '(t —t"&k„k2&k) &k2 )G(t"—t'&k) &k2&k( &k2)dt"d k)d k2' ——5(t —t')6 (k( —k, )5 (k2 —k2)

+R (t —t', k„k„k', ,k', )

(4.39)

with

2co ~co2
R (t —t', k„k„k'„k,' ) =i [G(t t',j(k—)),k2, k) &k2)+G(t t'&k—)&j(k2),k) &k2)

CO~ +C02

+2co&G (t t'&k) p(&kq—) k)&&kp )+2co2G(t —t',p (k) ),k2, k ) &k2 )

+2G (t t',p (k—) ),p(k2), k'), k2 )] . (4.40)

The function R contains with the j and p operators explicitly one coupling constant g;. In the last section we already an-
ticipated that R is in fact of second order in the coupling constants. A typical term from R is up to factors independent
of Rs:

0(t —t') &p+a+a+a+ &-g~ & [a+(t)+a (t)][b(t)+b "(t)]a+(t)a+(t')a+(t') &

=g, &a+(t)b(t)a+(t)a+(t')a+(t') & (4.41)

because of (4.4) and the fact that b and bt commute with a+ at equal times. But in (4.41) the b operator cannot be sim-
ply brought to the right to get zero [because of b (t)

~

0& =0], since b (t) does not commute with the a operators at anoth-
er time t . Equation (4.41) already explicitly contains one g;. To prove that R is of second order we have to show that
the commutator between b (t) and a + (t') is in lowest order proportional to g.

If there were no interaction, b(t) and a (t') would commute [a (t') stands for a~(t') or a ~(t')]. Thus, a development
of the commutator in powers of g cannot contain a constant term. To show that the coefficient of the linear term does
not vanish, we define a function

f, (t) = [a+(t,k), b (t', k')],
which satisfies the following differential equation:

(4.42)

i f, (t) =cokf, (t)+g, (t)
dt '

with

g, (t) = [p+(t, k), b(t', k')],
with solution

(4.43)

I

f, (t)=e f;(t') i J e "
g, (—s)ds . (4.44)

Since a and b commute at equal times we have f, (t ) =0. The function g, (s) already explicitly contains one g;. Thus,
we can calculate all operators in lowest order. The time evolution is then given by (4.26) and we obtain

—SCOk (S —f ) ECOk (S —t')
k (S —t')

g, (s)=ekk, [e ' a+(t', k;)+e ' a (t', —k3)]e ' [b (t', k3 —k), b(t', k')]
I I

e
[(4~)'cokcok+k'cok']

(4.45)

It is trivial to insert this into (4.44) and to perform the integration to get the commutator (4.42) to lowest order. For us,
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it is only important that g, (s) and thus also f;(t) is proportional to g; in lowest order. Therefore R is of second (and
higher) order in the coupling constants.

According to the general equations (3.6) and (3.7), M may now be computed in any order. In this work we will restrict
ourselves to a calculation up to second order: M=RGO . The contributions in this order are either proportional to
g, g2 or g, or g2 . A g; being always connected with a vertex of particle i, the terms proportional to g, or g2 describe
graphs containing two vertices of the same particle. In second order these can only be self-energy diagrams contributing
to a mass renormalization. But we assume aH masses already renormalized and thus drop all terms proportional to g1
or g2 and retain only those of order g1g2. To compute M as RGO ' we have to calculate essentially

[ c) /cjt—' —(col +co2 ) ]R(t t'). T—his is very similar to the calculations (4.35) to (4.40).
For example one obtains

2 —(col, +co2.)2 G(t —t',j (kl), k2, k'l, k2)
Bt

, t', [—i5(t —t')((j+a+a+a+ &
—(a .a j a &)] i5(—t t') i,—(j+a+a+a+ & i, (a —a j a11'22' Bt' ()t'

+8(t —t')( (j+a+j+a+ &+ (j+a+a+J'+ &+2col (j+a+a+p+ & +2co2 (J'+a+p+a+ &+2(j+a+p+p+ &)
I

+8(t' —t)( &j a j a &+&a j j a &+2col &a p j a &+2co2&p a j a &+(p p j a &)

(4.46)

The first term in the large square bracket vanishes because the factor 5(t t') put—s all times equal and then the b and b
contained in j commute with all a operators and due to (4.4) one gets zero. The second term in the large square bracket
yields

—i5(t t )[(col ——co2)(j+a+a+a+ &
—(col +co2)(a a j aI

—(j+a+p+a+ &
—(j+a+a+p+ &

—(p a j a &
—(a p . j a &] . (4.47)

(4.48)81g2

where we abbreviated cok k by co". The terms containing the 8 functions give (in the order glg2) with an evident gen-
1 2

eralization of the definition (4.39)

The first two vacuum expectation values vanish again and the other four equal-time vacuum expectation values are easily
calculated using the definitions (4.15) and (4.17) of p and j and the equal-time commutation relations for the a and b
operators: (j+a+p+a+ & and (p a j a & give divergent integrals, which is not astonishing because they are propor-
tional to g1 and thus contribute to the mass renormalization. As already mentioned we will not retain these terms.
Thus we are le t with (j+a+a+p+ & and (a p j a &. Each of them yields

(CO1+CO1 +CA)5 (kl+k2 —k 1
—k2 ) (CO1+CO1 +CO")

=g1g2 4d 1 1'22'5 (X—E')
(477) (CO1CO2CO1 CO2 ) CO~ (4~) CO"

G(t —t', j«1),k2 kl J(k2))+2~1'G(t t J(kl) k2 kl p(k2))

which we will also write as

G(t —t', j(k, ),k„k'„[j(k2')+2co,p(k2')]) .

Equation (4.46) then yields using (4.48)

3 8(CO1+ CO2+ CO )
(COI'+CO2 ) G(t t',J(kl ),k2, kl, k2 )= ——15(t —t')(d1122 ) glg2 3

5 (IC —K')
Bt' (4') co"

+G(t —t', j(kl), k2, kl, [j(k2)+2 l'pc(ok2)1) . (4 49)

The corresponding calculations for the other terms in R are completely analogous, only G(t t',p(kl), p(k2), k'l, —k2) is
somewhat different. For the term corresponding to the first one in the large square brackets in (4.46) it is not possible to
conclude in the same way that it is vanishing because it now contains a product of two b and four a operators, but using
the rules (4.10) it is easy to show that (p+p+a+a+ &, , =(a a p p &. .. and their difference vanishes. By the
same reason the term
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—d1)zz ( —i)5(t —t')[i(d/dt')(p+p+ct+a+ ) i—(c)/c)t')(a a p p )]
= —d()zz ( —i)5(t —t')[( co—) co—z )(p+p+a+a+ ) —(co)+coz )(a a p p ) ]

yields simply

I 8(co)+coz )
id)1'22'5(t —t')2(co1 +coz )(p+p+(2+et+ ) = —15(t —t')(d)1 22 )'g)gz, 5'(K —K')

(41r) co"

Collecting all terms, we finally obtain for M =EGO ' in the order g)gz

2co~c022co~ c02 2 . 3 p —1 3M( t —t', k), kz, k), kz ) =i 5(t —t')(d1122 ) g(gz[(4') co&] 5 (K —K')
(co)+coz)(co( +coz )

(4.50)

X 8(co(+co(+co"+.coz+coz +co"+2co)+2coz+2co) +2coz )

+6« —t' [j(k) )+2~+(k) )],kz k1 [j(k' )+2~)p(kz )])

+G(t —t k) [j(kz)+2co)p(kz)], [j(k) )+2cozp(k))], kz)] . (4.51)

The two Green s functions in (4.51) explicitly contain a factor g, gz and we can replace the operators a and b by the cor-
responding operators of free fields. Since time evolution is known [Eq. (4.26) and a corresponding one for b and b ], we
obtain for M the following explicit expression:

g)gz5 (K —K')
M(t —t', k), kz, k'(, kz ) = I 2i5(t —t')[3(co, ~coz+co) +coz )+2co)']'

(4~) (co)+coz)(co1+coz )co"

+(CO)+~1'+~ + ~2)(~2+~2'+~ +CO)')

(,+, +~')( —'), , (,+, +W)( —')]X[0 t t e- +0(t —t e

+(coz+coz +co +2co))(co)+co( +co +2coz )

—i (CO1+CO2+(')( »t»t ,')—, . i ( CO1+ Cuz +a& )( 1 . t ')—0(t t')e — +0 t t)e ' — ] j .

We want to interpret a typical term of M. Since 0(t' t)0(t' t—) is zero, we can—write

i(Cuz+»»1. +a&)(t—t'), i(a)2+—re1, +»»)')(i t )—', , icO2(t i')— , —iCO2(i —t')]0( t —t'je
I

X [0(t t')e ' —+0(t' t)e ' ]—

(4.52)

X[8(t —t')e iw(i 1 )+0(t' —t) '»»('(i 1 )) (4.53)

This is, up to factors, just the product of three Feynman propagators from t' to t for particle 1 with momentum k &, for
particle 2 with momentum kz and for the exchange particle with momentum k1 —k'1 ——kz —kz. In Fig. 2(a) this is
shown graphically for t & t'. Figure 2(b) shows the corresponding graph for t'& t and 2(c) the other term with the 0
functions in (4.53) for t & t' while 2(d) illustrates the meaning of the static term proportional to 5(t t'). The fact that-
the four times of the propagator are not allowed to vary independently (because t( ——tz, t'1 tz ) is co——mpensated because
M not only contains the exchange particle propagator (as does the kernel K of the Bethe-Salpeter equation in the ladder
approximation) but also the two one-particle propagators of the fields 1 and 2. The relation of our approach to the
Bethe-Salpeter equation will be studied in Sec. IV C, because it is clear that this question can only be treated when we in-
clude all vacuum correlations.

