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Yang-Mills theories in the light-cone gauge
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We develop the Hamiltonian quantization of Yang-Mills theories in the light-cone gauge, obtain-
ing the well-defined prescription for the gluon propagator, previously proposed in the literature. A
Hilbert space with indefinite metric emerges in which the role of the residual gauge freedom is clari-
fied. It is possible to define consistently a subspace with positive-semidefinite inner product where
Gauss's law and Poincare covariance are recovered and the perturbative S matrix is unitary.

I. INTRODUCTION

Algebraic gauges, characterized by a constant vector
n&, have been used quite often in the last ten years in spite
of their lack of manifest Lorentz covariance. The main
motivation of such a choice is the triviality of the
Faddeev-Popov determinant as well as the possibility of
interpreting the quanta of the vector field as partons in
theories without spontaneous symmetry breaking.

A common feature of these gauges is the presence of
"spurious" singularities in the boson Feynman propagator
and thereby in all the perturbative Green's functions of
the theory. These singularities are related to the residual
gauge freedom, still present after the algebraic-gauge con-
dition is imposed.

In the spacelike case (n & 0) we have shown that this
residual gauge is directly connected to ihe spatial asymp-
totic behavior of the potentials and can be consistently
eliminated by imposing a specific boundary condition; as
a consequence the Dirac procedure can be performed to
accommodate redundant degrees of freedom and, more-
over, it turns out that the components of the vector poten-
tials cannot be assumed to vanish at spatial infinity,
preventing Euclidean compactification. Any choice of the
asymptotic behavior for the potentials gives rise to a
specific prescription for the spurious singularity in the
free boson propagator; in particular, the principal-value
prescription is very convenient to set up renormalized
Green's functions.

In the present paper we want to discuss the light-cone
choice n =0. As is known, this gauge turns out to be
useful in several apphcations, the latest one being in con-
nection with the quantization of the supersymmetric
Yang-Mills theories. '

Several approaches to quantization have appeared in
the literature, most of them dealing with light-cone vari-
ables. ' None of them has been able to derive in a con-
sistent way the expression for the boson propagator. In
addition the meaning and the treatment of the residual
gauge freedom have never been clearly understood. In
particular the use of Dirac brackets requires inversion of
the differential operator n B, but, as known from the
spacelike case, this point is quite subtle if only physical
degrees of freedom are present.

We shall show that the residual gauge freedom in this
case has a quite different meaning; in particular it cannot
(and does not have to) be eliminated, at variance with the
spacelike case, by means of boundary conditions.

As a matter of fact the residual gauge freedom mani-
fests itself at the quantum level in the presence of a
"ghost" field, propagating along a generating line of the
light cone. This picture, which directly follows from a
Hamiltonian canonical quantization, will lead unavoid-
ably to the well-defined prescription in handling the spuri-
ous singularity that was proposed in Refs. 7 and 10.

The space of states emerging from this treatment is an
indefinite-metric Hilbert space. It is possible to select a
physical subspace, stable under the Poincare-group gen-
erators, and with a positive-semidefinite metric, by impos-
ing in it the vanishing of the Gauss operator.

In Sec. II we develop the classical Hamiltonian formal-
ism; Sec. III is devoted to a detailed analysis of the quant-
ization of the radiation fields, leading to a well-defined
expression for the free boson propagator.

In Sec, IV we discuss the interacting case and prove the
equivalence with a Lagrangian path-integral formulation,
which, however, is unable by itself to provide a prescrip-
tion for, the spurious singularity.

Final comments are given in the conclusions (Sec. V),
while some technical developments are reported in the
Appendix.

II. HAMILTONIAN FORMULATION

We start from the Lagrangian density

,' G& G'"' g( —i9+m )tP— —

+gpss'r'g 1,'n "A„'—,
where

(2.1)

(2.2)

r' is a basis in the fundamental representation of the Lie
algebra of the internal-symmetry group, A,

' are Lagrange
multipliers, and n& is the lightlike vector (1, 0, 0, 1). Qur
metric tensor g„„ is (1, —1, —1, —1). The canonical
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moments are

am.o
——0,

n.aa U =0, (2.14)

m'; =60;, i =1,2, 3,
'fry= if/Jy

0 (2.3)

Pe= —(Go;G'; + —,G'I, O'I, )
2

and therefore the canonical Hamiltonian density becomes,
after an integration by parts,

