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C. M. Naon
Departamento de Fisica, Vniversidad Nacional de La Plata, Argentina

(Received 31 July 1984)

Abelian and non-Abelian bosonization of two-dimensional models is discussed within the path-

integral framework. Concerning the Abelian case, the equivalence between the massive Thirring

and the sine-Gordon models is rederived in a very simple way by making a chiral change in the fer-

mionic path-integral variables. The massive Schwinger model is also studied using the same tech-

nique. The extension of this bosonization approach to the solution of non-Abelian models is per-

formed in a very natural way, showing the appearance of the %'ess-Zumino functional through the

Jacobian associated with the non-Abelian chiral change of variables. Relevant features of massless

two-dimensional QCD are discussed in this context.

I. INTRODUCTION

Two-dimensional field theories have been widely ex-
plored in the last ten years and various phenomena such
as dynamical mass generation, asymptotic freedom, and
quark confinement, relevant in more realistic models,
have been tested. The startling property which was ex-
ploited in these studies is related to the possibility of
transforming Fermi fields into Bose fields. The existence
of such a transformation, called bosonization, provided a
powerful tool to obtain nonperturbative information of
two-dimensional field theories.

Bosonization has its historical roots in Klaiber's' work
on the massless Thirring model and Lowenstein and
Swieca's investigations on the massless Schwinger
model. It found a remarkable application in Coleman's
equivalence proof between the massive Thirring and the
sine-Gordon theories.

For Abelian models the bosonization prescription is by
now very well understood and quite rigorously estab-
lished. On the other hand, when Fermi fields belong
to a multiplet transforming under a non-Abelian group,
the usual bosonization procedure becomes rather difficu-
lt. ' It is only very recently that non-Abelian bosoniza-
tion in the operator approach has begun to be understood
after the works of Polyakov and Wiegman" and Witten. '

(See also Refs. 13—16).
There is an alternative approach to bosonization recent-

ly developed using the path-integral framework' which
has been shown to be very appropriate for non-Abelian
theories. ' Basically, this approach parallels, in the
path-integral framework, the operator fit of Lowenstein
and Swieca, through the use of a chiral change in the fer-
mionic variables. Fujikawa's observation ' on the nonin-
variance of the path-integral measure under y& transfor-
mations is crucial for this method. In particular, it is the
chiral Jacobian which gives rise to the Wess-Zumino term
in the study of non-Abelian models. '

It is the purpose of this work to present a detailed dis-
cussion of the path-integral approach to bosonization,
both in the Abelian and the non-Abelian cases. To this
end we give in Sec. II the path-integral version of

Coleman's proof of the equivalence between the massive
Thirring and sine-Gordon models. It is important to
stress that in our method we first introduce an auxiliary
vector field A„which is then decoupled from the fer-
mions, exploiting the peculiarities of the algebra of d =2
Dirac matrices, as is done in the solution of the massless
Schwinger model. ' ' lt is precisely this connection
which allows us to extend our procedure in a very natural
way to the massive Schwinger model. This is done in Sec.
III, where the equivalence between this last model and a
massive sine-Gordon theory is derived. The results are in
complete agreement with those obtained using the opera-
tional approach.

The non-Abelian extension of our bosonization method
is discussed in Sec. IV. We show how the Wess-Zumino
functional arises after carefully computing the chiral
Jacobian associated with the decoupling change in the fer-
mionic variables. Taking as an example massless two-
dimensional QCD we compute the fermion determinant
and establish the equivalence between this model and a
boson theory (related to a certain chiral model). It is
worthwhile to note that the role of the (non-Abelian)
chiral anomaly becomes apparent in our treatment, show-
ing its relevance in non-Abelian bosonization, exactly as it
happens in the Abelian case. We also give a qualitative
discussion of the principal features of this non-Abelian
theory and indicate the steps to follow in order to com-
plete its solution. A brief summary of our results and
conclusions is given at the end of Sec. IV.