Expression (4.53) for M(t t ) is completely —symmetric under permutation of all primed and unprimed quantities as
well as under 1~2. Using (4.21) the Fourier transform M(F) is easily calculated:

g)gz5 (K K')i—
M(E, k„kz,k(, kz )= 6(+2++1')+2+ +(+1++1'++ + coz)(+2++2'+co +2co(')(4') (co1+coz)(co( +coz )co"(2')'

X E —
cop —co ~

—co

1

F +c02+co~ +co
+(1~2), (4.54)

where E is the total energy of the two-particle system. Note that we have symmetry &~—E corresponding to a
Particle-antiparticle symmetry. For the numerical solution it is advantageous to write M(&) in another form obtained by
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decomposition into partial fractions with respect to co":

M(E, k(, kp, k),kp)=— g&gp5 (K K—')i

(4~) (co)+cop)(co) +cop )co"(2')'

(co/+cop E—)(co) +cop E)—
+

co +c02+co] +E
(co)+cop+E)(co) +cop +E)

co +c02+ 6) ] —E
+(1~2) . (4.55)

When taking the Fourier transform of the equation

G (t t')—= Go(t t')—+ fGo(t t")M—(t" t"')—G(t"' t')d—t "dt"',

a factor (2')' appears two times:

G (E)=Go (E)+ 2nGO (E)M (E)G (E) .

(4.56a)

(4.56b)

We either include this factor 2~ in the definition of M(E) (as we did in Sec. III without mentioning it explicitly) or we
define the integral kernel (GOM)(E) by

(GOM)(E)=2+Go(E)M(E) .

Using (4.29) and (4.55) we obtain

(GOM)(E k) kp k'], kp )=—

(co]+cop+E)(co] +cop +E)
co +cc)2+dc) ~

—E

g~gp5'(K —K')

(4m)'2co)cop(c. o) +cop )(E (co(+c—op) )cot'

(co)+cop —E)(co( +cop E)—
X

p
+

co +602+co] +E
+(1~2) .

(4.57)

(4.58)

We want to examine the two limiting cases m I ——mz and m2~ ~ in some more detail.
(a) m

&

——m p
——2m. We introduce total and relative coordinates by (2.7) (e.g. , with cc = —,). They are inverted by

(4.59)

and in the center-of-mass system (K=O) we have k& ——k and kp ———k and thus co& ——cop ——(4m +k )' =co and
co&

——cop ——co'. We factorize from all quantities a 5 (K —K') distribution characterizing the conservation of total momen-
tum, in particular

(GOM)(E, K, k, K', k') =5 (K K')(GOM)(E—,K,k, k')

[1—E/(2co)][1 —E/(2co')] [1+E/(2co)][1+E/(2co')]+
m" +co+co'+ E m" +co+ co' —E(GOM)(E, K=0,k, k') =- 2fPz A,

vrPco[E' 4(co)') ]co"—

and obtain in the center-of-mass system when introducing k by (2.6)

(4.60)

(4.61)

(b) m p~ ~. In this case we have m =m ~, where we again introduced total and relative variables. With the binding
energy B we put E =m p+ m Band thus E —(co—~+cop) —+2m p(m B —co). Equations —(4.58) and (4.60) then yield

(GoM)(E, K =O, k, k') =- Pl A, 1 + 1

4' co(m —B co)co" co"+co——m +B co"+co' —m +B
(4.62)

In any case, a bound state 7 is a solution of

Xg(k) =f (GOM)(E, K =O, k, k')X~(k')dk' . (4.63)

I

the Bethe-Salpeter equation and the instantaneous approx-
imation.

I

We have solved this integral equation with the kernels
(4.61) and (4.62) by going to a discrete limit and determin-

ing the energies making the resulting nonsymmetric ma-
trix singular. %'e calculated the binding energies for
several levels and with different A, . Details concerning the
numerical procedure can be found in the Appendix. Be-
fore discussing the energies we found, we will show in
Sec. IVB how to calculate M including all vacuum corre-
lations. In Sec. IVC we will discuss the binding energies
with and without taking into account vacuum correlations
and compare them to the corresponding energies given by

B. Taking vacuum correlations into account

In this section we will calculate M to order g &g2
without any further approximation. We keep the same
model of Cutkosky with the momentum expansions (4.1)
and (4.2) of the fields and the Hamilton operator (4.6) and
(4.7). Thus the equations of motion (4.14) to (4.17) do not
change. The only difference is that now the Green's func-
tion G is defined with the physical, i.e., the correlated
vacuum. Go remains the same because it is defined as the
limit of 6 for g;~0, and in this limit the correlated vacu-
um becomes the uncorrelated one.
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FIG. 4. Graphical representation of (a+ a+ a +a + ) .
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&a a a a

[where (a+a+a+a )+(1~2) means (a+a+a+a )
+ (a+a+a at+ ) )]. It is easy to check that to each vacu-
um expectation value for t & t' corresponds one for t' ~ t
obtained from the first one by taking the complex conju-
gate and interchange + and —.

We now have to discuss the 16 vacuum expectation
values appearing in (4.65): in which order do they contri-
bute'? In zeroth order only (a+ a+ a +a + ) (and
(a a a a )) give a contribution. We represent this
graphically as shown in Fig. 4. Of course, the diagram is
only a symbolic one, because all kinds of interactions are
possible between t' and t. The a+ operators describe the
creation of two particles at the time t' and the a+ their
destruction at t. Let us now consider (a+a+at+a ):
Particle 1 is created at t' and destroyed at t. Particle 2 is
destroyed by a 2+ at t, at t ' however it is now created but
a2 destroys an antiparticle 2. This is only possible if at
time t' a particle-antiparticle pair was already present.
But this is possible due to the virtual pair creation in the
correlated vacuum. However, an exchange particle is
created with the pair and has to be destroyed at some later
time. This is shown in Fig. 5. We see that the term
(a+ a+ a+a ) yields contributions of order gqg2 and

g, gz (also of order g ). Of course, we could have ob-
tained the same results in an analytical way, using (4.64),

4-
P
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+~a a a a&
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FIG. 6. Contributions of the different vacuum expectation
values.

o2

(c)

o2

o2

FIG. 5. Graphical representation of (a+a+a+a ) (a); with

possible contribution from the correlated vacuum (b). The pos-
sible couplings of the line of the exchange particle and the re-

sulting orders in the coupling constants are given in (c) to (f).

but we prefer the more intuitive graphical discussion. In
a similar way, one can discuss the other vacuum expecta-
tion values in (4.65) (see Fig. 6). From this figure, we see
that any operator in a wrong position yields one g: an
operator a

&
in a wrong position yields a g ~, an a2 yields a

g2. In (a+a a+a ), e.g., aq and a2 are m a wrong
position, this term is proportional (in lowest order) to g2 .
If only one a is in a wrong position, e.g., a~, the term
gives contributions of order g&g2 and gt . If more than
two a operators are in wrong positions, the term is of or-

derg .
Again, we only keep terms giving a contribution to or-

der g, g2. Expression (4.65) then reduces to
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6 (t —t', k), k2, kI, kz )= —d ()» I 0(t —t')[ (a+a+a+a+ ) + (a+a+a a ) + (a a a+a+ )

+(a+a+a+a )+(1~2)+(a+a a+a+ )+(1~2)
+ (a+a a a+ ) + (1~2)]

+8(t' t)—[(a a a a )+(a+a+a a )+(a a a+a+)
+ (a a+a a ) + (1~2)+(a a a a+ ) +(1~2)
+(a+a a a+)+(1~2)]J .

Now we have to calculate 60 '6:
82 —(co, +co2)~ G(t t', k—),k~, kI, k2 )t'

(4.66)

= —d»» i Ii5(t —t')[ ]—i5(t —t')[ ]j+i5(t t') i —f —] i —[ ]
Bt Bt Bt

(4.67)

The first term in the large square brackets in (4.67) [the terms proportional to (8/Bt)5(t —t')] is zero. This is connected
with PCT invariance.

Let T be the antiunitary time inversion operator. It is easy to see that Cutkosky s model is invariant under time inver-
sion: [T,H]=0 with H according to (4.6), (4.7), and

Ta(t, k)T '=+a( t, —k—) .

The theory is also invariant under the parity operation P with

Pa (t, k)P '=a (t, —k),
and under charge conjugation C with

Ca+(t, k)C '=a ~(t, k), Ca+(t, k)C '=a ~(t, k) .

(4.68)

(4.69)

(4.70)

(4.71)

where we used in a first step invariance under PCT and in a second step under D, +, . Thus we get for t =t:

I

Of course, Lorentz invariance also implies invariance under time translation D, :t~t+s.
To show that the first term in the large square brackets in (4.67) vanishes, we do not need all these symmetries

separately. Only PCT invariance and invariance under time translation is necessary. Especially the correlated vacuum
has to be PCT invariant (if it is unique, this holds true). Then we get for (a+a a a+ ), for example,

(0
~
a, +(t k&)a2 (t, —kz)a &+(t', k', )a2+(t', kz) (

0) =(0
~

a& ( —t, k&)a2+( —t, —k2)a & ( —t', k~ )az ( —t', k2)
~

0)+I & f I

= (0
I
a i-(t k i )a2 —(t k2 )a1—(t k 1 )a2+(t k2) I

0)

(a+a a+a+), , =(a a a a+), (4.72)

In a completely analogous manner one shows the equality of all pairs of corresponding vacuum expectation values in the
large square brackets in (4.67), their sign being always opposite, this term vanishes.

Because C invariance holds also alone we have

(0~a (t, k))a (t, k2)a (t', k&)a+(t', —k2) ~0)=(0~a+(t k&)a+(t, k&)a+(t', k&)a (t', —k&) ~0)

= (0
~

a+(t', k&)a (t', —k2)a „(t,k') )a+(t, kp )
~

0)+ . (4.73)

Together with (4.72) this shows, that for t=t' (a+a a+a+ ) is real. Of course, the same applies for all other equal-
time vacuum expectation values of four operators (these may be a, b, j or p operators): they are real.

