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Explicit Hamiltonian for SU(2) lattice gauge theory

15 APRIL 1985

John B. Bronzan
Department ofPhysics and Astronomy, Rutgers University, Piscataway, Xew Jersey 08854

{Received 15 November 1984)

We study pure SU{2) gauge theory in the Hamiltonian formulation in 2 + 1 and 3 + 1 dimensions.
We treat both the vacuum sector and the sector having two static color charges. These two sectors
are required for calculations of glueballs and string tension. All gauge arbitrariness is eliminated,
and we formulate the Hamiltonian in terms of variables that are gauge invariant except for freedom
under a single global SU{2) transformation. The Hamiltonian is given explicitly as a differential
operator in the parameters for these essentially gauge-invariant variables. We discuss practical ap-
plications of the Hamiltonian.

I. INTRODUCTION

This paper is concerned with the Hamiltonian formula-
tion of SU(2) lattice gauge theory in 2+ 1 and 3 + 1 di-
mensions. It is straightforward to derive the Hamiltoni-
an, but the resulting operator commutes with operators
generating (time-independent) gauge transformations at
each site on the lattice. Since gauge generators at differ-
ence sites also commute, Hilbert space is the union of sub-
spaces characterized by definite values of the color charge
at each site. The Hamiltonian has nonzero matrix ele-
ments only within each of these subspaces. The most in-
teresting subspaces are those having no charges (for the
purposes of examining the glueball spectrum) and two
charges (string tension).

The task of characterizing the general vector belonging
to each subspace is nontrivial. However, Muller and Ruhl
have shown how to achieve this for the vacuum subspace
in 2+ 1 dimensions on a lattice having free boundaries. '

Their procedure begins with a change of variables. Ini-
tially, the Hamiltonian is written in terms of group ele-
ments gt on every link on the (spatial) lattice. These de-
grees of freedom are replaced by a new variable set con-
sisting of the gt on a "maximal tree" on the lattice togeth-
er with variables

l eI,
where P, is an oriented path on the lattice, and o.l ——+ 1

or —1 depending on whether P, passes through link I in
the positive or negative direction. The y, are invariant
under gauge transformations except those at sites begin-
ning and ending P, . In Ref. 1 the beginning and end
points of all P, are at a common site, so the y, . are like
untraced Wilson loops.

The next step is to rewrite the Hamiltonian in terms of
the new variable set. The terms arising from space-space
plaquettes —the magnetic terms in H—are easily reex-
pressed, and depend only on the y, variables. The electric
terms in H, being differential operators in the group pa-
rameters of the gt, are more difficult to rewrite. In Ref. 1

it was noted, however, that an explicit transformation is
possible if the paths P, are chosen to follow a particular
pattern.

The final point observed in Ref. 1 is that in terms of
the new variable set it is easy to characterize states in the
gauge-invariant (no charge) subspace: they depend only
on the y„and are further invariant under the single
remaining "global" SU(2) transformation of all the y, .
One therefore has eliminated all gauge arbitrariness in the
variable set, and expressed both the states and the (now

positive) Hamiltonian on the gauge-invariant subspace.
The adjective "explicit" has been used in the title of the
paper to characterize such a construction.

These steps go through in 3 + 1 dimensions. However,
the paths P, must be chosen on a more general pattern,
which complicates the electric terms in the Hamiltonian.

Further complications arise in the two-charge subspace,
both in 2+ 1 and 3 + 1 dimensions. One is that the pat-
tern of paths must be generalized further. Another com-
plication is that the general state is a sum of terms, each
being a definite function of the I gt I on the maximal tree
multiplied by an arbitrary function of the t y, I. For-
tunately, it is possible to remove all factors depending on
the (gtI from Schrodinger's equation. In this formula-
tion, the Hamiltonian and states depend only on the [y, J,
but (for color spin- —, charges) the Hamiltonian contains

the operator o., and the wave function is a Pauli spinor.
The layout of the remainder of the paper is the follow-

ing. In Sec. II we discuss the maximal trees and loop
variables we use on two- and three-dimensional lattices
having free boundaries. In Sec. III we present the Hamil-
tonian in terms of link variables gl, and discuss the gauge
generator algebra. Section IV is devoted to evaluation of
the electric operators in terms of the new variables. In
Sec. V we determine the form of general state vectors in

the no-charge and two-charge subspaces. Section VI is
devoted to the derivation of the four Schrodinger equa-
tions in the no-charge and two-charge subspaces in 2 + 1

and 3 + 1 dimensions. These equations are rather compli-
cated, so in Sec. VII we discuss some possible uses for
them.