II. ABELIAN BOSONIZATION: MASSIVE THIRRING
AND SINE-GORDON MODELS

Exactly as in the operator approach, where bosoniza-
tion was derived by analyzing the equivalence between the
massive Thirring and sine-Gordon models, " we shall show
in this section how an analogous derivation can be per-
formed very simply in the path-integral framework. We
work in Euclidean (1+1)-dimensional space-time with y&
matrices chosen in the form
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The following relations hold:

(2.1)

taken into account,

&p&g= JF&XNX,
WA„=Jg&P&ri .

(2.12a)

(2.12b)

[y, y. ]=2&,.
5 =l 6p~P~,

(2.2)

(2.3)

With EO1 = —E'1P= l.
The dynamics of the massive Thirring model is deter-

mined by the Lagrangian density

The fermion Jacobian is nontrivial due to the nonin-
variance of the measure under chiral changes (this being
related to the axial anomaly). It can be computed follow-
ing Fujikawa's procedure. ' We sketch the calculation in
an appendix and only state here the final result,

WT —— i/9—P ,'g—(—Py„P)+izmPg, (2.4) Jr=exp — f d x(a„p)
277

(2.13)

where z is a cutoff-dependent constant. In the path-
integral approach the generating functional is given by

ZT ——~ @exp — d x z . 25

Concerning the change (2.12b), it trivially yields

Jz —— detV=1 2

g
2

(2.14)

Following Ref. 19 we now use the identity

2

exp f (gy„g) d x

which can be absorbed in the normalization constant. We
then have

z, =m f &x&x&p&q

A& exp — d x —,'A&A" —g (2.6) X exp
' — d x Xi'—+izmXe2 —. . —2y5

in order to eliminate the quartic interaction. Here A& is a
two-component vector field which (in two dimensions)
can be written as

+ ', +,' (a„y)'
2g 2'77

~„=——(e„„ap—a„q) .1

Using Eqs. (2.5)—(2.7), we get

(2.7)
+ ', (a„&)'

2g
(2.15)

ZT=~ f &p&p&pW )e7px—f d'x W.rr, (2.8)
The addition of a source term

(2.16)
where

y[~ y —y„(e„,ap —a,~)]

+izmqq+ ', [(a„y)2+(a„„)2].
2g

(2 9)

g(x) =exp[y5$(x)+ig(x)]X(x),

P(x) =X(x) exp[yyb(x) ig(x)]—
(2.10)

At this point we perform a change in the fermion vari-
ables which corresponds, in the path-integral framework,
to the bosonization realization in the operator ap-
proach. '" The change of variables takes the form

allows the computation of any Green's function in terms
of the new fields. ' However, this is not necessary in or-
der to prove the equivalence between this model and the
sine-Gordon theory. This can be done just by making a
perturbative expansion (in the mass) in the generating
functional

z,=~f uymXuX
r

Xexp ~ —f d x Xi'~ —(a P)2
2A,'

and it has been chosen so as to cancel the coupling be-
tween scalars and fermions in the kinetic term of Z,ff.
Indeed, using Eq. (2.10) the Lagrangian (2.9) can be writ-
ten in the form

n =0 j=1

where we have defined

Xe ' ' X(xj ), (2.17)

W,rt= Xi &X+izmXe ' X—

+ ', [(a„y)'+(a,&)'].
2g

A,2=
1+g /rr

(2.1 1)
We then get

(2.18)

As we see, the scalar field g is completely decoupled from
the rest and this fact remains valid at the quantum level.
We can write the generating functional in terms of the
new variables provided the corresponding Jacobians are

n=0 j=1 0

(2.19)
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where ( )z means the vacuum expectation value (&E&) in
a theory of free fermions and massless free scalars. Note
that owing to the presence of I, in the scalar Lagrangian,
the scalar propagator is defined through the identity

Clh~(x) = —5 (x), (2.20a)

b,F(x ) = — ln(px ) .2' (2.20b)

In order to avoid infrared divergences, we shall follow
the usual procedure of adding a small mass p to Eq.
(2.20a) then getting for the scalar propagator, instead of
(2.20b),

AF(x) = Eo(px) .
2m

(2.21)

2
+'

2
and uses the well-known identity

(2.23)

Of course, we shall take p ~0 at the end of our computa-
tions. On the other hand, the fermion propagator is just
the free fermion Green's function

6 (x)= (2.22)
27K

In order to compute (2.19) one just separates the boson
factor from the free fermionic part by writing

exp ~; x; =exp . —
& g P PJ[hq(p xi —xj ) —bF(A xi —xj )] .