Now we want to calculate the second term in the large square brackets in (4.67), i.e., the terms proportional to 5(t —t')
Using PCT invariance on the one hand, i.e., equations analogous to (4.72), and on the other hand dropping all terms
which are not of order g&g2 (or g ) according to the discussion of operators on wrong and correct positions (p orj opera-
tors are never on wrong positions because they contain a+ and a or a and a+) the second term in the large square
brackets in (4.67) becomes
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2[ (co~+coz)(a+a+a+a+ ) + (p+a+a+a+ ) + (a+p+a+a+ )

+(col+coz)(a+a+a —a —) —(co)+coz)(a a a+a+ ) —(p a a+a+ ) —(a p a+a+ )

+(co~+coz)(a+a+a+a )+(p+a+a+a )+(1~2)
+(co~ —coz)(a+a a+a+ )+ (p+a a+a+ ) —(a+p a+a+ )+(1~2)
+(co~ —coz)(a+a a a+ ) —(a+p a a ) +(1~2)] (4.74)

where "+(1~2)"refers to all terms of the line. We will use (4.18) and

(a+(k&)a+(kz)a ( —kI )a ( kz)) =—([a+a+ a a ])+(a ( —k& )a ( —kz)a+(k&)a+(kz))

=(a (k[)a (kz)a+( —k'] )a+( —kz))
= (a ( —k, )a ( —kz)a+(k', )a+(kz )) (4.75)

because the commutator vanishes and because of PCT invariance and P invariance alone. Here for the first time, we use
more than only PCT invariance alone, but this is not a crucial point of our method because we only use it to simplify the
formula. If P invariance would not hold we would have had to calculate the corresponding terms separately. A similar
result applies for (a+a a a+ ) and (a a+a+a ). Thus (4.74) can be simplified to give

2[ —,(co~+coz)(a+a+a+a+ )+(co~+coz)(a+a+a+a )+(co&—coz)(a+a a+a+ )]+(1~2) .1 (4.76)

We have (a+a+a+a ) = ([a+a+,a+a ])+ (a+a a+a+ ).
In the last term three operators are in a wrong position. Its contribution is -g and thus we drop it. The commutator

yields 5 (k& —k'& )(az az+ ). This vacuum expectation value is of order gz or g as can be seen from Fig. 7. Thus
(a+a+a+a ) gives no contribution of order g~gz. The same can be shown for (a+a a+a+ ). We are left with

(co]+coz)(a+a+a+a+ ) =(co$+coz)(( [a+a+,a+a+ ] ) + (a+a+a+a y ) ),
where in the last term four operators are in wrong positions. The commutator yields 5'(kz —k z ) ( a &+ a &+ )
+5 (k& —k& )(az+az+ ). The second vacuum expectation value is again of the order gz and the first one gives

(a, +a&+ ) =([a,+,a&+])+ (a &+a&+ ) =5'(k& —k'& )+O(g, ) .

Equation (4.76) becomes

2(coi+coz)5 (k& —k'& )5 (kz —kz) .

We obtain the same result as in Sec. IV A when we neglected all vacuum correlations.
To calculate the terms in (4.67) with the 9 functions we define the abbreviation

(4.77)

g(a+p+a+a )=8(t t')(a+p a+—a )+8(t' t)(a a+a —p+ ) (4.78)

and analogously g(a+a p+a ), etc. To know the order of such a g function we can again apply the method of the
wrong positions: in g(a+p a+a ), e.g. , az is in a wrong position, this yields a factor gz, pf explicitly contains a
coupling constant gz and thus g(a+p a+a ) is of order gz . We again drop all terms not of order g~gz (or g ) and ob-
tain

IGo '(t —t", k), k,zk), kz)G(t" t', k), k k—z(, k )dzt"d k)d kz'

2' ~F02=5(t —t')5 (k) —k) )5'(kz —kz ) i-d)) zz r(t t', k), k kz'),—k )z
CO~ +COp

with

r(t —t', k~, kz, k~, kz ) =[g(j +a+a+a+ )+2cozg(P+a+a+a+ )+g(P+P+a+a+ )+g(j a a+a+ )
~ f

+2cozg (p a a+a+ )+g(p p a+a+ )+g (j+a+a+a )+2cozg (p+a+a+a )

—4co&cozg(a+a a+a+ )+g(j+a a+a+ )+g(a+j a+a+ ) —2co&g(a+P a+a+ )

—2cozg(P+a a+a+ ) —2g(P+P a+a+ ) —4co~cozg(a+a a a+ )+g(a+j a a+ )

—2co~g(a+p a a+ ))+(1~2) . (4.79)

To get M to order g~gz, we have to apply Go ' from the right to R = —2ico&cozd~~ zz (co&+coz) 'r All calculations ar.e
very similar to those already outlined above. Using PCT invariance and (4.18) we obtain the following result:
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( co ~co2co ~ cop )
1/2

M(t t—', k„k„k;,k,') = { t'—5lt —t')[ —2(co/ +cop )((j +j )a
(co~+co2)(co~ +co2 )

—2(co( +co2 )((J++J )a a+a+ )
~ T

+2(co2 —co& )((j++j )a+a+a )]
+g[(j++j" )a+a+(j++j )]
—4co& co2g[ (j++j )a+a+a ]—4co&co2g[a a+a+(j+ +j )]

+16co)co2co)cong(a+a a a+)J+(1~2) . (4.80)

Notice that no term containing a p is left. Using (4.19) this may also be written as

2 i' 2' )
I /2

M(t —t', ki, kp, k'i, kp ) = {—i5(t —t')[ —4co&(co& +co2 )(p+a+a+a+ )
(coi+co2)(coi +cop )

—4co&(co& +coo )(p+a a+a+ )
—4co$(co] —co2)(p+a+a+a )]

+4cofco2'g (p+a + a +p + ) 8co]co)'cop'g(p+a+ a +a )

—8co~co2co2g(a a+a+p+)+16co, co,co, co, g(a+a a a+)j+(1~2) .

(4.81)

We first calculate the equal-time vacuum expectation values, i.e., the quantity in square brackets in (4.81), explicitly. For
t =t we have

(p+a+a+a ) =ck, k, ([a+(k3)+a ( —k3)][b(kz —k3)+b (k3 —kz)]a+(k2)a+(k'z )a ( —k2))

=c'(a+(b+b )a+a+a )+O(g ),
because in the other term two a operators are in wrong positions and c explicitly contains a g~. Furthermore, this is
equal to

c'([a&+(b+b )a2+, a&+a2 ])+O(g )=cz, k, ([a&+(k&),a&+(k& )][b(k& —k3)+b (k3 k, )]a2+(k2)a2 ( —k2))

and finally we obtain

(p+a+a+a ), ,=, ([b(k) —k') )+b (k') —k))]ay+(kp)a2 ( —k2)), (4.82)
[(4m )'coicoi co"]'i'

For (p+a+a+a+ ) we have in a very similar way for t =t':

(p+a+a+a+ ) =c ((a&++a ~ )(b+b )a2+a ~+a 2+ )j

( [(a 1+ +a f —)(b +b )a2~, a ~+a 2+ ] ) +O(g )

=gi[(4~)'coicoico"] ' '((b+b )a,+a,+ )

gl[(4~) colcoj'co ] {([(b+b )a2+,a2+])+(aq+(b+b )a2+ ))J
The commutator yields a product of a 5 distribution with the vacuum expectation value ((b+b )). It is easy to see
graphically that (b) and (b ) are of order g and together with the explicit factor g&, this yields an order g . In the
other vacuum expectation value both a2 operators are in a wrong position, giving a factor g2 . Thus, to order g~g2 we
obtain

(p+a+a+a+ ), , =0 .

In a very similar way we get for (p+a a+a+ ),
gi[(4') co]co] cP] ' ([b(k$ —k$ )+b (k'] k])]a2 ( k)a 2—(k2+' )) 2. —

Using PCT invariance and P invariance alone we find

&p+a a+a+ &=&p+a+a+a & for t=t .I

(4.83)

(4.84)

(Here again it is not crucial that P invariance alone does hold. ) Thus the quantity in square brackets in (4.81) becomes
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8~1~1'g 1 t f I([b(k1 —k1)+b (k1 —k1)]az+(kz)az ( —kz)),
[(4m )'co)co(co)']'i'

To continue we have to use again the equations of motion. Therefore we put

f (t —t') = ([b(t,k1 —k'1 )+b (t, k1 —k1)]az+(t, kz)az (t', kz—) )

and get

(4.85)

(4.86)

f(t —t') i, —coz q(t ——t—')=([b(t,k1 —k'1 )+b (t,k1 —k1)]az+(t, kz)pz (t', kz)—) .t' (4.87)

q(t t ) con—tains explicitly a coupling constant gz because pz does so. Since we are only interested in calculating (4.84)
up to order g)gz we can replace all operators in q (t t') by—the corresponding ones of free fields and the correlated vacu-
um by the uncorrelated one. Using (4.26) we obtain

g25 (K K ) c(coz—+M)(t t')—
q(t —t')=, e (4.88)

[(4') cozcoz co(']'~

This is of the form

h(ic)lc)t')f (t —t') =C e"" (4.89)

where b is an operator function of i d IBt . Fourier transformation according to (4.19) yields
h ( E)f(E)=(2—n. )'~ C5(E+a), from what follows f(E)=(2m)' C5(E+a)lh (a) and

f (t —t') =C e"" ' )lh (a) .

We are interested in the case t =t' and obtain

&[b(k, —k; )+b'(k', —k, )]a,+(k, )a, ( —k,') &, , =— gz5 (K —K') 1

[(4m )'cozcoz co"]' ' (coz+coz +co")

(4;9D)

(4.91)'

Together with (4.81) and (4.85) we get for the static part of M

8g)g25 (K —K')co(co1
i 5(t t'—)— +(1~2) .

