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Baker-Campbell-Hausdorff relations and unitarity of SU(2) and SU(1,1) squeeze operators
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For squeeze operators, an alternative to the matrix derivations of Baker-Campbell-Hausdorff rela-
tions is presented for the groups SU(2) and SU(1,1). The technique involves the solution of a system
of nonlinear, first-order differential equations. By this method, criteria for unitarity of the represen-
tations are established, and these apply to both infinite- and to finite-dimensional representations of
these groups.

In a recent paper, Fisher, Nieto, and Sandberg' offer a
proof for the Baker-Campbell-Hausdorff (BCH) relation
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where the C,J are structure constants. We can obtain the
group G, or one of its subgroups, by exponentiating ele-
ments of the Lie algebra. Two common parametriza-
tions which are used are

where S(z) is the unitary squeeze operator for squeeze
states, z =re' is a complex number, and a and a are the
usual harmonic-oscillator raising and lowering operators.
Gilmore gives a similar derivation for real z. These
operators arise in diverse areas of physics; in the
quantum-optics literature they are referred to as "two-
photon operators, " whereas in the gravitational-wave-
detection literature they are called squeeze operators. '

Although the operator (la) is unitary, it is not clear that
(lb) should be unitary, since one of the intermediary steps
in the proof involved a nonunitary 2&&2 matrix. The
reason for the nonunitary character of the finite-
dimensional matrix, in this case, is that the operators
I + ———,a a, L =—2aa, and I.o ———,a a+ 4 form a reali-
zation of the SU(l, l) Lie algebra. It is well known that
all unitary representations of SU(1,1) are infinite dimen-
sional. Because of this, the unitary character of (lb) can-
not be checked by matrix methods, unlike its compact
counterpart, SU(2). The fact that no pathology results
from the matrix derivation is perhaps surprising. Howev-
er, the form of the BCH formulas for SU(1,1) is purely a
consequence of the algebraic structure of su(l, l). The
question of unitarity is an analytic one. Below we present
an interesting alternative development of (1) and other
more general BCH formulas for both SU(l, l) and SU(2)
to illustrate the technique. Then we derive the necessary
and sufficient conditions for the BCH relations on these
groups to be unitary.

To begin, let us briefly sketch, in general terms, what
we mean by a BCH formula. Let 6 be a connected Lie
group with Lie algebra S spanned by a set of generators
[ LJ, j= 1, . . . , n [, where n is the dimension of the Lie
algebra. The generators satisfy the commutation relations

or

U2(P)= / exp(PJL ), (4)

exp(X)exp( Y)

=exp[X+ Y+ —,[X,Y]
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For many groups, the series on the right in Eq. (5) is non-
terminating and convergence to a recognizable form is not
always obvious. To get around this problem, a technique
exploiting finite-dimensional matrix representations of the
algebra S has been used (see, for example, Ref. 3). As
has been mentioned in the preceding paragraph, this
second method is not always free of potential difficulties.
We present a third way of tackling the calculation by il-
lustrating it for SU(2) and SU(1,1).

Let us define the structure of these two Lie algebras ac-
3(a)

cording to Barut,

where the parameters aj or /3~ may be real or complex.
The parameters a in (3) are called canonical coordinates
of the first kind; in (4), the P are referred to as canonical
coordinates of the second kind. Other noncanonical
parametrizations are possible. BCH formulas express
analytical and algebraic relationships interrelating these
different parametrization schemes of G. For example, '

if X, Y are elements in 8, we have a general expression
for a BCH formula
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[L,L+ ]=2eL p, [Lp, L+ ]=+L+,
where e=+1 for su(1, 1) and e= —1 for su(2). We have
the additional constraint that Lo is self-adjoint but L+
and L are adjoints, i.e.,

Po
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(L ) =L+, (Lo) =Lp.
Now, we can define a representation of SU(1,1) or SU(2)
in the following way: po +2E7pp =l cx (15)

with initial conditions pj(0) =0, j=0,1,2. Substituting
(14a) into (14b), we obtain

U~(A. ) =exp[A(rL+ rL —+iaLO)], U~(0) =I, (8) Together, Eqs. (14a), (14c), and (15) imply

where A, is a real parameter and I is the identity operator.
The parameters (r,a) are canonical coordinates of the
first kind, where r is complex and a is real. Such a repre-
sentation is unitary, for it is easy to check that
U~ (2)= U& '(A, ). We can choose a second representation

Uz(A) =exp[pz(A)L+ ]exp[po(A )Lo]exp[p& (A )L —] (9)

subject to the constraint Uq(0) =I, that is, pj (0)=0,
j=0, 1,2. The parameters (p~,po,pz) are canonical coor-
dinates of the second kind. Note that the exponentials in
(9) may be chosen in other orders as desired.

For what choice of the pj(A, ) will U&(A, ) = Uq(A, )? To
determine this we make use of a simple extension of some
of the ideas of Wei and Norman as elaborated by Wil-
cox. Differentiating (8) and (9), and requiring that'

U~(A, )=Uz(k), wehave

pp —l cxpp+6'vpp (16)

u (A. ) =Ae' cosh(o, b,,A, )—
2o.,h,

sinh(o. ,h,i.)

a Riccati equation for pz(A. ). If we can solve (16) then
po(A, ) will follow from (15) and p& from (14a).