(z'r4~) g,. p,
' ' '

(a'y4~) Y, p,.'
(A~/2n. )P;P.II(pc IX; —xj I) (2.24)

where A is a large mass introduced to cut off the theory and the arbitrary mass p is included as a normal-ordering mass.
We have also considered the restricted region

A
I
x; —x~ I ))1,

pIx; —xj I
((1.

(2.25)

(2.26)
This last condition is required in order to circumvent the trivial infrared problems which arise when one performs a mass
perturbation expansion about a massless theory.

Note that if g,.p;&0, then (2.24) vanishes in the limit p, ~0. We shall then restrict our analysis to the case

QP, =0. (2.27)

We then obtain

oo ( )Zm )2k k
Zz = g I II d x d y exp 2+ [P(x.) —P(y )]

k=0 i=1 0 bosonic

&+rs — & —rsX +X(x;) X(x;)X(y;) X(y;)
i=l 0 fermionic

(2.28)

The fermionic part is readily computed by writing

1+ps
X X—X[X]2

ys
X X =X2X2

2

where

(2.29)

(2.30)

X]X=, X=(X),Xg) (2.31)

k
2 —2k 2II(eclx —y, I)' "'

and using now Eq. (2.24) for the boson part we get
k k
II(s' 'I — Ily —y I)' "'IId' d'y

0 k! (2.32)

We shall compare Eq. (2.32) with the corresponding one arising in the sine-Gordon case. The generating functional for
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this last model is given by

Zso ——~f Wyexp —f d x —,'(B&y) —
2 cosPp+yo (2.33)

k
e 8 xi' gi

i=1 0

oo ] ao
ZSG

k=o k'

Performing a perturbative expansion in ao we get
2 2k

(2.34)

2k
ao ]Zso= g

k=O
(2.35)k 2+(cM ~x; —yJ ~

)~~

where use has been made of Eq. (2.27). We then proceed exactly as for the boson part of the Thirring model obtaining

k k

i&j i=1
p2

where we have defined the renormalized constant

p2/4m

and t en

1/2

1+ (2.44)

Here A is, as above, a certain cutoff, and M is an arbi-
trary mass used to normal-order the scalar theory.

%'e can easily see that both generating functionals
(2.32) and (2.35) are identical provided we make the iden-
tifications

zWso= 2 (f}ptp ) — cos +yo ~

)33 2
(2.45)

Using now the free value P=2~m (g =0), the usual bo-
sonization identification is obtained:

1+g /~
CX

2
=Pl

M=p,

(2.37)

(2.38)

(2.39)

Wso ———,
'

(B„(p) — cos(2~rrq)+yo .

III. ABELIAN BOSONIZATION:
MASSIVE SCHEMING ER

AND SINE-GORDON MODELS

(2.46)

lA'pl= ~ epv~A' ~ (2.41)

which are, of course, the ones obtained by Coleman in his
original work. "

Note that Eq. (2.37) does not depend on the way one
has performed the renormalization in both theories [Eq.
(2.39)j. In contrast, Eq. (2.38) does depend on the renor-
malization convention and so it has no independent mean-
ing.

We conclude that it is possible to study the massive
Thirring model in terms of a bosonic Lagrangian by con-
sidering the usual bosonization relations:

(2.40)

~sM —— q(i9+eA)q+—4&p +""+E'mopy .