(~1+coz)(co)'+~2')~ (~2+coz'+~
(4.92)

Now we have to calculate the Green's functions g, i.e., the dynamic part of M. Since g(p+a+a+p+ ) is already explicit-
ly of second order we can again replace all operators by the free ones and the correlated vacuum by the uncorrelated one
and we get

3 I

g(p+a+a+p+)= » &2
[8(t —t')e ' ' +0(t' t)e ' ' — ] .g]gz —i(co2+col +a/)(, t —' t'), i (co2+cu& +W)(t —t')

(477) (co)cozco1 coz )' co"

To obtain explicit expressions for the other Green's functions g we have to apply the equations of motion
2

g(p+a+a+a )(t —t ) i —(co1 —coz ) = i5(t t )[2(—coz——co) )(p+a+a+a ) +2(p+a+a+p )]2
I

(4.93)

+e(t —t')[&p+a+a+j &
—2~) (p+a+a+p &]

(4.94)+0(t' t)[(a j+p a ) —2co1 (—a p+p a ) ]=q (t t')—
where we already took into account the consequences of PCT invariance. (p+a+a+a ), , is given in (4.82) and all
other terms are explicitly of order g~gz. They are easily calculated as usual:

g (g25 (K —K')
q(t —t')=

(4m) (co)cozco)coz )' co"

2(coz —co1 )—i5(t —t')
~ +2

C02+Cc)2 +CO

, )[g(,)
i(a)z+ro) +nP)(t t') . g(, )

—s(cuz+co)+a&)(t t')], —

(4.95)
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As in (4.89), (4.90) h(i dIBt')g (t —t') =q (t —t') yields upon Fourier transformation g (E)=q (E)Ih ( E—) and we obtain

g(pea~a ~a )(E)= q(E)
E —(co] —coz )

2 2

g]gz5 (K —K')
(4m. ) (CO]cdqcd] Cdq )' CO]'

l 2(COAL
—CO] )

(2]r)'~ cdp~cop ~co]"
I—2 + —

(Cdp —Cdg —CO —2CO] )
(2n )'

E —cop —co ~
t —co~

1 1

E+ Cdp+ Cd]+CO E —(CO] —Cdp )
2 2

g(a a+a+p+) is calculated in a very similar way by applying [(iBIBt) —(cd] —cdq) ] to g(t t') —We.obtain

glg25 (K K ) 1 2(cdp —CO] )
g(a a+a+p+ )(E)= 2 1/2(471) (Cd]CO/Cd]~cd/ ) CO E —(CO] —Cd/) (2']7) CO] /Cd] /Cd~

(4.96)

l+ (CO] —CO] —CO —2cdp)(2~)'"

X E—cop —co ~
—co~

1

E +cop+coi +co~

For g(a+a a a+) we get
2

—(co]—cd&) [g(a+a a a+ )(t t')+(1~2)]—

(4.97)

= i5(t —t')[2(co] —co@)((a+a a a+ ) —(a a+a+a ) —2(p a+a+a ) —2(a+p a a+ )]
+g(j a+a+a ) —2co~(p a+a+a )+(1~2) . (4.98)

As mentioned between Eqs. (4.75) and (4.76), (a+a a a+ ) = (a a+a+a ) for t =t' and using (4.18)
(p a+a+a ) = (p+a+a+a ) which is given by (4.82) and (4.91). From this we obtain (a+p a a+ ) by exchanging
1 and 2. Due to (4.18) g(p a+a+a )=g(p+a+a+a ) which is given by (4.96) and in a completely analogous way
g(j a+a+a ) is seen to be equal to (co] —co] —co")g(p+a+a+a ). Thus we obtain

g (a+a a a+ )(E)+(1~2)=
(4]r) (co]cdpcd] cop ) co E —(co] —cdp)

2l 1 l
X +(CO] —CO] —Cd~ —2cdg)

(2m)'~' CO, ~Cdp ~CO" (2~)'~

2(COp —CO] )
X

COp+COp +63
—2+ (COg —Cdp —Cd —2CO] )

X E —Mp —co ~
—N

1

E +6)g+co~ +67
.~(1~2) .1

E —(co] —cdq )

(4.99)
We collect the results of Eqs. (4.92), (4.93), (4.96), (4.97), and (4.99) to get M(E). Also performing a decomposition into
partial fractions with respect to co" we finally obtain the follow'ing expression:

g]gz5 (K K')4i-
M(E, k],kq, k'], kq )=-

(4m') (CO]+Cdq)(cd] +Cdq )CO"(2m')'

CO )CORI 2' ]~I+
~~+co&+co& —E E —~~ +~~

2cop1~ E +co~ —cop

M ~COp+
co~+cop+co~ +E 1 —--

E +co ]~ —
cop

2cop1—
E —co~+cop
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2CO ~CO~+
CO +CO2+ CO2t

2ct)2 (c02 —ct)1 ) ca)+ct)2+ ct)( —ct)2
1+ E —(ct)( —ct)2 ) ct)1 —ca2+col' c02'

2Ct)2(Ct)2 Ct)1) Ca 1'+~2'+ ~1 ~2+ E —(a)1—ca2) ca( —a)2 +a)1 —F2
+(1~2) . (4.100)

One remarks that M is symmetric under permutation of 1 and 2 as well as under exchange of primed and unprimed
quantities. We also find again the symmetry E~ Erel—ated to a particle-antiparticle symmetry.

It is interesting to interpret a typical term of M before any decomposition into partial fractions. Let us consider, for
example, the contribution of g (p+ a+ a +a ) according to (4.96). One term out of it is up to factors independent of E:

E —CO2 —CO ~
—CO E +CO2+CO~ +CO~

1 1

E —CO~t+CO2t E +CO~ —CO2t
(4.101)

Fourier transformation yields up to factors independent of t

f —t(to2+tol +tot )(t t")— , », t(to2+to) ~tot'l(t t )—"«, i(to—2 to) —)(t t')" —, „ t(to,Ojt —t"je +Ojt —t je j 0(t" t')e —' ' +8(t' —r")e ' ' ]yt"

(4.102)

where we supposed that the imaginary part of co2 is always more negative than the one of co& to define properly the
Fourier transform of (E —ct)) +ct)2 )

' (E+a)(——ct)2 ) '. The expression (4.102) is the product of two Feynman propa-
ators from t' to t" and from t" to t. Time t" is integrated over. Consider, for example, the integrand for t ~ t'~ t":

—&~~2+~$t+~~~~ t ~ & ~~2t ~$t~~& t ~
—&~~2+~~~t2 1' 2 =e e e (4.103)

This describes the free propagation of particle 2 with momentum k2 and of the exchange particle with momentum
k( —k1 from t" to t, of particle 1 with momentum k1 from t' to t and of antiparticle 2 with momentum —k2 from t"
to t . This situation is shown in Fig. 8(a). This is exactly one of the graphs which could riot appear in Sec. IV A when
we neglected all vacuum correlations but which has to be taken into account because of the possibility of spontaneous
pair creation in the vacuum. Other terms stemming from g(a+a a a+ ) correspond to graphs like the one shown in
Fig. 8(b).

We also want to give another form of M, obtained by decomposition into partial fractions with respect to E:

g 1g253(K K')4i-
M(E, k(, k2, k'), k2 )=-

(4m ) (co(+co2)(co) +co2 )ca"(2')'

1

E +COp+CO~ +CO

1
CO jCO2t 1 +E —CO2 —CO) —CO"

2CO )t

CO2+CO2 +CO

2COp

CO~+CO~ +CO

2CO )CO )t +(1~2) .
CO2+CO2 +CO

(4.104)

The integral kernel is again obtained according to (4.57) as
2+Go(E)M(E) and the propagator G (E) is solution of

G(E)=G()(E)+(G()M)(E)G (E) . (4.105)

In our calculation leading to M to order g&gz we did not
introduce any approximation: To this order M is exact.
For the following discussion we will calI this M of order
gtg2 (times a factor 2') M' ': M' )=2~M(E) with M(E)
from (4.100) or (4.104). We reserve the symbol M(E) for
the memory function including all orders (times 2'), i.e.,

sc=z"'+ac'"+z'"+ -- (4.107)

Pt

where E' ' is just the kernel of the ladder approximation.
Now it is possible, at least in principle, to solve the
Bethe-Salpeter equation with the complete kernel K and
to put t~ ——t2 ——t and tI ——t2 ——t' in the four-time Green's
function obtained. Thus we get a two-time Green's func-
tion which we will call GF(t —t'). On the other hand we

m =m"'+m"'+m'"+ ~ ~ ~, (4.106) 2 2

where all graphs contributing only to mass renormaliza-
tion have to be deleted. The irreducible kernel K of the
Bethe-Salpeter equation (also without graphs connected
with mass renormalization) can also be written as a sum
of terms of different orders:

FIG. 7. Interpretation of the vacuum expectation values
(a2 a2+ )t=t similar to Fig. 5.
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t4-

(~) (b)

FIG. 10. Subgraphs from Fig. 9(c) described by M' '(t —t').

(b)

FIG. 8. Graphs described by M(t —t').

can also solve, in principle, our equation 6=Gp+ GpMG
with the cofnplete M. The two-time Green's function ob-
tained will be simply called G(t t') —If no. w the pertur-
bation series are convergent we must have G =GF. If we
consider G and Gp as a power series of the coupling con-
stants g we have an identity to all orders. In zeroth order
we have of course GF '(t —t') =Gp(t —t') =G' '(t t')—
In second order we have

ble kernel of second order (ladder approximation) as
shown in Fig. 9. The graphs 9(a) and 9(b) are described
by

GQ(t4 t3 )M' '(t3 t2 )Gp(t3 —t) )

and

Gp(t6 t5)M—' '(t5 t4)G—Q(t4 t3)M' —'(t3 —t3)GQ(t3 t$)—.