II. VARIABLE SETS

Our two-dimensional lattice is shown in Fig. 1. The
links on the maximal tree are dotted; this (and every)
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An example is shown in Fig. 2.
The maximal tree for the three-dimensional lattice con-

sists of all z links, all y links in the plane z=0, and all x
links on the x axis. There are two types of loop variables,

y,s, and z,~„ illustrated in Fig. 3. The range of the in-
dkces ks

y,~, , 1&a, c &X; 0&b &N,

z,~, . 1 &b &¹0&a, c &X, a =c =0 excluded .
(2.3)

where P& is a path running from site (0,0) to site (a, b, )

along the maximal tree. Then we define

(2.2)

FIG. 1. Maximal tree and path P,q for loop variable y, t, .

maximal tree is an open set of links with the property that
the addition of any link would generate a closed loop.
The path P,& defining variable y,& is also shown in Fig. 1

(1 &a, b (X). All loops begin and end at site (0,0). It is
easy to see that any link group element can be expressed
in terms of the Iy,~ j and the elements Ig~j on the links
of the maximal tree. The Iy,~ j and the I g~ j on the links
of the maximal -tree comprise the variable set we will use
in the no-charge problem in two spatial dimensions.

The setup for the two-charge subspace in two spatial di-
mensioris is shown in Fig. 2. Charges are located at sites
(a,b~) and (a,b2). The variable set we use for this prob-
lem is the tg~ j on the maximal tree and loop variables

I Y,b j. Define the-group element G by

F,I„——G 'y g, G; Z,g, ——6 'z,g, G . (2.4)

The I g~ j on the maximal tree, I Y,q, j and I Z,b, j
comprise the variable set for the two-charge problem in
three dimensions.

The loop variables have been chosen so that every link
on the lattice belongs to one of two classes.

(o,o,c)

The t gi j on the maximal tree, Iy,~, j and I z,&, j comprise
the variable set for the no-charge problem in three spatial
dimensions.

In the two-charge subspace we place charges at (a,b, c~ )

and (a,b, c )2. We again introduce G as in Eq. (2.1), with
P& now a path running from (0,0,0) to (a, b, c~ ) along the
maximal tree. Define

(2.1)
(a, o, c) (a, b,c)

(a,o,o) (a, b, o)
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FIG. 2. Path for loop variable 1'q.
FIG. 3. Paths for loop variables on a three-dimensional lat-

tice.
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Class-I links have the property that all paths passing
the link in the positive direction have a common path PL
leading up to the link. All paths passing the link in the
negative direction have a common path Pz ——P~ ' fol-
lowing the link. Paths which pass the link in both posi-
tive and negative directions have a path PL preceding the
positive transit and a path Pz ——PL

' following the nega-
tive transit.

Class-II links have paths PL leading up to negative
transits, paths Pr following positive transits, or both.

It is understood that Pz differs for different links; what
has dictated our choice of paths is that PL is the same for
all paths transiting the link in question.

It is easy to see that the only class-II links are those on
P& in the two-charge problem In. Ref. 1, all paths were
class I, and additionally all transits through a particular
link were either positive or negative. This situation can-
not be maintained on a three-dimensional lattice. For ex-
ample, links on the y axis have positive transits by z loops
having c=O, and negative transits by z loops having a=0.

The significance of g can be appreciated by consider-
ing operators g L and g ii having the effects

eiJ r JeiJ r ~ eiJ r eiJ rJ (3.5)

L . r r
g~tiii —1(+——1)—+i —cot ——1 r(r V)

2 2 2

LP P'——cot —V .
2 2

(3.6)

g 2 j 2 g 2 (3.7)

is the Casimir operator, and the electric energy is seen to
have the expected form.