We start from the generating functional

(3.1)

ZsM —~ Ap exp — d ~ sM (3.2)

and in analogy with the Thirring model case we perform a
decoupling change of variables

f=e 'X, (3.3a)

Q=Xe ' (3.3b)

Let us now consider the path-integral bosonization for
massive quantum electrodynamics in two space-time di-
mensions,

(Xp
imzPg= ——

2 cosP@ . (2.42)
1

Ap ————
ep cjoy,e

(3.3c)

Thus we see that the corresponding sine-Gordon Lagrang-
ian is ZsM ——~f WP~X~X exp —f d x W,ff (3.4)

where we are working in the Lorentz gauge. One then
gets

(2.43) whereWso ——, ( f)„P) 1+ ——cosPy+yo .P ~ p2

Note that one can always define a new scalar field g' so
that

1 1
W, ff= i Xe)X+ QCI—CIQ pUp+imoXe '—X

28 2m
(3.5)



31 ABELIAN AND NON-ABELIAN BOSONIZATION IN THE. . . 2039

in the effective Lagrangian.
We can now follow the procedure of the preceding sec-

tion defining the scalar propagator

V ——Z b.,(x)=5'(x), (3.6)

AF(x) = ——,
'

Ko x + ln
77

and the nontrivial Jacobian J~ has been computed as in
the Thirring case, adding a term

Lowenstein-Swieca solution for the massless Schwinger
model. 2

Note that due to the particular form of the propagator
(3.6) there are no ultraviolet divergences. On the other
hand, one has to introduce, as in the preceding section, a
mass p in order to avoid infrared divergences and take
p ~0 at the end of the computation. We shall not repeat
this part of the computations since they are in complete
analogy with those detailed in Sec. II.

The boson part in Eq. (3.4) can be separated using again
an identity of the form

(exp i g—P;P(x; )
0

e—:—m b~, x —b J;(O,x)
77

1=exp —
2 g P;P b,F(x; —xj ) . (3.7)

C,J

As we see b,F corresponds to the propagator of a free
scalar field of mass e/Vm and a massless free field. This
last is a manifestation in the path-integral approach of the
zero-mass gauge excitation which appears in the

I

Concerning the fermion part it is computed exactly as
in the Thirring model case. We then get for the generat-
ing functional of the massive Schwinger model the follow-
ing expression:

OO

ZsM= g
k=0

2
mp

'2k

c,J

(3.&)

where Bk is the scalar contribution to ZsM,
k

ec&k=

C,J

Xexp ~ —2g Ko — lx; —xj l
+To

C+J

e e—&o (3.9)

We then see that the massless excitation [see Eq. (3.6)] cancels out the free-fermion contribution to ZsM. We then get
2k 2

ZSM X, f IId x d & e"p —2X &o lx —xj I
+&o

k=0 i=1 )J'' 7r

e—Ko ~ lx; —yql (3.10)

2

~so ———,(8 y) + y — cos/3(p+y
e 2 A'

2~ p'
provided the following identifications hold:

(3.11)

where m =mo/2m.
One can now proceed to the bosonization identification.

It is evident that the generating functional (3.10) coincides
with the one for a massive sine-Gordon model with La-
grangian density

u ec (3.12)

p =4m. (3.13)

Of course, the analysis of the massless Schwinger model
can be performed by taking m =0 in Eq. (3.12) and hence
the isomorphism between this model and a free massive
(with mass e /v m ) scalar theory becomes apparent.
[There is also the massless gauge excitation; see the dis-
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X exp — d x Wo+ ep~p~
2 e0

4~ ~

(3.14)

In principle, for the massless theory any reference to 0
can be eliminated from Z by making a finite chiral rota-
tion of fermions,

g=e 'X,

Q=Xe '

since it gives rise to a Jacobian (see the Appendix)

(3.15)

cussion in Refs. (2), (18) and (19)].
We shall end this section with a brief discussion on the

way the 0 vacuum can be very easily incorporated in our
approach to bosonization. As it is well known, the 0 vac-
uum can be studied by adding to the generating functional
of the Schwinger model, Eq. (3.2), a 8 term

Z[e]=~f u~„uyuq

Equation (3.22) makes contact with the usual treatment of
the 0-vacuum Schwinger model.

IV. NON-ABELIAN BOSONIZATION

We shall show in this section how the path-integral bo-
sonization approach developed above can be naturally ex-
tended to the non-Abelian case.