Already we could describe these graphs 9(a) and 9(b) with
the memory function from Sec. IV A when we neglected
vacuum correlations. Graph 9(c), however, can only be
described if we take into account vacuum correlations.
This is done- by

G~ (t —t') = f Gp(t&t, t) &t2 )It (t] &t2 &t) &t2 )

X Gp(t I &t3 &t', t')dt~ dt2dt ~ dt3 (4.108)
GQ(t6 t5 )M (t5 t3 )Gp(t3 —t4 )M (t4 —t2 ) Gp(t2 —t~ )

and

G"'(t t )=—I G, (t —t")M'"(t"—t" )

X Gp(t"' t')dt "dt"—', (4.109)

where M(t t') is th—e Fourier transform of (4.100) or
(4.104). Below we will show that GF '(t t') from (4.—108)
or, equivalently, calculated by the ordinary Feynman rules
is indeed identical with G' '(t t') acco—rding to (4.109).

But in reality we are not able to solve the Bethe-
Salpeter equation with the complete kernel K and most of
the time we restrict ourselves to the ladder approximation.
We did not calculate the complete M either but only M' '.
Now the question arises whether the propagators GF*'
and G obtained by iteration of the corresponding equa-{2g )

tions with the kernels of second order K' ' and M' ' are
also identical or not. %'e certainly cannot expect to obtain
the same propagators the different iteration schemes lead-
ing to a shift between the different orders. This is con-
nected with the definition of the irreducible kernel. We
will explain this is some more detail.

We consider some typical graphs emerging from the
iteration of the Bethe-Salpeter equation with an irreduci-

Here M describes the subgraphs shown in Fig. 10, simi-(2)

lar to those we showed in Fig. 8.
However; in the ladder approximation graphs as

shown in Fig. 11(a) are also present. This graph 11(a)
cannot be described by an expression of the form
6pM GpM Gp, but only by an expression(2) (&)

Gp(t5 —t4)M' '(t4 —t3)M' '(t3 t3)GQ(t3 t))—
This may be obtained as a limiting case from

6pM GpM Gp with all times equal in the second Gp.
But with respect to the integration over these times this is
satisfied only on a set of measure zero, thus we cannot ob-
tain the graph 11(a) by iteration with a kernel M' '. Qn
the other hand it is not difficult to see that this graph can
be obtained as GQM' 'Gp. This is what we called the shift
between different orders: All graphs emerging from an
iteration with kernel M' ', i.e., Gp+ GpM' 'Gp
+GpM GpM Gp + ' ' are also contained in those(2) (2)

emerging from iteration of the Bethe-Salpeter equation
with kernel E'' ' Gp+6 E'' '6 +6 EC' '6 E' 'Gp

"4 tp-
0

"4

t4- t3- t 3

(b) (c}
(b) (c)

FIG. 9. Graphs of the ladder approximation.
FICx. 11. A graph of the ladder approximation (a) and two

subgraphs that can be described by M' '(t —t'): (b) and (c).
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+ - - . But the latter contains in addition graphs which
are only found in GOM' 'Go or GOM' 'Go, etc. We can
also say that the definition of the irreducibility has
changed. Whereas the graph 11(a) is considered as reduci-
ble for the Bethe-Salpeter equation, it has to be regarded
as irreducible in the memory function approach. One
must not forget this discussion when comparing the bind-
ing energies found numerically for the ladder approxima-
tion (kernel I(. ( ') and with a kernel M' '. This will be
done in Sec. IVC. Before, we will show that GP'=G( '

as we claimed above, instead of showing directly that
Gp =GpM Gp. We will demonstrate the equivalent
equation (cf. Logunov and Tavkhelidze and Fishbane and
Namyslowski ):

G() '(t t" )G—P '(t" t"—')G() '(t"' t')—dt "dt"'

=M"'(t t')—. (4.110)
We obtain GF ' according to the usual Feynman rules,
putting t) tz t——, ——t', =tz t', an——d Fourier transformation
into momentum space:

g)gz5 (K —I(.")
GF '(t t', k—),kz, k'), kz ) =

4(4~) co)cozco, coz co"

t

x f dt, dt, [8(t t, )e '— ' +8(t, t)e—' ]

x [8(t tz)e —' ' +8(tz t)e ' '—]

—i'd/(t& —t2) iM(t& —t2)
X [8(t1—tz)e I+8(t,t, )e—

t I

x[8(t, t')e ' ' —+8(t' t, )e ' '— ]

I I

x [8(tz —t')e ' ' +8(t' tz)e —' ] . (4.111)

When calculating Go 'GF 'Go ' we apply 3 Idt and 8 Idt' to GF(t t') yi—elding terms with 5 distributions making
one (or both) integrations over the intermediate times trivial. Other terms contain products of 8 functions, e.g. ,
8(t t, )8(tz—t)8(t) t')8(t—' —tz) dema—nding tz ) t) and t) ) tz. They are satisfied only on the set of measure zero with

t) tz. Thus——th, ese terms give no contributions. Others contain 8(t t, )8(t—z t)8(t' t, )8(tz —t'), de—manding-
tz ) t ) t) and tz & t' & t (, and therefore we can also write instead of the product of the four 8 functions:
8(tz t)8(t t')8(t' t()—+8(tz—t')8(t—' t)8—(t —t)). —In a similar way, one changes other products of 8 functions. One
obtains a sum of several terms. One of them is,

' for example, up to factors independent of t:

i(t»z+t»). +t»t')—(t t'), r i—(t»z+t»z. +t»)')(tz —t')
Oj t —t'je tz (t —tz e

t - i (CO2+Colt+CIP)(t t ) J i {C02+Ct)2t+CIP)(tp t )+0(t' —t )e (t2 —t )e

Performing the integrations over tz this yields

i(t»z+t») +t»t')(t t )—,—'t(t»z+t»), +t»t')(t t')—
8 t t' e- +8 t' te-

coz+ coz +cot'

(4.112)

(4.113)

5(t t')—
co2+ co2 +mI'

—4' (N2 1 +

The other integrals are evaluated in an analogous manner and we obtain

f G —1(t tll)G(2)( ll ttlll)G 1(till tl)dtlldtlll

4g)gz5 (It" It.')' —
2tco )6)] t

(4~) (co)+coz)(co) +coz )co" C02+C02 + CO

2') 2

CO~+CO~ +Cg~

g y (~2+&)'+M)(t t ) ( t ( t»)z++tt»»t )(t —t)'O~t —t je +8(t' t)e ' ' ]—+(1~2)

[=M(t —t', k„k,, k', ,k;)] . (4.114)

But this is nothing else than the Fourier transform of (4.104), i.e., M(t —t', k„kz, k', , kz ), Q.E.D.
We will again numerically calculate the binding energies in the two limiting cases m& ——m2 and mz~ ~. Therefore,

we will give the exPressions of (GoM)(E) in these limits. We Put again g)gz ——16am)mz)(, .
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(a) m
&

——m2 ——2m. As in Sec. IV A, we introduce total and relative variables and write co for co~ and co' for cok. After
factorizing the 5 (X —K ) distribution, we get in the center-of-mass system (K=0)

(GOM)(E, K =O, k, k') =-
a co(E 4' )—cP

(1 Zc—o/E)(1 Zc—o'/E) (1+Zen/E)(1+ 2''/E)+
CO~+CO+6) +E Cl +N+Co —E

2(1 4c—i)co'/E )+
CO~+ 6) +6P

(4.115)

For weak coupling, i.e., for small A, , the dominating term is the one with co"+co+co E in—the denominator. Comparing
this term with the corresponding one in (4.61) we see that now a factor ( 1+2'/E)(1+ Zco'/E) replaces
[1+ E/( Zco)][1+E/(Zco')]. For bound states E & 4 & co,co' and thus the term in (4.115) is greater than the one in (4.61).
A greater (GOM)(E) means more binding energy. Thus we can predict, at least for small A, , that the binding energy in-
creases when taking into account vacuum correlations.

(b) m2~oo. We get

(GOM)(E, IC =O, k, k') =— mA, 1 CO 1

2~ co(m 8 —co—)co" m 8+co—co"+co' —m +8 m 8+co' co"—+co m+8—

+ 1—
m —8+co

1

m —~ +~ co"+co+a
(4.116)

Unlike the kernel for equal masses, this expression yields
in the limit A, ~O the corresponding one (4.62) without
taking into account vacuum correlations. Because for
bound states co/(m 8+co) &——,', (m 8& l, co &—1), vacu-

um correlations increase the binding energy also in this
case.

C. Numerical results

In this section we will present the binding energies
found numerically, compare them with those of the
Bethe-Salpeter equation and discuss the results. One al-
ways obtains the binding energy B by determining the to-
tal energy Eo or E that allows for a nontrivial solution of
(2.4) or (4.63). We take the kernels E and M to order
g&gz (ladder approximation) and call the values from the
Bethe-Salpeter equation with this kernel [Eq. (2.10)] BS
values, those from the corresponding instantaneous ap-
proximation (2.13) IA values, those obtained by the
memory function approach MF values if vacuum correla-
tions are taken into account and MFN if we neglect vacu-
um correlations. The BS and IA values have been calcu-
lated by Silvestre-Brac et al. ' Because BS values are
easily available only for a mass of the exchange particle
@=0 [due to a 0 (4) symmetry appearing in this case] we
restrict ourselves to this case. We consider the two limit-
ing cases m~ ——mq and mz~oo. The integral kernels
(4.61), (4.62) and (4.115), (4.116) have a very sharp max-
imum at k'=k if A. is small and if p & I, m, especially for
@=0, and thus the numerical calculations are more com-
plicated if we want to obtain the same precision. For an
angular quantum number I&0 the computing time is
again increased, thus we restricted ourselves to I =0, what
nevertheless reveals the essential features. For X or p not
too small it is no problem to compute the energies also for
1&0. We determined the energies for the first three levels
n = 1,2, 3 and for three different coupling constants A, , one
being characteristic of electromagnetic coupling:

A, =1/137.036, one corresponding to a coupling of quarks
to gluons, we took )j.=l, and an intermediate one of
A, =0.1. Details concerning the numerical procedure can
be found in the Appendix.

