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Interactions between quark clusters in lattice QCD
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Multiquark systems up to six static charges are studied within the framework of SU(3) gauge
theory on a lattice with dimension 16X 16X 16X 6 and hot boundary conditions. Correlations be-
tween the quarks of a hadron are computed as well as hadron-hadron correlations. We find a con-
fining potential acting between color-nonsinglet—color-nonsinglet systems, whereas the gluon ex-
change can mediate no force if one of the interacting clusters is a color singlet and pointlike.

I. INTRODUCTION

Wilson’s theory opens up the possibility to calculate
correlations between systems with any number of quarks.
The free energy of these systems can be extracted and in-
terpreted in terms of a potential.! Monte Carlo techniques
as well as computer facilities make it feasible to simulate
the path integral on lattices of reliable sizes. A number of
quantities such as the confining potential between a quark
and an antiquark?~® and the hadron masses'®~!* have
been obtained. All these remarkable results make us feel
that QCD is an adequate theory of strong interactions.

Thus the next goal should be to study the hadronic in-
teractions within the framework of QCD. This may serve
as a test of the validity of QCD itself and bring new
features into the understanding of the hadronic forces.
One of the aims of nuclear physics that should be reached
during the next few years is a fundamental discussion of
the behavior of the nucleon-nucleon interaction from the
principles of QCD. Let us outline this project and our
first contribution in the following sections.

In the thirties Yukawa developed the idea that the
strong forces are generated by pion exchange. During the
last decade further refinement of the boson exchange
model led to the construction of sophisticated potentials
such as the one of Erkelenz et al.,'® Cottingham et al.,’
and Lacombe et al.'® A full field-theoretical treatment of
the pion exchange faces convergence problems of the per-
turbation series as a consequence of the large pion-nucleon
coupling constant. Similar difficulties arise in the
description of hadronic forces by the exchange of quarks
and gluons in perturbative QCD. Therefore one had to
rely on phenomenological potentials and bag models to
study the nucleon-nucleon forces in the quark pic-
ture.!®=2%  All these approaches contributed to our
knowledge of the strong nucleonic interactions. The
behavior at long and medium range is especially well un-
derstood. But none of these various models completely
explains the strong repulsion of nuclear forces known
from phase-shift analysis?® for distances less than 1 fm.

Meanwhile, nonperturbative techniques to solve the
path integral for QCD are highly developed making us be-
lieve that calculations for two-nucleon systems can be per-
formed. The lattices can be chosen large enough to con-
tain two spheres each with three quarks within a radius of
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0.75 fm. The distance between the centers of mass should
be varied from O to about 2 fm if possible. Considering a
coupling constant of 8=5.85 which corresponds to a lat-
tice constant of 0.23 fm yields a linear extension of nearly
4 fm on a lattice with space dimension 16. Dropping
periodic boundary conditions in the space directions
prevents a loss of half the distance in the computation of
correlations.

In order to simulate the full essence of QCD one should
take into account the fermionic degrees of freedom. This
enables the creation and annihilation of quarks from
which the meson exchange naturally emerges. In view of
the difficulties with the messy fermionic determinants®
one has to remove for the present the dynamical quark
fields from the action and regard them as static sources.
Nonetheless, the pure gauge field is of great interest for
the behavior of multiquark systems. Thereby we can
separately study the contribution of gluon exchange in
hadron-hadron interactions (in all orders of perturbation
theory). It should be mentioned that the static sources
correspond to heavy quarks out of which only heavy
mesons or heavy baryons can be constructed. However,
we hope that the results will also reflect the gluon ex-
change for nucleon-nucleon interactions. This may help
to explain why nucleons move as an assembly of three
quarks constituting individual particles in nuclei instead
of forming quark matter.

We have investigated the interaction between two static
pointlike quark clusters. We start from the g-g confine-
ment potential which has been extensively discussed in
simulations with periodic boundary conditions. Then we
calculate the g-gg potential of a baryon and the gg-g g po-
tential of baryonium. Afterward we compute meson-
meson correlations as well as meson-baryon, baryon-
baryon, and baryon-antibaryon correlations for pointlike
hadrons. .

The underlying theory is outlined in Sec. II. Our re-
sults are presented in Sec. III. The conclusion and an
outlook to future work are given in Sec. IV.

II. THEORY

The theoretical background of our model to describe
multiquark correlations is based on the Feynman path in-
tegral for the expectation values of quantum operators.
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Its numerical evaluation became possible by Wilson’s lat-
tice formulation.'