As we stated in the introduction the usual bosonization
procedure turns out to be very awkward in the case of fer-
mion theories with non-Abelian symmetries. ' An al-
ternative bosonization procedure has been proposed by
Witten, ' and from his work and those of other au-
thors" ' interesting connections with the Wess-Zumino
functional —originally constructed as an effective action
for chiral anomalies —were discovered. In the path-
integral framework it has been pointed out by Gamboa
Saravi, Schaposmk, and Solomin how this relation
emerges in a very natural way by extending the chiral
change of variables (2.10) or (3.3) to the non-Abelian case.

Consider for simplicity the case of massless QCD in
two dimensions. The Euclidean Lagrangian for this
model is

J=exp ezra„d x
2m

(3.16)
W = —1i gg+ —,F„,F„,+gauge-fixing terms, (4.1)

and hence the choice o.=g/2 cancels the 0 term in (3.14),
thus giving

Z o[8]=Z o[0] . (3.17)

However, as is discussed in Ref. 28, quantities involving
chiral nonsinglet operators keep trace of the 0 term. For
example, in order to compute the quantity

where g =i 0+.eg, and Az takes values in the Lie algebra
of SU(2) [the extension to SU(X) is trivial]. The massless
fermions are taken in the fundamental representation of
SU(2).

As it was stressed in Ref. 18 there exists a non-Abelian
analog of the decoupling change of variables (2.10) or
(3.3). Indeed, if one makes the following transformation,

(q(x)q(x)q(0)y(0) )

one has to add a source term to the Lagrangian

Z o[O,j]=f &A„NP&g

(3.18) Q= UgX,

f=XUg,
where

(4.2)

Xexp —f d x Wo+ F„e „+jfp4~ " " (3.19)

and this source term keeps trace of the 0 angle when the
rotation (3.15) is performed. This aspect is discussed at
length in Ref. 29.

It is now evident what happens in the massive theory.
The chiral rotation (3.15) eliminates the 8 term from
Z [8] through the Jacobian, but it changes the mass term

tmoq(x)q(x)~smog(x)e'"q(x) . (3.20)

At this point one has to proceed as in the 0=0 case, per-
forming transformations (3.3) and then making an expan-
sion in the mass. The only change in the effective La-
grangian (3.5) is the presence of a mass term of the form

2y5[P(x) +8/2 jW „,=imoye X. (3.21)

All the analysis then follows exactly as before, except that
now the cosine term in the equivalent sine-Cxordon theory
is changed [cf. Eq. (3.11)]:

2= —,(8 p) + p — cosp(p —8/2)+y . (3.22)
2n p

U5 ——e (4.3)

and P=P't' [takes values in the Lie algebra of SU(2), gen-
erated by the t "s], it is straightforward to check that the
fermion Lagrangian decouples completely from gauge
fields, i.e.,

~F———ggp= XiQX .— (4.4)

Although Eq. (4.4) holds in an arbitrary gauge it is
simpler and more instructive to work in the decoupling
gauge, defined by the relation

g = ——(QU5)Uq
I

e
(4.5)

[Eq. (4.5) becomes A„=(1/e)e,„BQ in the Abelian case,
and hence the decoupling gauge coincides with the
Lorentz gauge for the Schwinger model].

That the choice of the decoupling gauge is possible can
be proved following Roskies's work by considering the
j =i@& complexification of SU(2), SL(2,c). Indeed, U&
can be taken as an element of the form

U =e (4.6)
that is, a positive-definite Hermitian matrix of deter-
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&+ =X1+XO

Eq. (4.5) can be written as

(4.7)

minant one. We shall call 65 the set of all such elements,
Gq C SL(2,c).