In Table I we present the binding energies for the three
different A, , for n= 1, 2, and 3 and for the two cases
m

&

——m2 and m2 —+ oo, always for MFN, MF, BS, IA, and
NR (NR being the nonrelativistic Schrodinger energy lev-
els for a Coulomb potential: B=m) /2n ) We a. lways
have @=0 and l =0. The upper row refers to the values
for m2~ oo and the lower one to those for m] ——m2.

We see immediately that the binding energies of the
memory function approach are much closer to those of
the Bethe-Salpeter equation than the energies of the in-
stantaneous approximation. Looking more closely at the
values we find the MFN values are always a little smaller
then the BS values and the MF values lie between the
MFN and the BS values, being still a little bit smaller
than BS, while the IA values are always much greater
than the BS values. For BS, 8/m is always a little
greater for m& ——mz than for m2~ oo, but this difference
is small. For IA this difference is considerably more pro-
nounced. For MFN it is a little greater than for BS but
much smaller than for IA; it has a reversed sign, i.e.,
8/m is greater for m2~oo than for m~ ——m2. In the
case of MF this difference also has a reversed sign, but its
magnitude is very small. For A, =l and n =1 the differ-
ences are —5% for MFN, —0.5% for MF, 2% for BS,
and 20% for IA. The differences increase with the bind-
ing energy when going from MFN to IA. For A, =0.1 the
corresponding differences are —0. 3%%uo, —0.3%, 0.06%,
and 1%. The differences for MF and BS are closer than
the differences for BS and IA.

The MF values lie between the MFN and the BS values.
For small k there is no observable difference between MF
and MFN values. For A, =0. 1 a difference is obvious but
the MF values are still closer to MFN than to BS. For
A, =1.0 finally they are closer to BS than to MFN. This
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TABLE I. The binding energies B/m for the first three bound states n =1, 2, and 3 (I =O,p=O) and
for three different coupling strengths A, . The upper row refers to m2~0o, the lower one to m~ ——m&.
The various approximation MFN, MF, BS, IA, and NR are explained in the text.

MFN MF BS IA

0.2533 X 10 0.2533 X 10 0.2544 X 10 0.2659 X 10
6 4

0.2533 X 10 0.2533 X 10 0.2544 X 10 0.2659 X 10

1 0.6335 X 10 0.6335 X 10 0.6366X 10 . 0.6616X 10
137.036 0.6335 X 10 0.6335 X 10 ' 0.6366X 10 0.6616X 10

0.2816X 10 0.2816X 10 0.2830 X 10 0.2941 X 10
n =3

0.2816X10 0.2816X10 0.2830X10 0.2941X10 0.2958 X 10-'

0.3498X10 0.3533X10 0.3696X10
0.3490X10 0.3526X10 0.3698X10

0.4926 X 10
66 o

0 5X10

A, =O. 1
0.8812X10 0.8855X10 0.9292X10 1.235X10
0.8800 X 10 0.8846 X 10 0.9293 X 10 1.239 X 10

1.25 X 10

0.3924 X 10 0.3937X 10 0.4136X 10 0.5498 X 10 3

0.3920X 10 ' 0.3934X 10 0.4136X 10 0.5512X 10

0.1289
0.1214

0.1492
0.1484

0.1649
0.1684

0.3421
0.4131 0.5

0.3415X 10 ' 0.3682 X 10 ' 0.4244 X 10 ' 1.002 X 10
0.3286 X 10 ' 0.3636X 10 ' 0.4267 X 10 ' 1.082 X 10

1.25 X 10-'

0.1 542 X 10 ' 0.1622 X 10 0 1898 X 10 0 4733 X 10
0.1500X 10 ' 0.1605 X 10 ' 0.1902X 10 ' 0.4970X 10

0.5556 X 10

merely reflects the fact that spontaneous pair creation,
'

i.e., vacuum correlations, are more important for large A,

than for small A, , and neglecting them is responsible for
most of the difference MFN-BS for strong coupling. For
weak coupling this is negligible and MFN and MF values
are (nearly) identical. The difference between MF and BS
is due to the shift between different orders as discussed in
Sec. IV B.

However, the difference between MF and BS is small
and much less important than the one between BS and IA.
For the levels n =1 we have the differences given in Table
II. On the average, the differences IA —BS are ten times
greater than the differences MF —BS. Thus the fact that
the memory function approach, unlike the instantaneous
approximation, takes into account retardation effects in a
natural manner is of enormous importance. One can say
that (in the given order of the kernel) the introduction of
the memory function is a "ten times" better approxima-
tion for the Bethe-Salpeter equation than is the instan-
taneous approximation.

tion approach, even for strong couplings, yields results
very close to the Bethe-Salpeter equation, we want to
show how this formalism can be generalized to the physi-
cally more interesting case of interacting Dirac fields.
Eventual applications being bound states of a particle-
antiparticle pair (e e+: positronium qq: mesons, etc.),
this time we will treat the particle-antiparticle (ph) chan-
nel explicitly.

We define the two-time propagator in this channel as

[6(t —t', x „x2,x I,x p )] prs

= —( Tf (t,x ) )gr(t, x2 )Qs(t', x 2 )fp(t', x I )),

MF-BS IA-BS

TABLE II. Differences between the 8/m values. The upper
row refers to m2~ ac, the lower one to m &

——m2.

V. CxENERALIZATION TO INTERACTING
DIRAC FIELDS

Now, having seen for the simple model of Cutkosky,
where the original Bethe-Salpeter equation was solvable at
least in the ladder approximation, that the memory func-

A, = 1/137.036

A, =O. 1

0.4%
0.4%%uo

5%
5%
11%
13%

5%
5%

33%%uo

34%%uo

107%%uo

145%
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where the vacuum expectation value is to be taken with
respect to the correlated vacuum. But here we only want
to demonstrate the principle, and therefore we again will
neglect all vacuum correlations in this section. In (5.1)
a,P,y, 5 are spinor indices. G is a 16X16 spinor matrix,

a and y indicate the rows, and P and 5 the columns; a
and f3 refer to the particle (antiparticle) and y and 5 to the
antiparticle (particle). For the field g we adopt the fol-
lowing momentum space expansion: '

p(t, x)=g f+, (2]y)'~'

1/2

[b(t, k, s)u(k, s)e' +d (t, k, s)v(k, s)e ' ] . (5.2)

We will not continue to write the spin variables, unless necessary, k; standing for k; and s;. We recall the following rela-
tions for the spinors u and v:

u (k, s)u (k,s') =5„=—v (k, s)v (k,s'), v (k,s)u (k,s') =0= u (k, s)v (k,s'),
gu~(k, s)up(k, s) = [A+(k)]~p, —gv~(k, s)vp(k, s) = [A (k)]~p .

(5.3a)

(5.3b)

A+ and A are the orthogonal projectors on the spaces of positive and negative energy solutions of the Dirac equation.
The creation and destruction operators b, d, b and d satisfy the usual equal time anticommutation relations.

We remark that for given momenta k
&

and k2

lapys«] kz) =[A+«] )]np[A (k2)]sy+ [A «] )]ap[A+(k2)]sy (5.4)

acts like the unity operator in the subspace corresponding to the particle-antiparticle (ph) channel considered here (cf. the
discussion concerning X in Sec. III).

Thus, neglecting all vacuum correlations (5.1) and (5.2) yields

[G (t t rk] rk2rk ]»2 )]apys = d]]'p2' g [ 8(t —t')(b(t k] r)d (t,k2 )d (t', k2 )b (t', k'] ) )u (k] )up(k ] )v (k )v&(k' )
I t

s1s2s1s 2

+&(t' —t)(b(t', k2)d(t', k'] )dt(t, k])bt(t, k2))v-(k])vp(k', )u (k2)us(k' )]

with

d]] q2
——m [co(k] )co(k'] )co(k2)~(kz )]' (5.5)

The function G also contains two other terms (b(t)b (t)b(t')bt(t')) and (b(t')bt(t')b(t)bt(t)) corresponding to
creation and destruction at the same time and with the same momentum of a particle. They do not contribute to the
propagation of the particle-antiparticle pair and we will neglect them.