The g 's have the commutation relations

where J is any representation of the Lie algebra. By the
group property, g L, i~i as differential operators in r must
agree with what we find for the fundamental representa-
tion:

III. THE HAMILTONIAN
AND GAUCiE GENERATORS

Any element of the fundamental representation of
SU(2) can be written

[/Lk XLi]= &&kim&C—M

[/Rkig Ri] i~klmg Rm

[XLk Kiri]=[/Lk g']=[giik, g']=0.
(3 8)

(rts, g)= J dr sin —J dQQ*(r)g(r) . (3.2)

The Hamiltonian may be derived by taking the Wilson
action in Euclidean time for a very small time slice A~,
computing the transfer matrix for adjacent time slices,
and letting b,r +0 (Ref. 2). The resu—lt is

&«+"~ e '"
) —2]. (3.3)

Link labels are i =(s,p), where s denotes the site from
which the link emanates, and p is the direction of the
link. Also,

g '(g) =
4sin—2 7

2

—cot—
2 Bp' Qp'

(3.4)
L= —irXV

g =e' '"=cos—'+ia"rsin —' .
2 2

The parameter space is the sphere
~

r
~

(2~, with the sur-
face of the sphere corresponding to the single element

g = —e. Wave functions, written as functions of the pa-
rameters, must respect this 53 topology through the re-
quirement that they be independent of ri where

~
ri

~

=2m. The inner product uses the Haar weight for
this parametrization. For one degree of freedom,

Using these rules, we find that the gauge generators

&.= gf —gL(r. ,„)+alii(r, p„)] (3.9)

commute with H, and have SU(2) commutation rules
among themselves:

[Gs
&
k ~ Gs, i ]= & &s s,&klm Gs

&
m (3.10)

IV. TRANSFORMATION
OF THE ELECTRIC OPERATORS

The Hamiltonian of Eq. (3.3) is written in terms of the
link parameters. This variable set must be replaced by
one of the sets of Sec. II in order to carry through the
analysis outlined in Sec. I. In this section we treat gL
and g g.

We replace the link variable set j gi j by one of the new
sets, which we write generically [g/, y, ]. The prime on gi
indicates that only the g~ on the maximal tree are includ-

Therefore, we can construct simultaneous eigenfunctions
of H and G, and 6, 3 at each site. The eigenvalues of
6, and 6,3 at each site label subspaces of Hilbert space
which are not connected by H. The subspaces can further
be grouped in multiplets having the same Cx, at each site,
but different G, 3. Because [H, G, &+iG,2]=0, the energy
spectra in the subspaces of a multiplet are the same.
Eigenvectors in the subspaces of a multiplet are related by
operation with powers of the 6,~+i6,2.

The energy eigenvalues therefore depend on the quan-
tum numbers given to the operators G, at each site.
These are j (j+ 1), where j is the "spin" of the static color
charge at the site. In this paper we consider the vacuum
case, all j=O, and the two-charge case, j= —,

' at two dif-
ferent sites.
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ed, and y, is a generic symbol for the loop variables.
Also, gl designates the components of the parameters for
gl=e ' . By Eq. (3.6), gL(gI) has the form

XL (gl)=&A p(gI) (4.1)
p ~Sip

Multiply Eq. (4.9) from the right by e ', and recall
that generators J5 are linearly independent. This leads to
the transformation kernel

XA p(gl)
B

A 'y5(y. )
Py glP

Rewrite this in terms of the new variables using the chain
rule

=Dsa (L ) —g D5„"(y, )D„(L) . (4.10)

Byy Bg L (gl) el' (gl)+ y A p(gI)
Bs P y BglP Bysy

(4.2)

where el ——1 if / is on the maximal tree and zero other-
wise. Thus,

XL (gI)=&!EL (gI)

~3'sy+ g A p(gl) A '
y(5y, )g L(5y, ) .

s Py5 glP

XR.(g)e"'=e"'J.= g D5".(g&L5(g)e"' .
5

(4.11)

Since this is true for an arbitrary representation of the Lie
algebra,

When there is only a positive transit, the second term is
absent, and when there is only a negative transit, the first
term is absent.