Defining

As we shall see, this relation allows one to make contact
with the Polyakov-Wiegman solution of the nonlinear o.
model. "

In computing JF we consider an extended U5 transfor-
mation depending on a parameter t ( t e [0,1]):

U~(x, t) =e (4.11)
A+ = —2i ( B U5 ) U~ (4.8)

Note that in our way to bosonization the role of fer-
mion currents, which in the operator approach are written
in terms of scalar fields [for example, J„=(i/m)e„PP in
the Abehan case, see Eq. (2.41)], is played now by the
gauge field. We then see that in our approach to non-
Abelian bosonization we have naturally arrived to the
analog of currents J+ introduced in Refs. 11 and 12, ex-
cept for the fact that x+ are defined by Eq. (4.7) and are
not then true light-cone coordinates. (Precisely this
difference simplifies considerably our treatment. )

In order to write the generating functional in terms of
the new variables we have to take into account as before
the change in the fermionic measure under transformation
(4.2):

2 1

lnJF= — f d xtr —,'gg+ f dtygA, QA, , (4.12)
2~ 0

where tr means trace both in Lorentz and SU(2) indices
and

l
&&= ——[BUS(x,t)]U, '(x, t) .

e (4.13)

The whole transformation (4.3) is then built up by itera-
tion from the infinitesimal one, varying t from 0 to 1.

The method described in the appendix for the Abelian
Jacobian can be extended to the non-Abelian case follow-
ing Refs. 18—20. One then gets

detg= f WP&ge
xl@xd x=JF 7 Xe =JF deti

2 2

tr f y5&,&g,dt d x — f d x trpb
2~ ' ' ' 2~

(4.10)
l

(4.9)

It is interesting to note that the Jacobian JF coincides
with the fermionic determinant

One can then infer from the first term in (4.12) that the
Schwinger mechanism also takes place in QCD2, giving a
mass m (m =e /Zm) to the scalar fields (see the discus-
sion below). Concerning the second term, it is related to
the Mess-Zumino functional in two dimensions. Indeed,
using Eq. (4.13), the second term in Eq. (4.12) can be writ-
ten as

f dt f d'x tr' r)„Ud„U '+[(g, U)U '(g„U)U' '(a„U)U 'e„„]4 P

(4.14)
with U(x, t) =e'~'"', and tr' indicates an SU(2) trace. The relation between these results and the Wess-Zumino functional
can be better discussed by considering the analytic continuation of U to an SU(2) element.

Let us now rewrite the Jacobian (4.12) in the form

lnJ =—tr —,
' f d'x[8„U(x, l)][8„U '(x, l)]

t
+ '

~„„f dt f d'x[a, U(x, t)]U '(x, t)[a„U(x-,t)]U '(x, t)[a,U(x,-r)]U-'(x, t)P p (4.15)

By considering the analytic continuation of U to an ele-
ment U, =e"~%SU(2) one can discover the relation be-
tween the second term in the Jacobian (4.15) and the
Wess-Zumino functional. This term is endowed with
deep topological meaning since it corresponds to the
Chem-Simons secondary invariant in differential
geometry. Again, the chiral transformation makes mani-
fest the role of topology in bosonization [for details see
Ref. (20)].

In order to establish the rigorous equivalence between
QCD2 and a certain bosonic model one now has to follow
the steps described in the preceding section for Abelian
theories, i.e., to write an effective Lagrangian constructed
from the original one in terms of fields U and g,L, in-
cluding the Jacobian (4.14),

f ~,nd x= f d x[ Xi'+ —„F&„(U)E„„(U)]—
+ln JF . (4.16)

U=l+2$ t +O(P') . (4.17)

In this approximation the Jacobian reads

ln J~————tr f d x[(B~Q) + —,'epg(Bpg)(BQ)

+higher-order terms] . (4.18)

We leave for a forthcoming paper the detailed discussion
of the effective action (4.16). However, one can give a
qualitative picture by making a perturbative expansion of
the form
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This Jacobian resembles the effective Lagrangian dis-
cussed by Witten in order to describe low-energy hadron
phenomenology. However, in the present case the effec-
tive Lagrangian contains the F& term and reads X

rg4'&'
(4.21)

1 e e2
tr P ClU+ P+ P(8„$)(dp)e„,

The decoupling was possible for the case we analyzed
(massless QCD2) due to the fact that the gauge field can
be written as in Eq. (4.S). This in terms of complexified
variables X+ takes the form

+2$ dp ClPB+ep, (4.19) A+ = 2i—(B Ug)Ug (4.22)

As in the Abeiian case we have gotten an effective La-
grangian with high-order derivative terms. The free La-
grangian Wo,

1 e
, tr P CICI+ Cl P2' (4.20)

corresponds to X —1 [2 —1=3 for SU(2)] massive sca-

lars (with mass m =e/2Vm) and X —1 massless gauge

excitations [the propagator associated to the Lagrangian

(4.20) takes the form (3.6)].
In contrast with the Abelian cases described previously

(where the massive scalars were free), here a self-
interaction (given by the Wess-Zumino functional and the
nonquadratic part of, the F&„ term) is present.