From Eq. (S.5) the free propagator is easily obtained to be [using (5.3b)]

2

[Go(t —t', k],k2, k ],kg )] p s
—— [ 8(t t')e '—' [A+(k] )] p[A (k2)]sy

Q) ]Q)2

+0(t' t)e ' —' [A (k] )]~p[A+(k2)]syI5 (k] —k] )5 (k2 —k2 ) (5.6)

and Fourier transformation yields

~ 2

[GO(Erk]rkprk']ikp)]~pyS= 5 (k] —k'] )t] (k~ —k~)
(21T) CO]Ci]2

[A+(k])] p[A (k2)]sy [A (k])] p[A+(k~)]syX E (to]+co—2) +]e E + (co]+F02) ]'e— (5.7)

It is easy to see that I according to (5.4) indeed acts like the unity operator in the subspace considered (for given momen-
ta):

[G ( t t i k ] r k 2 r k ] r k 2 ]spy/ Ippsrr( k ] r k 2 ) [G ( t t r k ] i k 2 r k ] i k 2 )](ypyrr (5.&)

(greek indices figuring twice are to be summed over) because of (5.3) and (5.5). The same holds if G were replaced by
Go(t t') or Go(E). In this spiri—t we define the pseudoinverse Go

' of Go by

f [Go (E,k],k2, k]",k2)].pys[G, (E,k]",k,k;,k;)]»,„d'k]d'k; =I.„y.(k„k,)g'(k] —k;)g (k, —k;) (5.9)
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and in the same way for Go '(t t'—). 60 '(E) is then found immediately and Go '(t —t') is its Fourier transform
[times the usual factor (21r) ']:

[60 (t t k 1 k2 k 1 k2 )] pyb= —im 'ctllct12&(t —t')&'(k
1
—k 1 )

X6 (k2 —k2 ) i, cv—l cv2 [A+(kl )] p[A (k2)]by

i, +co}+ct12 [A (kl )] tl[A+(k2)]by .
at' (5.10)

Of course, Go and Go ' would not be changed if we took vacuum correlations into account.
En the next step we have to apply Go

' to G. Therefore we have to know the equations of motion for b, d, b t and
d . Let us suppose a given Hamilton operator H =Ho+H;„, (such a separation into a free part and an interaction part is
not necessary but simplifies the formulas). We define

pb(t, k) = [b (t, k),H;„,j, pd(t, k) = [d (t,k),H;„,],
and the equations of motion are

i b (t, k) =cvkb (t, k)+p, (t,k),. a
Bt

etc. Because H;„, explicitly contains at least one coupling constant the same is true for p. %e obtain

f [60 '(t —t", k„k„k,", k2)]~pys[G(t" —t', k,",k,",kl, k,')]p„s,dt"d'kl'd'k, "

(5.11)

(5.12)

=5(t —t')5 (kl —k'1 )6 (k2 —k2)I „y( k,lk2) +[R(t t', kl—, k2, k', ,k2)] „„
with

[R(t —t', k„k„kl,k2)]~pys= tcolcv2m —I[6(t—t',p(kl), k2, kl, k2)]~pys+[6(t —'t, k,lp( k2), k,lk2)]~p yIs, (513)

where we defined 6(t —t',p(kl ),k2, kl, k2 ) in complete analogy with the last section: the operator having an argument

k& is replaced'by the corresponding p operator.
Finally we have to apply Go ' from the right to R to obtain M to lowest in the coupling constants:

[M(t —t', k„k2,k'l, k2)]~pys ——i(d1122 ) 'Alt t')—
&& g t[ (pb(k, )d(k2)dt(k2)bt(k'1 ))t

I t
$)$2$ )$2

+ (b(kl )pd(k2)d+(k2 )b (k 1 ) )t t ]utt(kl )utt(kl )vy(k2)vs(k2 )

+ [ (b(k2 )d(k 1 )pd(k I ) (k2) ~t=t'+ ~b (k2 )d(k 1 ) (kl )pb(k2) ~t=t']

xv (kl)vp(kI )uy(k2)us(k2)I

(dll'22') I [6(t t p (kl ) k2 p(k 1 ) k2 )]ttilys

+ [G(t t',p (k 1 ),k2, k l—,p (k2 ))] pys

+ [6(t —t', k l,p (k2),p (k 1 ),k2 )]~ttys

+ [6(t —t', k l,p (k2), k l,p (k2 ) )] pysl . (5.14)

The Green's functions containing two p operators are of second (and higher) order in the coupling constants. To give the
order of the terms with o(t t ) as a factor is quite a sub—tle question in general. For quantum electrodynamics, however,

it is not difficult to show that all terms contained in M are at least of order eo . If we suppose again all masses already
renormalized we have to delete (at least to second order) the Green's functions

G(t t',p(kl), k2,p(kl ),k—2) and G(t t', kl,p(k2), kl,p(k2—)) .
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To discuss the static part we must have more detailed information about H;„,. As an example we will consider a
proton-antiproton pair with strong interaction via m exchange. The interaction Hamilton operator is

I

H;„,=igo d x:+ x y5% x 40 x:, (5.15)

where the proton-antiproton field %' is given by (5.2) and the m field @p by (4.2) p being the mass of rt . (We call the m

destruction and creation operators now a and a" to avoid confusion with the b and b t of the proton field. )
We obtain for H;„,

d x d k)d k2d k3 i(k2 —k])x
H;« ——l'gp g 9~2 l~2 [ b (t, kl, sl )b(t, k2, sz)u(kl, sl )y5u (k2, sz)e

(2m ) (2' (co2c03 )
'

—i(k)+k2)x+b (t,kl, sl )d (t, kz, s2)u(kl, sl )you (kz, s2)e

i (kl+k&)x+d (t, k l,s l )b (t, k2, s2)u (k l, s l )y5u (k3,S2)e

d(t, k—2,S2)d(t, kl, k3)u (kl, sl)you(kz, s2)e ' ' ][a(t,k3)+a (t, —k3)]e

(5.16)

pb and pd are the commutators of b and d with H;„,. Using

[A,BC]= I A,B I C —8 I A, CI

we get

d k3

&& [a(t,k —k3)+a t(t, k3 —k)]
with

d k3
pd(t&k&s) = —lgpy I 3 p l/2

( 2m ) 2rokco3cok k )

pb(t, k,S)=lgpg f Q(k&s)ys[ 9 (k3,S3)b(t, k3,$3)+V( —k3,$3)d (t& —k3, $3)]
[(2~)'2~k~3~k —k3]

(5.17)

(5.18)

X[d(t, k3,s3)u (k3,s3)+b (t, k3,S3)u( —k3,—s3)]you(k, s)[a(t, k —k3)+a (t, k3 —k)] .

If we neglect all vacuum correlations the static part of M vanishes because all equal-time vacuum expectation values con-
tain only one a operator and thus give no contribution because of (4.4). If all masses are already renormalized M reduces
to

M(t —t'&kl&k3&kl &k3)= —(dll22 ) [ G(t —t' p&( k) l&kz&kl &p( k)3)+ 6( —t ' kt&pl(&k ) p3(&kI ),k2)] .

Vfe have

(5.19)

[G(t t',p(kl), kz, k'l, p—(k2))] pys

= —"»» X [ ( —t )&0i pb(t kl)d(t, k2)pd(t', k&)b'(t', kl )
i
0&~.(k, )u, (kI )u, (k, )us(k;)

I I
$2$ ) $2

+e(t' t)(0
I pl (t', k2—)d(t', k l )p~(t, kl)b (t,kz)

I
0&u.(k, )utl(k, )t, (k, )»(k;)] . (5.20)

.
For & 0

I pb ( t k l )d ( t k q )pd ( t ', k 3 )b ( t ' k l ) I
0 & we obtain to second order in gp
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tgo —t8'o g 3 p „ ly2 ( 0
~
tl( tk3 $3)a(t, kl —k3)d(t k2, s2)

2 277 CO(CO3CO1 3CO2 CO4CO2 4)

Xdt(t', k4, $4)a (t', k2 k4—)b (t', k', )
~

0)

X u (k 1 &$ 1 )y5u (k3&$3 )[v (k4, $4)y5U (k2, $ 2 )]

5'(k)+k2 —k'1 —k2 );(~,.P~, ,+~,(g g )

go 3 1/2 1&
e u (k 1 &$ 1 )y5u (k 1 &$ 1 )U (k2 &SR )'YSU(k2&$2 ) (5.21)

27T 2 CO(CO 1 CO2CO2 CO 1

and completely analogously

(
' k' )d( ' kl )p'(, k )b'(, k )

~

0) =go'
(2TT)'2(CO(CO( CO2CO2

)'~ CO"

Xu(k2, $2 )y5u(k2, $2)U (k„s1)y5U(kl, s'1 ), (5.22)

and thus we get

[G(t t',P (kl ),—k2, k 1,P (k2 ) }]~prs

2 2 3m go 5 (E —X), c(W+~(,+—~21(t —(')
[ 8(t t')e ' —' u„(kl, s 1 )yp„u, (k 1,$'( )

(2') 2CO(CO1 CO2CO2 CO~
$)$2$ ) $2

X Up(k2, $2 )yt&2U2 (k2&$2 )u~(kl, sl )up(k 1,$ 1 )UT(k2, $2)Us(k2 &$2 )

+8(t' t)e ' ' — u&(kl, sl )y&~„(k l, s 1 )u&(k2, $ 2 )

Xyp 2u(2k 2&$)2Ua(k1&$1)Up(k l,s 1 )uT(k2&$2)us(k2 &$ 2 )] . (5.23)

But for the first spinor sum we have

uq(k l,sl )y„~u„(k l, s 1 )Ut, (k2 &$ 2 )ye2Uz(k2&$2)u~(k l, s 1 )u p(k l,s 1 )Ur(k2&$2)us(k2 &$2 )

I I
S)$2$ ) $2

= [A+(kl )y A+(k 1 )]~p[A (k2 )y A (k2)]sT (5.24)

and for the second one

[A (kl )y A (k', )] p[A+(k2)y'A+(k2)]sT .

Therefore (5.23) can be written as

(5.25)

m 'go'S'(rC Z')—
[G(t t',p(kl), k2, k'1,P(k2)—)] prs ———

(21T) 2CO(CO1 CO2CO2 CO~

X I&(t —t')e ' ' [A+(kl)y A~(k'1 )]~p[A (k2)y A (k2)]sT

+g(t' —t)e ' [A (kl)y A (kl )]~p[A+(k2)y'A+(k2)]sTI .

(5.26)

From this expression we obtain G(t t', k„p (k2),P(k 1 ),k—2 ) by exchanging col with co2 and col with co2, the projection

operators remaining the same. Inserting these two Green's functions into (5.19) yields M(t t'), and Fourier transfor-—
mation according to (4.21) gives
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igo 5 (K —K')
[M(E,k(, k~, k), k2)] p s=

2(2~) co co"(2m. )'~
+ E —co

&([A+(k, )y A+(k ) )] p[A (k2 )y'A (k2)]sr

1

E +co~+co~ +c02

1+ E +Q)~ +co g~ +co ~

~ [A (k, )y'A (k ) )] p[A+(k2 )y'A+(k2)]sr . (5.27)

The projectors assure that the initial (momenta k'& and k2) and final states (momenta k
&

and k2) are in the subspace cor-
responding to the proton-antiproton channel.