We introduce creation and annihilation operators
¢Z(ri,t) and 9, (r;,?) for static quarks with color a at posi-
tion r; and time ¢ together with their charge conjugate
operators ¢ and ¢ for antiquarks.>3! The static fields
¥4, satisfy the equal-time anticommutation relations

[lpa(ri,t) 1!’;(1'],[)]_'_ =8ij8ab

and similarly for the conjugate fields 5,1§
other equal-time anticommutators vanish.
The quark fields obey the static time-evolution equation

(1)

T Whereas all

9 A A%t

EY ()

1ll(r,~,t)=0 N

where AC is the time component of the gluon field and A
are the generators of SU(3) in the fundamental representa-
tion. This equation can be integrated and yields

1
CXp BFNN )=—FT7" N +N§ Tr E ¢’al rI’O) ¢a
31 a;,b;

X[l/}al(tl’o) e 1/’0

with the trace over states of the pure gluon theory. Since e~

P(1),
ePIP(t)e PH=P(t +B) ,
Eq. (5) becomes

1
Ny +N,
3Nt
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. t
Wr;,t)=T exp ifodt')vAo(ri,t') Wr;,0) , (3)

where T denotes a time-ordered product.

The operators ¥ and ¥° may be employed to obtain an
expression for the free energy F of a static configuration
of N, quarks and N; antiquarks:

exp( —BFNqNa)sexp[—BF(rl, cees qu,r'l, e l'}vq)]
1 -
= 2 (srsele™spsy)
39779 |sfsb)
4)

H represents the Hamiltonian of the system and f3 plays
the role of time or inverse temperature. The summation
runs over all fermionic states |s;) with heavy quarks at
..., I, and antiquarks at rj, . .., 1'}\77 and over all bo-

sonic states of the gluon field. Introducing the quark
fields ¥,9° we get for Eq. (4)
5, (ry ,0)e ~PH

N? g

'/’b (I'], (5)

H generates Euclidean time translations for any operator

. C ’ T
¢qu(rN7’0)]

(6)

Dy (T B (1,0)

@)

" Yh,, (l'zv ,B) 1/’ (rN ,0) .

Using the time evolution (3) of ¥ and its charge conjugate, along with (1), and introducing the definition of the Wilson

line*? as
B
L(r)=+trT exp (z’ fo dtd-A%r,t)

we can rewrite Eq. (7)

exp(—BFy, N_)=Tr[e‘BHL(r1) e

L(xy, )LT(ry) -+ LT

(8)

r’N 7. 9

Dividing this expression for the free energy of a system with N, fixed quarks and N; antiquarks by the corresponding
expression e ~BFw for the quark vacuum yields a Feynman path-integral representatlon for the expectation value of the

operator L(r;) - - L(rN )L T(r, Ve L (rN)
TrL(ry) - Lzy, )L’frl) LT(r}vq)e'ﬂH
exp( ——BAFNqu )= Tre-
B
B fDA"(r,t)L(r;)"-L(qu)LT(r’l)- Ly Jexp |~ [ dr [ a2 ()|
Jpatmexp |~ [ar [ ax 24

=(L(r,)'--L(qu)LT(r})"'

L*(r;vq» ,

(10)
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with AFNq NqEFNq N.,0.ip1ig—Foo, v the spatial volume,

and . (A) the Euclidean Lagrange density.
The path integral remains invariant under the general-
ized periodic gauge transformation?

Vir,B)=V(r,0)C, (11)

where the matrix C=e?"J/3J is an element of the center
of the gauge group with j an integer and I the three-
dimensional unit matrix. A single Wilson line L(r)
transforms as

L(r)—e2™i3[ (1) (12)

and the free energy of a system of N, quarks and N anti-
quarks transforms as

2mij(N, —N_)/3
exp(—BAFy v )—e 1 7 exp(—BAFy ). (13)
This expression remains invariant if the number of quarks
differs from the number of antiquarks by a multiple of 3,

N,—N;=3n (14)

with n some integer. If this is not the case for the multi-
quark system the invariance necessitates

exp(—ﬁAFNqu)=0 ‘ (15)

which corresponds to a divergent free energy as long as
the symmetry is not broken spontaneously.

There are three possible ground states of the pure SU(3)
gauge system with broken symmetry. These configura-
tions are labeled by three distinct expectation values of L:

(L)Y=e?™i3L,, j=0,1,2. (16)

(L) is therefore an order parameter similar to the mag-
netization in a Z3 spin system.