To solve (16) we use a method described by Ince. 9

Making the substitutions, first pq
——y/er, y(0)=0, then

y=u'/u, u'(0)=0, we transform (16) into the second-
order, ordinary differential equation,

u" —iau' —e
~

r ~u =0,
with constant coefficients. Subject to the initial condi-
tions this equation has the solution
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where 3 is a constant of integration and
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where primes indicate differentiation with respect to A, .
Multiplying from the right by
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Therefore, we get for pz(A, ) the expression
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From the well-known theorem '

e Be =B+[A,B]+—[A [A B]]+1

2!
(12)

We identify the coefficients of the respective basis ele-
ments of the Lie algebra and obtain a system of coupled
nonlinear equations,

and the commutation relations (6), we obtain

rL+ rL +E'aLO ——[p ~—e ']L + [pp 2ep 1p&e 1Lo

+ [pz popz+&ptpz e 1L—+

(13)

It is important to note, at this juncture, that the solu-
tion (19) to the Riccati equation (16) is an interesting ex-
ample of the nonlinear superposition rule discussed by
Anderson, Harnad, and Winternitz. ' Although our solu-
tion was obtained directly, their nonlinear superposition
principles for systems of first-order ordinary differential
equations will be instrumental in finding BCH relations
for higher-dimensional groups such as SL(n, .m) and
O(p, 6 ).

For notational reasons, it is simpler to treat the two
cases SU(2) and SU(1,1) separately. If e= —1 [SU(2)],
then b. =8 =

~

r
~
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~
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and a are real,
and cr,=i. On the other hand, if e= + 1 [SU(1,1)],
then b,
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(19) for pz(A, ) reduces to the following:
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(i) SU(2)

r sin(N, )

8 cos(N, ) —(ia/2)sin(8A, )

(ii) SU(1,1)

po(g) = —2 ln cosh(o~pA, ) — sinh(cry', )
2po

(21b)

(ii) SU(1,1)

Pz (A)
r sinh(~pk)

op cosh(o~pA, ) —(ia/2)sinh(o pi, )
(20b)

With the appropriate po(A, ) from (21), we can integrate
the differential equation (14a) to get the following:

(i) SU(2)

Equations (20) still hold when p =8=0 as can be checked
by taking the limit in each case.

Substituting (20) into Eq. (15) for po and integrating, "
we obtain the following expressions:

(i) SU(2)

—r sin(N, )
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(ii) SU(1,1)
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(22b)

po(~)= —2 ln cos(W. ) — sin(M, )8 (21a) To obtain the BCH formulas, choose A, =1. We include
here some special cases:

(i) SU(2)

exp(rL+:rL ) =exp tan
f

r
/

L+ exp[ —2(ln cos
f
~

f
)L ]exp (23a)

exp(rL+ rL )exp(iaL—o) =exp tan
J
r

/
L+ exp[(ia —2 ln cos

/

r
f
)Lo]exp

Ve
tan fr/ L

(ii) SU(1,1)

(24a)

exp(rL+ rL ) =exp— tanh
f

r
/

L+ exp[ —2(ln cosh
/

r
f

)Lo]exp tanh~r~ L (23b)

exp(rL+ rL )exp(iaLO) —=exp 7 7e'
tanh

/

r
/

L+ exp[(ia —2 ln cosh
f
r

[ )Lo]exp — tanh
/

r
/

L

(24b)

Note that (23b) is exactly the identity (1) where r= re' . The BCH formulas for SU(2) can be compared to those of Gil-
more, keeping in mind the presence of the imaginary factor i in his exponents.

Finally, we wish to establish the necessary and sufficient conditions that the BCH relation between (8) and (9) in the
form of (20), (21), and (22) preserves unitarity. Clearly a necessary condition is that U& is unitary since we have
U2 ——U~ ——UI ' ——U2 '. But is it sufficient. One can ask under what conditions the following will hold:

U2 '(~)=exp[ —pi(A)L —]exp[ —po(k)LD]exp[ —p2(~)L+]

=exp[@2(k)L+ ]exp[po(A, )Lolexp[p((A )L .]= U2(A, ) . (25)

To answer this let us proceed more generally. What relationship must exist between the parameters qj(A, ) and rz(A, ),
j =0, 1,2, such that

exp[ A(rL+:rL +—iaLO ) ]= exp[q2(A, )L+ ]exp[qp(A, )Lp]exp[q ~ (A, )L ]
=exp[r I (A, )L ]exp[ro(A, )LO]exp[r2(A, )L+ ] (26)
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subject to the constraint that qj(0)=rI(0)=0, j=0,1,2,?
Repeating the analysis above, we get the systems of non-
linear equations

where the constant of integration vanishes because of ini-
tial conditions. Consistency between (27a) and (28b) along
with (31b) implies
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Equations (31) are the requirements then for the second
equality to hold in Eq. (26). But these are satisfied identi-
cally in (25) and U2 '(k)=Uz(A, ) and U2 is unitary.
This result is independent of e, that is, whether the group
is SU(1,1) or SU(2) and whether the representations are
finite or infinite dimensional.

Upon reflection it is a remarkable fact that, for SU(1,1),
the same BCH formula can be computed utilizing any
faithful 2X2 matrix realization of its Lie algebra. Al-
though matrix methods may have some computational ad-
vantages over solving a system of first-order, nonlinear
differential equations, the former leaves unanswered, in
certain instances, analytical questions such as unitarity for
infinite-dimensional representations. The technique of
differential equations is ideally suited for checking such
requirements and can be applied to any Lie group. For
higher-dimensional groups, the nonlinear superposition
principles of Anderson et al. ' will play an important
role in writing down the general solution to the system of
first-order ordinary differential equations obtained in the
analysis.
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