The integral kernel ( GoM)(E) is

[(GOM)(E, k ),k2, k', , k 2 )]~pys —— + E —co~ —cop —co ~

gp 5 (K —K') 1

2(217) Co]copcl)~ E td] —~2 E Co~—Cd) —Ct)2—3

&&[A+(k))y A+(k) )]~p[A (k2)y A (k2)]sy

1 1 1+ +
E+co)+cu2 E+~&+m).+m2 E+m" +m2 +n)

&& [A (k, )y'A (k', )] p[A+(k', )y'A+(k, )],r . (5.28)

and a bound state [X(E,k~, k2)] z of energy E can be obtained as a solution of the following equation:

[X(E,k&, kp)]~y 1[(GOM)(E, k), kp, k), k2)]~„r [X(E,k', ,k2)]„,d k', d k~ (5.29)

VI. CONCLUSIONS

Our aim has been to establish an integral equation simi-
lar to the Bethe-Salpeter equation, but with no relative
time or relative energy appearing, thus facilitating the
solution considerably. The equations established in Secs.
IV and V with the integral kernel (GOM)(E, k&,kz, k'&, kz)
satisfy this requirement. We have seen how to proceed
for scalar Klein-Gordon fields and how the formalism
looks like for spinorial Dirac fields. For both cases we ex-
plicitly calculated the memory function M and the in-

tegral kernel (GOM) for a given model. For the scalar-
scalar model of Cutkosky the Bethe-Salpeter equation was
solvable in the ladder approximation for a mass @=0 of
the exchange particle. Thus in this case we could com-
pare the binding energies which we found numerically to
those from the Bethe-Salpeter equation. The memory
function approach yielded binding energies very close to
those of the Bethe-Salpeter equation, while the instantane-
ous approximation deviates more and more with increas-
ing coupling. Unlike the instantaneous approximation,
the formalism of the memory function takes into account
retardation effects in a natural way. The nurnerica1 re-
sults show that this is already important for weak relativ-

istic systems and we saw that in the strong relativistic
case (A, = 1) the formalism of the memory function yield-
ed, in the given order, "ten times better results" than the
instantaneous approximation. These results obtained
within a specific model (and for a long-range force: @=0)
almost certainly continue to be true in the general case, as
we may assume according to the discussion about the
equivalence of the memory function approach and the
Bethe-Salpeter equation at the end of Sec. IV B.

Putting equal pairs of two times is not a relativistically
invariant procedure, but we always can privilege the rest
frame of the center of mass, since it is a Lorentz frame
due to the conservation of total momentum, and put times
equal in this frame. Thus we do not have any ambiguity
(it is clear that it is impossible to construct any covariant
formalism without appearance of relative times). Al-
though our procedure is not covariant, it is completely rel-
ativistic [as we saw, e.g. , at the end of Sec. IVB when
demonstrating the equivalence of (GM' 'G)(t t') and-
the Feynman propagator GF (t —t')]. The memory-
function approach is as "exact" as is the Bethe-Salpeter
equation, only different iteration schemes lead to the ap-
pearance of different graphs when iterated with a kernel
of a given finite order, explaining thus the small differ-
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ences in the binding energies.
As we proceeded, we assumed a perturbation theoretic

expansion in the coupling constants to be valid. When
calculating the kernel of the Bethe-Salpeter equation as
the sum of all irreducible Feynman graphs one makes the
same assumption. But we used essentially the Heisenberg
equations of motion, and perturbation theory only comes
into play when determining M by solving the integral
equation (3.6) approximatively by (3.7). Therefore it is
conceivable, that M may be obtained directly from (3.6)
and that a formalism without any perturbative expansions
is possible. However, this can only be decided by further
calculations.
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APPENDIX: THE NUMERICAL SOLUTION

In this appendix we will outline how we proceeded for
the numerical solution of Eq. (4.63). The method is the
same whether we have the kernels with or without vacu-
um correlations, whether I

&

——mq or mz~ Oo. Therefore
we will only consider here the kernel (4.61) when we
neglected vacuum correlations and for I

&

——m2.
We introduce reduced quantities by dividing all quanti-

ties having a dimension of a mass like p, E, B, k, and cp

by the reduced mass m. For simplicity we continue to
call these reduced quantities p, E, 8, k, and co. It is not
difficult to see that the only variable parameter in Eq.
(4.63) with the corresponding kernels is the coupling pa-
rameter A, , and in particular for a given level 8/m it is
only a function of A, (and of m ~ /mz of course)

Because of the rotational invariance of our problem we
search solutions of the form

The integral kernel (GpM)(E, k, k') can be developed over
Y~~(8$) YI ~ (O', P') as any function of lc and lc'. We call
the coefficients g~ ~ (E,k, k'), they are given by

gI I (E,k,k')= f (GpM)(E, k, k')Y(~(8, $)Y(~ (8', P')

&(dQdQ' with dQ=sin8d8dg .

(A2)

If we define

f~ (E,k, k '
)=kk 'gI pI p( E,k, k '

) (A3)

dc'(x ) /dx = kk'/co" (x)—
and thus

fp(E, k, k') = 2mr— .(GpM)(E, k, k', cp")c&dcP .
W( —1)

it is easy to show that the original equation (4.63) becomes

(t, (k) = f,"y,(E,k, k')y, (k')dk'. (A4)

This integral equation in only one radial variable admits a
normalizable solution only for certain discrete values of
the total energy E.

To find g~ we have to calculate the integral (A2). Be-
sides for l =0, this is not easy analytically (if not impossi-
ble). Of course, it can be calculated numerically for all
values of E, k, and k' needed, but this increases the com-
putation times considerably. This is why we restricted
ourselves to I =0, where all essential features can be seen.
For l=0 (l'=0) the Yi and YI ~ are constant. Thus we
can put the axis 0=0 parallel to the direction of k when
performing the integration in (A2). (GpM)(Ek, k, ) then
depends only on the angle between k and k' (besides
E,k, k'). This angle is just 8'. cp" is the only quantity de-

pending on 0' and if we put x =cos9' we have

cp"=cp4(x) =(p +k +k' kk'x)'~—
and

P(&)= 1'( (8,$) .
P)(k)

k If (GpM) is given by (4.61) one has

(A5)

(k +k' —2kk'+pz)'/z+cpk+cpk. +E
fp(E, k, k') =

z z [1—E/(2cok))[1 — E( /2cp)k]ln z z'crcpk(E —4cok ) (k +k +2kk +p ) +cok+cpk +E

(A6)
(k' k' 2kk'+ ' ' ' —E+ [1+E/(2cpk)][1+E/(2cpk )]ln
(k +k' +2kk'+p )'~ +cpk+cpi, E—

We have cpk ——(4+k )' and E =4 B. For a weak rel—a-
tivistic system, i.e., for small I,, cok+~k —E is very small
(of order A, ). If furthermore p is small, i.e., p &A, , and
especially for p=0, the numerator of the second loga-
rithm has a very sharp minimum for k'=k leading to
very peaked fp. For p or A, not too small Eq. (A4) can be
solved by going to a standard discrete limit and diagonali-
zation, but for small A, and small p, the strong peak mov-

ing with k may lead to large errors if, e.g., a simple tra-
pezoidal rule is used. To get rid of this difficulty we split
fp into a term having the same peaked behavior at k'=k
as fp but being simple enough, so that an integration over
a product with spline functions can be performed analyti-
cally, and another term which is small and varies suffi-
ciently little, so that an integration by a trapezoidal rule
induces only small errors. For p =0 we define
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P(E, k, k') = 4A[1+E/(2cok)][1~E/(2cok )]
mcok(E 4—cok )

~

k —k'
~

+tok+cot, E-
Q(E, k, k')=ln

Ik+k'I+~k+~k —E '

4A [I E—/(2cok )][1—E/(2cok )]
mcok(E 4tok—)

~

k —k'
~

+~„+~„+E
~ln

~

k +k'
~

+cok+cok +E
~

k —k'
~

+2cok E-
Q (E,k, k') =1

R (E, k, k') =

(A7)

(A8)

(A9)

(A10)

(A11)

We have fo(E,k, k') =P(E,k, k')Q(E, k, k')+R (E,k, k').
The peaked part is PQ. The function
P(E,k, k)Q (E,k, k') has the same peaked behavior as
P(E,k, k')Q(E, k, k') as k'~k, but has the advantage that
a product with any polynom in k' can be integrated
analytically.

We develop Po(k) over spline functions where linear
ones are sufficient for our problem (Sz approximates the
asymptotic behavior of Po):

and thus we obtain

(A12)

det[F (E)—1]=0 . (A13)

We did the calculations for N =25, 50, 100, and 200.
When passing from X =100 to %=200 the energies
remain stable with a precision of about 10, and thus we
can suppose that the values for % =200 have at least this
precision. For great k (fo is not peaked) we obtain the
same precision already for. smaller A, .

with

F~ ——P (k;, k; )f Q (k;,k')S (k')dk'

+bj [P(k;, k/)Q (k;,kj ) —P(k;, k;)Q (k;,kl )

+R (k;, kj )] .

Here is bz ——(kj+~ —kz &)/2 if j&1 and A~ ——(kq —k~)/2
(we choose k&

——0). It has been advantageous to have the
first k; only little spaced and to increase their distance
with increasing i.

The integrations over Q Sj are performed analytically
for all i and j. The system of linear algebraic equations
(A12) admits a nontrivial solution only if the determinant
of Ftj —5;l vanishes. Thus the energies E are solutions of
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