Because of the Wess-Zumino term, the Lagrangian
violates both naive parity operation (PO=XO~Xo,
X&~—X&, U~U) and (modulo 2) boson number Xz
conservation [(—1)—:U~U ' or P'~ —P'] but it is

invariant under the product Po( —1)
As was pointed out above, the fermion determinant

(4.14) coincides with the one computed by Polyakov and
Wiegman" in their solution of the nonlinear o. model.
However, their effective Lagrangian has no F&, term and
hence bosons remain massless. Similarly to the o.-model
case, the solution of the chiral Gross-Neveu model leads,
in our approach, to a theory of fermions interacting with
an effective vector field (see Ref. 19) and after decoupling
the bosons remain massless.

In summary, we have been able to develop a path-
integral approach to bosonization which parallels, in the
Abelian case, the operator prescription established by
Coleman and Madelstam. For the massive Thirring
model we reobtained Coleman's results in a very simple
way. It is interesting to note that it is the contribution of
the chiral Jacobian that makes our results rneaningfu1:
were the Jacobian absent the theory would become free,
since in that case I3 /4n. =l [see Eq. (2.37)]. Our ap-
proach reveals then the importance of the chiral anomaly
in two-dimensional bosonization, making then apparent
the role of topology, usually hidden in the operator pro-
cedure.

It is important to stress that the decoupling change of
variables which allowed us to establish the equivalence be-
tween fermion and boson models in the Abelian case
showed how the non-Abelian extension has to be per-
formed. Indeed, in analogy with the Abelian case we were
able to decouple fermions from bosons by making a non-
Abelian chiral transformation

As we stressed before this equation is the path-integral
version of the usual identification allowing to write the
fermionic current in terms of boson fields. It makes
natural the introduction of currents J+ and J used by
Polyakov and Wiegman" and Witten. ' Again the role of
the anomaly becomes apparent in the non-Abelian case: it
originates the Wess-Zumino term [Eq. (4.14)], establishing
a link with other two-dimensional models. In particular,
by using the non-Abelian analog of the Gaussian identity
(2.6) one can easily extend our treatment to the SU(X)
Thirring model. One has to introduce a non-Abelian vec-
tor field

= J W3&exp —f d x( , g„'g—& gpss'A, 'g/i)—

where A,
' are the SU(X) generators and the fermions are

taken in the fundamental representation of SU(N). One
can then decouple the fermions from the vector field Az
by making a non-Abelian chiral transformation. The cor-
responding Jacobian originates also in this case a Wess-
Zumino term.

Due to the fact that the SU(X) chiral Gross-Neveu in-
teraction Lagrangian

[(ee) —(erst) ]4X

can be written using a Fierz-type transformation in the
form

2

(gy„t'p)

[with t' being the generators of U(X)] this model can also
be solved using our method.

All relevant features of the Abelian models discussed in
Secs. II and III can be inferred very simply from our
treatment. Concerning the non-Abelian model (QCDq) we
were able to show that scalars become massive and self-
interacting due in particular to the Wess-Zumino term.
From their decoupling one can easily show that at short
distances fermions become free. - The long-distance
behavior of fermion Green's functions as well as the
analysis of bosonic correlation functions necessitates a
more thorough investigation of the complete effective La-
grangian (4.16). Work on this aspect will be reported else-
where.
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APPENDIX

1+yqg(x)5a . (A 10)

In order to follow Fujikawa's procedure ' at each state
of the transformation one must take the eigenvectors
which correspond to that stage'.