Note that

(4.3)

The transformation kernel A (By/Bg)A ' can be
evaluated by noting that if l is a class-I link, and y, is a
loop variable which makes both positive and negative
transits of link I, then the dependence of y, on gl is of the
orm

ER (g)= QD5" (g)/I5(g) ..

Using Eqs. (4.3), (4.10), and (4.12),
(&)

EL (gI)=&!EL (gl)+ gDs" «)g L5(y, )

(4.12)

iJ leiJ geiJ h —iJ.g —iJ1 (4.4)
—QD5"(L)g R5(y, ) (class I) . (4.13)

Here

eiJ1 g ( )
I

l GI'I
(4.5)

If y, makes only a positive transit of link l, the last two
factors of Eq. (4.4) are absent; and if only a negative tran-
sit is made, the first two factors are absent.

Now use the chain rule to compute
(N)—gD'5" (Lgl)gR5(y, ) (class I) .
s, 5

(4.14)

Here g,' ' is the sum over all loops making a positive
transit of link I, and g,' ' is the similar sum for negative
transits. Using Eq. (4.12) and the group property

(~)

7 Ra(g! ) &Ig Ra(gl )+ g D5a (Lgl )g L5(ys )

s, 5

'y5(y, )/L5(y, )e' "'
~RlP ~,5 ~glP

A 'y5(y, )Jse
~SlP

On the other hand, using Eq. (4.4) and (+L) e

e '= gA 'p (gl)(e' 'J e ' 'e
RlP

Note that

(4.6)

(4.7)

(4.8)

Lgl is the product of group elements on path PI, extend-
ed to include link gl.

These steps can be repeated for class-II links, leading to
the results

(p)

o La(gl ) el/La(gl)+ g D5a (Lgl)g R5(ys )
s, 5

(N)

y D5 (Lgl V L5(y
s, 5

(class II) (4.15)

(P)
XR (gl)=&IXR (gI)+ gD'5". (LV R5(y. )

s, 5

(N)—QD5"(L)gL5(ys) .

where D„"' is the spin-1 representation of SU(2) in the
Cartesian basis. From Eqs. (4.6)—(4.8),

s, 5

V. SUBSPACES OF FIXED COLOR CHARCiE

g A p(gl) A 'ys(y, )J5e
p, ~,5 glP

= g [D "(L)—gD ~ (y, )D~"(L)]J e
5 IJ

(4.9)

The advantage of the variable sets of Sec. II is that they
allow a straightforward characterization of the wave func-
tions in subspaces of definite color charge. We first con-
sider the two-dimensional lattice and write wave functions

i J-A,
p( Iy, I, Igl' J ) in terms of the new variable set. A.s ——e
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will denote the element of SU(2) by which we gauge
transform at site s. From Eq. (3.9),

' '1t/(gS gE)=0(~S 'gS gF~S» (5.1)

,( {y. j {~s gi ~E j )

g &""'(x — )D""'(~ — )m lml a bl m2m2 a b2
ml, m2

where gg is the generic symbol for a link starting at site s,
and gE stands for a link ending at site s. All other vari-
ables are unaffected by the gauge transformation. These
laws of gauge transformation will be used to characterize
the wave functions in the subspaces.

It is convenient to write this

4 , ,({y.j {gi j)

&«
; ;({y.j {gi j) .

A. No-charge subspace

%'hen no charges are present,

as''=0, e' '"q=1t . (5.2)

D(1/2) (g —1)D(1/2) (g —]
)m 1ml a bl m2m2 a b2

I Iml, m2

xf, , ({y,j, {A,,-'gi x, j) .

0({y.j, {gi j)=4({y.j, {~s 'gi~zj), (5.3)

Using Eqs. (5.1) and (5.2) at all sites except (0,0), we arrive
at the relation

Now as we go through our procedures
'gi A,~ ——1, we find we must choose

ab& II @' ab& H gl
I &Pl I &P2

to set

(5.10)

where A,s is the gauge transformation at the site at which
link / starts, and A,@ is the gauge transformation at the site
at which link I ends. A~ ——1 for gp p and gp p ~.