U& being the "radiation" potentials, related to the radia-
tion fields by

(2.15)

From Eq. (2.11) it is immediate to realize that our system
possesses classica11y a residual gauge freedom involving
functions X' which do not depend on the variable
x =x+. We keep this freedom which entails the use of
a redundant number of canonical variables; we find indeed
canonical equal-time commutation relations between the
coordinates 2 and their conjugate momenta Go;,

—~o(D Go +gOyo&4)+g~ Oy r 0

+P(iykBk+m )g+k'n "A„', (2.4)

[A (t,x), GOJ(t, y)] =i5'"5~i5' '(x —y) . (2.16)

Fermionic degrees of freedom are treated in the standard
way.

D',"G""= n'A, '—+ger'y'P,

( if'+m )$—=0,
where

(2.6)

(2.7)

where

D~b 5+bd +gfacb~ c (2.5)

Following the standard Dirac procedure, "" we get the
equations of motion

III. THE FREE-FIELD ALGEBRA

In this section we are concerned with radiation fields
(g=0). It is convenient to perform a four-dimensional
Fourier transform of the equations of motion and of the
constraints,

(k"k'—g"'k ) U', (k) =n "A'(k),
(3.1)

n~U„'=0,

v„=a„—ige~„',
and the set of primary and secondary constraints

(2.8) where

U„'(x ) = fd k e' U„'(k),(2~)'" (3.2)

mo
——0, mg ——0,

D Go;+ger'yoP= V,
(2.9)

(2.10)
and A' are the Lagrange multipliers in the present case.
The Fourier transforms of Eqs. (2.12) and ( 2.14) are

(2.11)

n aX'=0, (2.12)

This set is clearly second class and therefore the Dirac
brackets can be defined in the usual way. At this stage we
remark that we have a dynamical system with a redun-
dant number of canonical degrees of freedom, namely, A

and G~o; (besides the fermion ones). In particular we no-
tice that Gauss's law [i.e., the vanishing of the left-hand
side of Eq. (2.10)] is not satisfied.

In the quantum treatment Gauss's law will be restored
by selecting a suitable subspace of the Hilbert space. In
this "physical" subspace the Poincare covariance is
recovered (see the Appendix).

From Eqs. (2.6), (2.7), (2.10), and (2.11) we derive the
equation for the I.agrange multipliers

n kA'(k)=0,

n kk. U'(k)=0 .

(3.3)

(3.4)

A'(k) =A'(k3, k)5(n k) =A'(k)5(n k),
ikU'(k) = U'(k3, k)5(n k) = U'(k)5(n k),

(3.5)

(3.6)

the i being introduced for convenience. Then we can
solve Eq. (3.1) and get

U~(k) = Tp(k)5(k )+nq ~
A'(k)

k, '
ik„" U'(k)5(n k), (3.7)

Equations (3.3) and (3.4) can easily be solved in terms of
two sets of independent distributions,

which does not contain the interaction even in the non-
Abelian case, at variance with the equation for 0"A& in
the covariant gauge.

From Eqs. (2.6) and (2.10) we also get

D'„n BAb "=gg&ttg, (2.13)

where kz ——k] +k2 an

n T'&=k~T„'=0.P (3.8)

which, in the "free" case (g =0), reduces to
We introduce the vectors e„'"= (0, 1,0,0) and e„'

' = (0,
0, 1,0). Then the polarization vectors
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npk +kpn(a)(I )
v P P' (a) yv (a)

V P

into components g+ and f'+ having support in the half-
space k3 ~ 0 with the conjugation properties

k =kp —k3 —k) ——kp —k =0, o.'=1,2,

(3.9) [g+(I )]'=g' «),
(f+(&)]*=f' (&) .

(3.17)

(a) p(P) gaP
P

We notice that, on shell (k =0),
(3.10)

1

n k

=p) kp+k3
kp —k3

(3.11)

The potentials Tz can be expanded on the basis e& ',

are orthogonal to n„and k& and satisfy the normalization
condition

Actually the decompositions (3.15) and (3.16) are rather
to be thought of as decompositions in frequencies owing to
the support condition ko ——k3, and this will have far-
reaching consequences in constructing the Hilbert space
of our system.