Beside the rather well-analyzed two- and three-quark
systems building up the meson and baryon we want to in-
vestigate especially four-, five-, and six-quark systems
which are localized in two clusters in order to present
meson-meson, meson-baryon, and baryon-baryon systems.
We denote the two quark clusters by L, and Ly corre-
sponding to a product of localized Wilson lines

L4(0)=L(r))L(rp)--- LT(ry ),
(17)
Lp(n=L(r)L(ry) - -~ Llry,),

where 0 and r are the centers of mass of the two clusters,
respectively, and N 4,Np are their total numbers of quarks
and antiquarks. Separating these two clusters to large dis-
tances leads to the onset of the cluster property for the
correlation function

(L,,(O)ng(r»I I (L 4(0)){(Lg(r)) (18)

so that the free energy AFNA Ng of the whole system
behaves like

AFy N, e AFy +AFy,, 19

| =

where the free energy of a single cluster is abbreviated by
AF, ~, and AF, Ny respectively.

Our aim is to discuss correlation functions and free en-
ergies for various static multiquark systems. The evalua-
tion of the path integral (10) may be performed by formu-
lating the theory on a space-time lattice."> The lattice
spacing a serves as an ultraviolet cutoff which is related
to the coupling constant g via the renormalization-group
equation. The number of links in the time direction is N,
and in the space direction N;. The inverse temperature
and the volume of the hypercube are thus given by

B=N,a, v=(N,a)}. (20)

The gauge field on the link with site x and direction [ is
defined by

UH(x)=e'MAME) (21)

The Lagrange density is written in terms of the link vari-
ables

LX) =—2— 3 L[ 1 - UHx) U (x+afd)
go'a u,v

X UM(x+a»)~1U%x)"1]. (22)

After replacing the measure DA for the continuous gluon-
ic field by the measure DU for the SU(3) link variables we
can start to calculate the path integral for various opera-
tors.

III. RESULTS

We have chosen a lattice of size 16 X16X16X6. In
time direction we took periodic boundary conditions. In
space direction we used hot boundary conditions, i.e., the
link variables on the surface of the cube were taken at
random from update to update. The coupling constant
B=75.85 corresponds via the renormalization-group equa-
tion to a lattice distance of a ~0.23 fm. This enables us
to cover a cube with a linear extension of about 3.66 fm.
We performed 1000 Monte Carlo iterations with the
modified Metropolis method with 10 hits per link. 300
iterations after a cold start the system was sufficiently
equilibrated to begin with the evaluation of the observ-
ables we are interested in. It turned out that it is enough
to take a sample of 100 configurations out of the updates
Nos. 301—1000.

The first observable we want to discuss is the expecta-
tion value of the product of two Wilson lines L(0)L (r)
representing a quark at position O and an antiquark at po-
sition 7. In Fig. 1(a) we see the exponential decay of the
quark-antiquark correlations into the product of the mag-
netizations of a quark and an antiquark,

(LOLYr)y=e=PF_ | (L))|2

for r— o0. The value of the magnetization (L ) ~0.081
suggests that we are close to the border of deconfinement;
the critical value of the coupling constant has been deter-
mined to be B.;,=>5.93 (Ref. 33). We tried to extract a
potential V' (r) by a Coulomb-plus-linear form and a con-
stant (see Fig. 2) after subtracting | (L) |?,
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FIG. 1. Correlations as a function of the distance r in units of the lattice constant a=0.23 fm between certain color-

nonsinglet—color-nonsinglet systems: (a) L(0)L f(r), ) L20)L(r), and (c) L*0)L (r). Note the exponential decay and the normali-
zation factor of 3 from figure to figure. Mean values have been taken over 200 gluon field configurations and a few error bars are in-
serted. The broken lines clearly show the validity of the cluster theorem.

Vin=—<txrty. 23)
It turned out that the parameters a,k,y are strongly corre-

lated varying by a factor of 10 in the Coulomb strength
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FIG. 2. Potential V between a quark and an antiquark charge
as a function of the distance r in units of the lattice constant
a=0.23 fm. The anisotropy in the different space directions in-
dicates that rotational invariance is broken. The averages have
been taken over a sample of 400 gauge field configurations. The
full line shows the potential fitted by a Coulomb-plus-linear
form. The gg-g and the gg-g g systems yield the same poten-

tials differing only by a constant term.

and in the string tension. Fixing the Coulomb constant to
its asymptotic value,** a=/12, yields for the string ten-
sion Vk=237 MeV which is consistent with Ref. 9. The
best fit for the (physically irrelevant) constant term gives
=950 MeV. The X? per degree of freedom is rather bad
and its size of about 10 indicates some model deficiencies.
Thus one should try to extract the continuous potential
V(r) with the help of a more sophisticated philosophy
which takes the lattice effects principally into account.