Equation (5.3) is used as follows: We work away from
site (0,0) along the maximal tree, always choosing A,~ so

'gikz ——1. (A,s will have been chosen in a previous
step. ) Thus, on the zero-charge subspace,

(5.4)

Here P, is the path on the maximal tree beginning at (0,0)
and ending at (a,b)). P2, similarly defined, ends at
(a, b2). This choice leads to the representation

D (1/2) ~ D (1/2)
m lml m2m,j&Pl 1eP2

Finally, if we now transform by A, at site (0,0) we have

(5.5)
x(t, , ({y,j) . (5.11)

Equations (5.4) and (5.5) state: The general state in the
no-charge subspace is independent of the link variables on
the maximal tree, and is invariant under a global (simul-
taneous) gauge transformation of all loop variables. The
same result holds on the three-dimensional lattice, except
there are then two types of loop variables.

B. Two-charge subspace

A gauge transformation by A, at site (0,0) yields the fur-
ther equation

,({y,j {gi j)
D(1/2) g —1 II D(1/2) g—1

m lml
ICP1 leP2

We again consider the two-dimensional lattice. Equa-
tion (5.2) holds except at sites where there are charges.

At those sites

2 -2 =3Ga b Qm1, m2 +a b1 41,m2 4 fm1, m2

x1t, , ({A, 'y, Aj) .

Choose A, = II1&I g1. Then by Eq. (2.2),

(5.12)

Ga b1, 30m1, m2™14m1, m2

G,-b 3g, ,=m21(

'Ger ~nb

m 1

iG
b

A,
b 2 ~ (1/2) (g

m2

(5.6)

(5.7)

(5.13)

P3 is the path along the maximal tree from (a, b 1 ) to
(a,b2). Equation (5.13) shows that in the two-charge sub-
space there are factors having a specific dependence on
link variables on the maximal tree.

The functions P must satisfy a constraint obtained

by making a gauge transformation on (5.13) at site (a, b1):

&P ({A, 'Y, i.j)
From Eqs. (5.1) and (5.7), if we gauge transform every-
where but (0,0),

D(1/2) (g)D(l/2) (g)y ( {y j )mlml m2m2 m l, m2
I Iml, m2

(5.14)
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N —1[Tr(3 a+ I, b3 a+i, b+1
g ab=O

Xya, b+ 1ya, b )1/2 (6.1)

VI. SCHRODINGER EQUATIONS

The Hamiltonian (3.3) is a sum of electric and magnetic
terms. In two dimensions, the magnetic terms are

Here the suffix —,
' means that the spin- —,

' representation
e' '"/ =y is to be used in evaluating the trace. y, b

——1 if
either a =0 or b=0. A similar formula holds in the two-
charge subsPace with yab ~Y,b.

In three dimensions the magnetic terms are

N —1 N r~ r —1 —1 —1~M 2 ~ ~ [ I (ya, b+1,c a, b+l, c Za+1, b+l, c3 a+i, b+1,c 3 a+i, bcZa+1, bc a, bc3 a, bc )1/2 2]
a, b =Oc =0

N N —1

[Tr(3a,b+l, c+lya, b+i, c 3a, b, c3a,b, c+1 )1/2
g a=1 b c=o

2 N —1 —1 —1[Tr(zO, b+1, + lzO, b+1, z0, b, zO, b, +1 )1/2
g bc=0

N N —1 —1 —1[ ( a+ i, b, c+1 a+ i, b, c a, b, cZa, b, c+1 )1/2 2]
b =Oa, c =0

(6.2)

A similar formula holds in the two-charge subspace under the substitutions y, b, ~I", b „z,b, —&Z, b, . In Eq. (6.2),
ya b, ——1 and za b, ——1 whenever the indices lie outside the domains defined in Sec. II. Note that the magnetic terms de-
pend solely on loop variables.