The equal-time commutation relations (2.16) entail the
commutators

[8"U„'(t, x), B;F();(t,y)] =i 6' )3) 5' '(x y),—
(3.18)

2
T„'+(k)= g-e„' '(k)t' +(k),-

a=1
(3.12) which is in turn realized by imposing on g+ and f+ the

algebra

g'(k) =k) A(k),

f'(k) =k ' U'(k)

which satisfy the conjugation properties

[g'(&)]*=g'( —k),

[f'«)]*=f'( —k) .

They can be decomposed as

(3.13)

(3.14)

and the frequencies can be quantized in the usual way.
For dimensional reasons it is useful to define the quanti-
ties

[g', (1 ),f'. (1 )]=+~"~")(I—1 ), (3.19)

all the other commutators vanishing. We define a vacu-
um state

~

0) as a state annihilated by all the negative-
frequency operators.

The "free" propagator is

D„',(x —y) = (0
~

T[U„'(x)U, (y)]
~
0), (3.20)

+ (0
~
T[I „'(x )I „(y)]

~
0), (3.21)

T being, as usual, the Dyson operator. According to the
decomposition (3.7) we get

Dp (x —y ) = &0
~

T[T„'(x) T'.(y)]
~

0)

g'(k) =8(k3)g+ (k)+8( —k3)g' ( —k)

f'(k) =i (8k)f3'+(k) i8( —k3—)f' ( —k),
(3.15)

(3.16)

with I „'(x) corresponding to the second and third terms in

Eq. (3.7). Cross terms vanish owing to the algebra (3.19).
The expansion (3.12) leads to

ab d k(0
~
T[T&(x)T~(0)]

~

0) = I g e„' '(k)e,' '(k) 8(xp)e ' +8( —xp)e
(2~)'

which represents th@ propagation of the transverse degrees of freedom. One can easily check that

2

ge„' '(k)e', '(It)= —g&, + " "(kp+k3)
a=1 kq

(3.22)

(3.23)

with kp ——
~

k
~

. We notice that, owing to the singularity k) in Eq. (3.23), the distribution in Eq. (3.22) has to be regular-
ized, e.g., by means of dimensional regularization.

For the second term in Eq. (3.21) the algebra (3.19) gives

gab y4k )kx

(0~ T[r„'(x)r'„(O)] ~O) = —i, J(2~)~ kp —k3+iesignk3
npk +n kp

k~ ko ——k3
(3.24)

e being, as usual, a positive quantity which eventually will tend to zero.
Again this distribution in four dimensions is ill defined owing to the k) singularity. Equation (3.22) can now be set

in the form
~ gab g4k ik x

(0
i
T[T„'(x)T (0)]

i
0) = I(2m) k +ie

np kv+ n vkp npgvO+ n vgpp—g„+ (kp+k3) — k
kq kq

(3.25)
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whereas the "longitudinal" part becomes

n~k +k„n nI gw+ vgpo(ko+k3)— (k +kq
kq k, ' (3.26)

N" d'k e'k"
(0

~
T[l „'(X)l ",(0)]

~

0) = —', f(2m) k +ki +ie
corresponding tp the prppagatipn of a "ghost" field along a generating line of the light cone, plus a contact term. Add-
ing the two Green's functions together as in Eq. (3.21), we get

g
gab d 4k ik.x

Dp (x)=
(2m-) k +iE

n„k +n k„
Rp,v+ (3.27)

where 1/n k is to be understood as the distribution

k, +k,
k +ki +l&

(3.28)

We note that Eq. (3.28) holds for our special choice n„=(1,0,0, 1); in general, if n& ——(no, n), no ——n, Eq. (3.28)
should be replaced by

npko+ n. k

(noko) (n k—) +ie
This prescription was proposed in Refs. 7 and 10. As a matter of fact, the product of distributions in Eq. (3.27) is well

defined and can be Wick rotated In pa. rticular no singularity arises at ki ——0 in internal lines, where there is no need of
infrared dimensional regularization at variance with previous treatments. '

It is worthwhile to notice that, from the decomposition in frequencies of the ghost field I z(x),

d kI '(x)= j 8(kp)Ie ' ' [n„k~'~ g+(k) —k„ki'~ f+(k)](2~)'" k '

+e ' [n k g' (k) —khaki'~ f' (k)]I, (3.29)

where ko ——k3, the one-ghost state components
A, '(k) =k~'~ [9(k3)y+(k)+&( —k3)y' ( —k)] (4.1)

[n„ki ~ g+(k) —k„ki'~ f+(k)]
~
0) (3.30)

/

have negative or vanishing norm. As we have anticipated,
the Hilbert space of the Fock states has an indefinite
metric. Vfe can consistently define a physical subspace
A

&
in the radiation case by imposing the condition

g'(k)(c)=o, v~e)em, . (3.31)

In the Appendix we show that this subspace is stable
under the Poincare algebra and has a positive-semidefinite
metric. The Gauss operator is zero in this subspace; in
particular its average value vanishes for any localized
physical state.