At this point it is opportune to remark on the restora-
tion of the rotational symmetry of the confinement poten-
tial. We find a distinct anisotropy of the correlations be-
tween Wilson-Polyakov lines for 8=5.85 in the underly-
ing 16> 6 cube (cf. Fig. 1). The measurements of Wilson
loops by Hasenfratz et al.* on a 16* cube suggest the on-
set of restoration for B=5.7. Our results resemble more
their 3=5.4 case. The reason may lie in our hot boundary
conditions or in our finite-temperature formalism.

After discussing the quark-antiquark correlations
which revealed the confining forces inside a meson [cf.
Fig. 1(a)] let us turn to the properties of a baryon. We
calculated the expectation value of the product L*0)L (r)
representing two quarks at position O and the third quark
at position . The computed correlation function is plot-
ted in Fig. 1(b). The points form the same pattern as in
the meson case. The two curves differ by a factor of 3

due to the normalization 3 N~y in Eq. (4). The corre-
sponding potentials are therefore identical up to a physi-
cally meaningless constant (compare Fig. 2). Thus the
confinement forces inside the baryon favor a string pic-
ture.

The next example is baryonium. Here, the expectation
value of L%0)L ™(r) for two quarks at position 0 and two
quarks at position r has been calculated and is shown in
Fig. 1(c). We find the same behavior as in the meson and
baryon cases. Again we observe the normalization factor
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FIG. 3. Correlations as a function of the distance 7 in units
of the lattice constant ¢=0.23 fm between certain pointlike
color singlets: (a) L(O)LYO)L(»)L'(r), ®) L(O)LT©O)Lr), and
(c) L30)L3(r). Note that the correlations stay practically con-
stant and the neighboring figures scale by a factor of 3. Mean
values have been taken over 200 gluon field configurations and a
few error bars are inserted. The broken lines indicate the cluster
property.

3 compared to the baryon correlations yielding the same
potential (compare Fig. 2) and supporting the string
model.

Rearranging the four quarks to build a meson at posi-
tion O and another meson at position r requires one to
compute the expression L(0)L YO)L(r)LT(r). From Fig.
3(a) we can see that the correlations remain constant with
increasing distance. Again we observe the characteristic
lattice structure for the correlations. But whereas in the
previous cases the correlations broke down exponentially
to 50% here the correlations stay constant within 2%.

Next we investigated the relations between a pointlike
meson and a pointlike baryon: L(0)L YO)L3(r). As can
be seen from Fig. 3(b) the correlations are constant. The
normalization factor of 3 compared to the meson-meson
system becomes obvious. A similar situation holds true
between two pointlike baryons: L30)L3(r). In Fig. 3(c)
we find constant correlations and the scaling factor 3 due
to the extra quark. The baryon-antibaryon system (not
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shown in the figure) has the same correlations as the
baryon-baryon system: L30)LB(r)=L*0)L3»).

Thus the gluon exchange (in all orders of perturbation
theory) can mediate no force between systems of two
pointlike hadrons. This becomes clear if one considers
that pointlike hadrons carry no color charge. An analog
to QED would be a system of two pointlike electron-
positron pairs. There both partners have no electric
charge and the photon cannot mediate any force. We
want to remark that the system consisting of a single
quark and a pointlike baryon yields constant correlations
(not demonstrated in the figure). Thus it is sufficient if
one of the two interacting quark clusters is pointlike and
colorless in order to make the gluon exchange ineffective.
Extensive investigations of the potentials between spatial-
ly extended hadron-hadron systems are the aim of our
current work.

IV. CONCLUSION

Let us summarize the main results of our analysis of
the pure gluonic forces between pointlike static quark
clusters.

In all investigated cases the cluster theorem is fulfilled.
Thus the cluster property can serve as a helpful check in
qualitative arguments as well as in numerical computa-
tions.

The correlations of color-nonsinglet—color-nonsinglet
systems decay exponentially leading to a linear confining
potential. The string constant is the same between all ob-
served colored clusters confirming the string model.

The correlations stay constant within 6% if one of the
interacting clusters is a pointlike color singlet so that the
gluon exchange can mediate no force.

Recent calculations seem to yield the same result for
spatially extended objects: We find extremely short-range
dipole forces between nonoverlapping color singlets. If
these preliminary results hold true gluon exchange is not
able to produce something like the hard core of nucleon-
nucleon interactions. Next one should try to take into ac-
count fermionic degrees of freedom at least approximately
and attempt to study the short-range part of the meson
exchange.
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