Next consider the electric terms in Eq. (3.3) for the zero-charge subspace in two spatial dimensions. All links are class
I, and wave functions depend only on loop variables. We use Eqs. (3.7) and (4.13). It is crucial that the matrices D"'(L)
are orthogonal in the Cartesian basis. The electric terms are therefore

2 (~) (N)
HE=

2 g g&L(yi) —ggR(V1) (6.3)
s,p t

where the inner sums are over'loop variables transversing link s,p in parallel (P) and nonparallel ( 1V) senses. Expanding
Eq. (6.3) for our variable set,

2 N N

HE g g [+lg L(3 albl
) +L (3a2b2)+~,2+R(yal, bl)'8 R(3 a2, b2)] ~

a &,a2 ——1 bl, b2 ——1

(6.4)

where

al ——min(al, a2)5b b +mill(bl, b2),

a2 ——min(a„a2)+5, , min(b„b2) .
(6.5)

Equations (6.1) and (6.4) give the Hamiltonian of Ref. 1.
In three dimensions in the zero-charge subspace an equation analogous to Eq. (6.3) holds, but now there are two sets of

loop variables. We have

2 N N N

E 2 g g g IP1XL 3 a&b&c& ) /L(ya2b2c2)+P2of L(zalblcl ) 8 L(za2b&c&)+P3/ R(zalblcl ) g R(za b c )
a&,a2 ——0 b&, b2 ——0 c&,c2 ——0

+04[8L(3 a&b& 1)+2L( lb& &a)]'[cg L(3 a b c )+g L(Za b c )]

+P5[XR 3 a lblc1 ) +/R (zalblcl )1 g R (ya&b&c2) ++R (za&b2c& )]

+pbI. (z, , b... ) g L(z 2b2c, )I, (6.6)

where
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P~ ——min(a~, az)5. ,..+5, , mi n(b&, bz)5. .
Pz ——min(a„az)5~ s 5, , +min(b~, bz)(5. .. —5, , 05, o —5, 05, 0),

p3 —5 05 Qmin(b ~, bq )

pz ——min(c&cz),

P5 ——min(a &, a& ) +(5..., —5, ,05,,o)min(b &, bz ) +5...,5q, ~,min(c ~, cz ),
P6 ———25, 05, Dmin(b ),by ) .

(6.7)

Operators are to be omitted when variable indices lie outside the ranges specified in Sec. II. Equations (6.2) and (6.6) give
the vacuum subspace Hamiltonian in three spatial dimensions.

In the two-charge subspaces we use Eq. (5.13) for the wave function. For links lying on I'3,

leP, bi &b'&b —1

ECT g, /2Qi'', y

2
b &b'&b~ —1

&n g, /2Nb', y

I
m pm'

(6.8)

Define

b$ &b'&b

Then by Eq. (4.8),

gab, y (6.9)

Op

ICP m&m&
(6.10)

g (g,— )p, , = gD", " + g g (g,— p, (I&, I)
mp 3

+ y D„"'(g(») ", D.-",'.", Hg~ O. . (I&.I)
m p, mp, p 3

(6.11)

Applying /I (g,& ) to this,

g '(g.—,,W,
2 2 IEPmp 3

D„"g(g(b))(0„), D—', " Q gi g L, g(g;gy)p ~ + 4 4m, m, . ,
leP,

(6.12)

Finally, when we use (4.13), we note that i. =g (b). As a result, for a link operator on I'3,

m& I EP3
g L'(g;I, y )Q =/ L'(g, I, y

—)p, ,(I &-, I )+ —,'p, ,(I &, I )

mg

(N)
(6.13)

The first term on the right-hand side of Eq. (6.13) can be treated as it was in the zero-charge subspaces.
With the aid of Eq. (6.13), we can write a Schrodinger equation for the functions P ~ ( I I; I ). It takes the form

g (II) —p —( I &, I ) =Ep, ,( I &, I ), (~) =(~E ) +HM5— , — (6.14)

with MM given by Eq. (6.1) on a two-dimensional lattice, and by Eq. (6.2) on a three-dimensional lattice, under the sub-
stitutions y~ P, z —+Z. On a two-dimensional lattice,
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3 2—
(HR ) —= (b3 b—i )5

2 N N

+ 5~ @ g g [aug L(Ya~b~) NFL(Ya~b, )+az+R(Yab ) +R(Ya2b2)
~2 ] bl 'b2

+ 3L(Y, , b, ) gR ( Y 2b2)+a4L(Ya~b~ ) L( Y 2b2)]

where

2

(o3ocr2) g [min(b, b3) —b)]g R(Yb),
b=b)+1

(6.15)

a3 ——2 min(a2, a ) —25, ,-min(bq, b~ ), a4 ——a +b~ ~ (6.16)