The unitarity sum, when restricted only to the physical
states, does exhibit a singularity ki coming from the
polarization sum in Eq (3.25). T. he "physical" wave
functions have therefore to be chosen in the subspace of
W of functions vanishing at ki =0. This subspace is
dense in L2 in the topology of L2

is still possible. However, at variance with the free-field
case, the algebra satisfied by the operators y+(k) is un-
known. Nevertheless, the very existence of a splitting
such as in Eq. (4.1) is by itself a sufficient condition
which allows in a general way to select a subspace of the
Hilbert space where Poincare covariance of the theory is
recovered, as explained in the sequel.

From the behavior of the Lagrangian density (2.1)
under infinitesimal Poincare transformations, taking the
equations of motion into account, it is possible to identify
as generators a set X(t) of operators (see the Appendix).

Owing to the noncovariant gauge choice, the equal-time
commutation relations of those operators do not realize
the usual Poincare algebra. In particular some of them
are not conserved in time. %'e can remedy this situation
by defining physical states as those belonging to a sub-
space Hz of the extended Hilbert space H characterized
by the condition

y'
) e) =o, v

~

e) eH, . (4.2)
IV. THE INTERACTING CASE

We notice that Eq. (2.12) holds also in the presence of
interaction. As a consequence a decomposition in fre-
quencies for A,

' analogous to the one in Eq. (3.15),

Vfe show in the Appendix that Hz is stable under the
elements of X(t). As a consequence their restrictions to
Hz are well defined and moreover they obey the usual
Poincare algebra.
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Now we can face the problem of the unitarity and co-
variance of the perturbative S matrix in this gauge; we
note, however, that the reasoning given below is of a for-
mal character since, strictly speaking, the perturbative
scattering matrix does not exist owing to the well-known
infrared problems.

It is worth emphasizing that the very same Eq. (2.12)
allows us to select in a simple way perturbative incoming
and outgoing physical states. To this aim we introduce
the generators

A,[a]= f d x A, '(O, x)a'(x),

exp(iHt)A [a]exp( —iHt)

—:A, [a,]= fd x A, '(O, x)a'(xq, x3 t)—,
exp(iHot )A[a]exp( iH—

O t )

(4.4)

=—A[a, ]= fd x A'(O, x)a'(x~, x3 t)—.

(4.5)

Now we give a formal argument' concerning the commu-
tation of the perturbative S matrix with A[a]. If we set

A[a] = fd'x A'(O, x)a'(x),
(4.3)

a' being suitable test functions. Owing to Eq. {2.12) we
have

EHot ~'H( t t ) lHot
It ~—oo

~+ oo

a straightforward calculation gives

(4.6)

lHot" —tH(t" —t') —rHOt' tHot" —l'H(t" —t') —tHOt

[S,A[a, ]]= lim Ie ' p[a, , ]e ' ' ' e —e e ' p[ar ~]e
t"~+ oo

{4.7)

where

p[a]=gf'b' fd x A; (O, k)GO;(O, x)a'(x) . (4.8)

If we take matrix elements of Eq. (4.7) between normal-
izable states, the limit on the right-hand side of Eq. (4.7)
should vanish, as those states are supposed to spread out
in their time evolution.

Therefore a perturbative physical Fock space A
&

can
be consistently defined by the condition

—U3~ Fo +4(&)'k'dk+I 4': (4.11)

the scope of this work. )
In the rest of this section we work in the interaction

picture. We split the Hamiltonian density of Eq. (2.4)
into a free part,

A' '[a, ] [ 4~ ) =0,
f @~ ) HA ~,

which is equivalent to

g' (k)
~ N~ ) =0 .