8(a)f&„(x,a) =A,„(a)@„(x,a),
where

(Al 1)

g(a) = U5(a)g Uq(a) =i9+eA(a)
with

(A12)

where U5(a) =e and a is a real parameter to be varieday,

from 0 to 1, allowing us to build up the whole transforma-
tion (Al) by iteration of the infinitesimal one,

We shall now compute, for the Abelian case, the Jacobi-
an J~ associated with the fermion change of variables

f(x)= U5(x)X(x),

g(a) = U5(a)A Uq(a)+ —Uz(a)QUq(a) .

This a-dependent field satisfies

(A13)

g(x) =X(x)U&(x),

U5(x) =e

(Al) A(a)

A(a), =A', (A14)

gy„(x)=A,„y„(x) . (A2)

The classical fields g(x) and P(x) can be expanded as

g(x) =g a„y„(x),

Let us now consider the normalized eigenvectors of the
Hermitian operator g =i 9+eA: BA(a) = —yg8(a) Ug(a) .

Bcx

Let us now consider the matrix .

B~„(p;a)= (,y~(x, p+a)
~

U~ '(a)
~
y„(x,p) & (A15)

which satisfies

g(x ) =g q&„(x)b„,
B(P;a+5)=B(P+a;5)B(P;a) .

Taking P =0 and 5=5a, we obtain

(A16)

where a„and b„are elements of a Grassmann algebra.
The fermionic part of the functional-integral measure is
then defined by

&g &P=+db„da
n, m

(A4)

X(x)=g a„'y„(x), (A5)

The new fields X(x) and X(x) can also be expanded in
terms of the y„'s,

d
~i d B(0 )~

lndet[B(a, 5a)]
da 6a

Using the relation

le. (a+5a) &= I9.(a) &+/ b.p I q p(a) &5a,
JP

(A17)

where b„z ——0 if n =p, we can rewrite (A17) in the form
d

lndetB (O, a) = —g (g„(a
~ y5$ ~

y„(a) & = —w (a) .
do! n

where the coefficients of the expansions (A3) and (AS) are
related by Taking into account that

(A19)

I
&m =~ Cmnan

with

(A6) B„(0,0)= (y„~ y & =5„
(A20)

(A7)

One then easily obtains

JF (detc „)—— (A8)

In order to compute the determinant of the c matrix de-
fined in Eq. (A8) we shall consider the one-parameter-
dependent y& transformation

we can easily integrate Eq. (A19) obtaining
1

det(y~
~

U5
'

~
(p &=e (A21)

We can write from Eq. (A7)

detc „=det(qr~
~
y~'& det(q&~'

~
U, '

~
y„&; (A22)

One now uses Eq. (A18) to show that

g= Ug(a)X,

17 =XUs(a ),
(A9)

Inserting Eq. (A21) in Eq. (A8) we obtain

(A23)



2044 C. M. NAON 31

—2 f w(a)da
JF ——e

where

F& in order to write

m(a) = f d x (1 a—)A, (x)e„,B„Q(x),
27T

(A29)

m(a)= f d x P(x) g@„(xa)yg„( x, a) . (A25)
where we have used Eq. (A13), for the Abelian case, and
neglected a surface term. The fermion Jacobian then
reads

The summation appearing in this integrand is an ill-
defined quantity and we evaluate it by using a well-known
regularization procedure

g y „(x,a)yg„(x,a)

JF——exp ——f d'x f da(1 —a)A„(x)e„,B„Q(x)

(A30)

getting

—8~(a) /M-= lim gg„(x,a)y5e ' ' f&„(x,a)
M~ cc

(A26)
It is straightforward to integrate in a, and for Abelian

vector fields decomposed in transverse and longitudinal
parts,

(A31)
w (a) = — f d x tr[y5y„yg(x)Fq, (x,a)],

8m

where

(A27)
we finally obtain

(A32)
(A28)F„„(x,a)=B„A (x,a) d Aq(x—,a) .

The non-Abelian case can be treated in a completely
Now one can use y properties and the antisymmetry of analogous way (see Refs. 18 and 19).
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