On a three-dimensional lattice,

(H@) —= (cp —c()53g

2 N N N

+
2 5~&m2 g g g IPl7 L(Ya&b&c&) 7 L(Ya2b&c&)+f32/L(Za&b&c&) gL( a2b&c&)

1' 2 Ob) b2 O 1' 2

+P3jR(Z b ) gR(Z b

+P4[8 L ( Y )ba) ()c+g L (Za ( b ( c )
) l [g L ( a 2 b 2 c2

) +8L ( a 2 b 2 c2
)]

+P5[g R(Ya&b&c&)+g R(Za&b&c&)1[SR(Ya&b2c&)+g R( a2b&c&)]

+~bL(Z fbi i) &L(Z,b2 ~)]

+~7[ ( a, b...)+«Za&b&c&)]IER(Ya&b&c2)+XR(Za2b2c2)]

+fj[sL( Y~a~b~c) +L( Z,a.bc)][L( Ya2zbc)2+ L(Z ab, )]]

where

2

+ (o2cro2) '— g [mm(c, c2) —c(][JR(Y,g, )+g R(Z, b, )],
C =Ci+1

(6.17)

p7 ———2 min(a3, a )—25, ,-min(b2, b ) —25, ,-5b bmin(c2, c ), ps a+b+c& —.— (6.18)

Several observations can be made here: If a =b
&

=b2 ——0, the Hamiltonian on the two-dimensional two-
charge subspace reduces to the Hamiltonian on the zero-
charge subspace. This result is expected because the
charges have canceled, and loop variables begin and end at
(0,0). A similar results holds in three dimensions when
a =b =c& ——c2 ——0. Further, if we take the three-
dimensional Hamiltonians and truncate to the x-y, y-z, or
z-x plane, we recover the two-dimensional expressions.
Finally, the expressions in Eqs. (6.4), (6,6), (6.15), and
(6.17) can be simplified somewhat using L=g R —g L.

VII. DISCUSSION

The Hamiltonians of Sec. VI are more tractable than
they appear. For example, in Ref. I the gauge parameters

are scaled by y&
——g g'I. When the Hamiltonians are

developed as power series in g, the leading term is 0 (g ),
and is the same quadratic form in the zero- and two-
charge subspaces. In the leading terms, g L

——g R= —i V~/g, and the expressions of Sec. VI simplify
dramatically. Following Ref. 1, these leading terms can
be diagonalized if one assumes g& ranges over R3. Stan-
dard perturbation theory results.

But standard perturbation theory can never give string
tension and mass gap of O(e '~g ), as required by the re-
normalization group in 3+ 1 dimensions at weak cou-
pling. These effects can only emerge when one takes ac-
count of the S3 group topology:

~

g'~
~

&2m/g, and p in-
dependent of g~ when

~

g'I
~

=2~/g. One way to enforce
these constraints would be to use a trial wave function se-
parable in gauge-invariant variables: g = Q, g, (y, ).
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Proper boundary conditions are now easy to impose, and
the Rayleigh-Ritz variational principle requires i)'j, to
satisfy a one-degree-of-freedom wave equation having a
Hartree-Fock self-consistency character. Heller has car-
ried out this program in the (2+ 1)-dimensional U(1)
problem, obtaining results consistent with Polyakov's
monopole gas calculation at small g (Ref. 4), and with the
strong-coupling expansions at large g (Ref. 5). Such an
analytic approach to lattice SU(2) would not be simple,
but the first steps are those of this paper. One must con-
struct a Hamiltonian from which gauge arbitrariness has
been eliminated, or equivalently, in which the constraints
of Coulomb's law have been implemented.

The case of SU(3) is more complicated. If we write ele-

ments of the fundamental representation in the form
e' ', then r is an eight-dimensional vector. It is now
more difficult to derive g L ~~~, chiefly because
IAk, A,I I&25ki. The most serious difficulty is that the to-
pology of the parameter space is quite complicated. So,
then, are the corresponding boundary conditions on wave
functions.
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