(4.9)

(4.10)

and an interaction part,

~s =: gUpf&r"0 —gf"UoU"F—o + &[UJ ]:
(4.12)

It is clear a fortiori that, following the general method
previously outlined and discussed in the Appendix, Poin-
care covariance of the physical space A z can be proven.
[In this case the free-field Lagrangian density has to be
used to define generators and symmetrized (or antisym-
metrized) products are replaced by normal products. ]
Moreover it can be explicitly checked that A z has a
positive-semidefinite inner product. As a consequence un-
itarity and covariance of the restriction of the perturbative
scattering matrix (pseudounitarity of the scattering matrix
in the full Hilbert space follows from Hermiticity of the
total Hamiltonian) to the physical subspace A ~ is proven,
i.e., "ghost" states do not enter in unitarity sums of physi-
cal transition amplitudes, and zero-norm physical states
do not contribute to physical probabilities. ' (The sub-
space H~ was just introduced in order to show that Poin-
care covariance can be recovered in a general way on a
purely algebraic basis. It is clear that to establish a pre-
cise relation between H& and A &

would entail the nonper-
turbative solution of the theory and is therefore beyond

U =U

where

V[U ]=—,g(B U„' —d„U')f'"'U Uk

+ &

g 2fabcf aPP Ub U c UP Uf (4.13)

We recall that we have only three independent poten-
tials. Therefore we introduce three external bosonic
sources J together with the fermionic sources g and q
and set

~-t = J'U" —n4 A—= ——~-c

The generating functional is given by

z[J,",n, v]=(& &mp —i fd x(~ +a .„,) 0) .

(4.15)

A standard calculation leads to the expression
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Z[J,g, q]=exp —i fd x(V[Uq] —,'g—f"UkUO f'~Uf Uqo+gf' 'FokUkUO+ggy"v QU~)

0 Texp i d x J"U,'+ g+g 0 (4.16)

where

Uk ——,Uo
6, 6

i5J' i5J' (4.17a)

F' =8 —8—ok 0 .5Jg k k .5Jg 3

6
i5g

It is known that the boson free functional
r

Zo ——0 Texp i d xJ"U 0

(4.17b)

(4.17c)

(4.18)

is equal to

Zo=exp —f d x fd y J (x)D'~(x y)JJ'(y)—,
2

where D'J are the space components of the propagator in Eq. (3.27). An easy calculation shows that

Zo=~ ' fd[A ]exp i fd x[A (x)KJAJ'(x)+A J"] (4.20)

where

K;~ = —,
'

[ U5,J 8; d—J +B—o( n; BJ + n~ d; ) —n; nJ5] .

Equation (4.20) can be set in a covariant notation

' fd[A&]5(n A)exp i fd x( —4F&~F'&"+A„'J—'I")

if we make the substitution

J' ~J' J3~JO —J3

Then Eq. (4.16) becomes

Z[J„',ri,T1]=~ ' fd[A„',A;, g, f]exp i fd x(W+W, „,)

(4.21)

(4.22)

(4.23)

(4.24)

It is useful to remark that the free generating functional
can be explicitly exhibited as a Gaussian functional of the
external currents either using external sources coupled
only to the three independent degrees of freedom, or by
coupling external sources also to the fourth component of
the potential and to a Lagrange multiplier associated to
the gauge condition (see, for instance, Ref. 2).

V. CONCLUSIONS

In this paper we have given a complete and consistent
Hamiltonian treatment of non-Abelian theories in the
light-cone gauge. By this method we derive the light-cone
prescription (3.28) previously proposed in Refs. 7—10; in
particular we show that the prescription (3.28) follows
directly from the correct quantization of the theory and
an understanding of the structure of the perturbative Hil-

bert space of the states, which turns out to be of indefinite
metric. Gauss's law, Poincare covariance, and unitarity of
the perturbative S matrix are recovered in a subspace with
positive-semidefinite metric, i.e., in a weak sense.

The next problem to solve is to perform the renormali-
zation of the theory and derive the generalized Ward iden-
tities. Some preliminary work in this direction has al-
ready appeared. ' A direct computation of the divergent
bosonic part of the self-energy tensor at the second order
(we agree with some technical calculations given in Ref.
10) exhibits terms with a structure different from the ones
in the original Lagrangian, thereby preventing a simple
multiplicative renormalization. In addition a nonlocal
term arises, which, however, is harmless being multiplied
by n&n (Ref. 10).

Then a procedure quite analogous to the one of Ref. 5
in the spacelike planar case seems possible. The problem
is actua11y under investigation and the results wi11 be re-
ported elsewhere.
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APPENDIX

[P",P'] =0,
t Pp, J;]=c,jqnj fd3x 1,'A'",

[Pp,K;] =P; —fd'x A,'(5;, n;—nj)Ag,

[P;,K~ ] 5,J—Pp,

(A9a)

(A9b)

(A9c)

(A9d)

(A9e)

Ga, ptGa, v& pvG+ G+ + pvGa 6&

A'"A—,'n" d~(G—'& A'") (A 1)

and the angular momentum tensor

We give in this appendix the explicit expressions for the
generators of the Poincare transformations, disregarding
the ferrnionic fields, in order to avoid writing complexities
unessential in the context of the sequel. We show as well
that those operators leave invariant the physical Hilbert
space Hz defined in (4.4) and that they there realize the
Poincare algebra.

We start from the classical expression for the energy-
momentum tensor

((J;,~, ] =&,.kJk

j J;,KJ j =e,~p Kg +E;„~ng fd x xjAq~V,

[K;,KJ j = e—,jhJg

+ fd x[x;(5p, njn—h)

—xj(5;~ n;—n~ )]A(A,' .

(A9g)

(A9h)

Clearly in the space of the physical classical solutions
of the equations of motion characterized by Gauss's. law
I,'=0, we see that (A9a) —(A9h) realize the Poincare alge-
bra.

When we pass to the quantum theory, we understand
that all the (fermionic) bosonic products are (anti) sym-
metrized, so that the Dirac brackets in (A9a)—(A9h) can
be replaced by operator (anti) commutators.

Let us introduce now [see (4.1)]

(A2)

which are obtained in the standard way using the equa-
tions of motion and the transformation properties of the
potentials under the Poincare group. As expected we have

(A10)

where we have set kp =k3 thanks to Eq. (2.12). We have,
taking Eq. (2.12) into account,

and

(A3) [A,+(x),Pp] =i Bqk'+(x),

[A+(x),J;(0)]=i eJkx&BkA'+(x),

(A 1 la)

(A 1 lb)

8 ~""~=A;(n"A'~ n~A' )— (A4) [A, +(x),KJ (0)]= —i(xpBJ xJBp)A—'+(x)+inj A'+(x) .

the extra term in the last equation is due to the Lorentz-
noninvariant gauge-fixing term in (2.1).

We deduce then, again at a classical level, the genera-
tors of the Poincare transformations, namely,

Pp=—fd x Tpp

= fd x( —,Gp;Gp;+ , G,JGPj nJA—J'D Gp()—, (A5)

P& = fd x T&p= fd x Gp&B& AJ '(A6)
J;=———,'e;.k d xW J3 0Ic

=e"k fd x(xJGp~B"Af, +A'"O' J) (A7)

(A 1 1c)

It follows that all the generators of the Poincare group
are physical, i.e., they map H~ onto itself, so that their re-
strictions to Hz can be defined. Moreover between any
couple of physical states

~
4),

~

4') we have

(N'
~

—,[I,'(x)AJ'(x)+AJ'(x)A, '(x)]
~

@)

+[A'(x), A,
' (x)]

~
@)

d3 Dq @p
(2n) n

e;Jk being the completely antisymmetric tensor with in-
dices running from 1 to 3,

Kg —Jd x~p;p since n-= —6.3 andJ J

(A12)

=xpP; —fd x x;( 'GpkGpk+ ,' G~GJ —nkAkA;) —.—

(AS)

Using the appropriate Dirac brackets, for the couples A,
Gp;, and the identities (2.10) and (2.11), we find

[A'(x), A, (xp, y)]= iD' (x) —e'~'" "'8(+q3) .d 9 i (x— )

%'hen we consider the matrix elements in the physical
subspace of the quantum version of Eqs. (A9), we easily
verify that the Poincare algebra is recovered in H& [up to
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(A13)

a regularization of the infinite c number appearing in Eq.
(A12)].

%'e conclude remarking that the color charge operators

Q~= fd3xgf~t At'G

leave the physical subspace H~ invariant as we have

[Q', A, +(x)]=if' 'A'+(x) . (A14)
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