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Matter and radiation in equilibrium
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The Rayleigh-Jeans law and the Jiittner (relativistic Maxwell-Boltzmann) distribution are shown
to be compatible in equilibrium, to order P =(v/c), for the case of the Einstein-Hopf oscillator.
The derivation of the matter distribution from the radiation law is thus consistent with the well-

defined formulation of relativistic theories of interacting particles, in this approximation. One may
formally define a temperature transformation law (admissible according to general Lorentz transfor-
mation requirements) such that the Rayleigh-Jeans law holds; however, a consistent classical relativ-
istic statistical mechanics, and hence relativistic thermodynamics, of interacting particles is present-

ly lacking.

I. INTRODUCTION

The question of the appropriate matter and radiation
distributions for systems in equilibrium still appears to be
unresolved, despite the early progress in blackbody radia-
tion theory. Thus, for an assumed Maxwell-Boltzmann
(nonrelativistic) distribution, the Rayleigh-Jeans radiation
law is consistent with it, in equilibrium. On the other
hand, the same type of classical electrodynamic calcula-
tion with random radiation background does not seem to
lead to compatible results when at least one of the systems
has a relativistic distribution; that is, the Jiittner distribu-
tion (relativistic Maxwell-Boltzmann) and the Rayleigh-
Jeans or Planck radiation law do not seem to be able to
coexist in equilibrium. Of course, one must bear in mind
that such a situation would only arise strictly with
(asymptotically) free particles (with and without mass), so
the questions might be deferred until a suitable relativistic
statistical mechanics of interacting particles is devised.
In response to Boyer, Blanco, Pesquera, and Santos argue
that for multiperiodic systems in which one considers the
random radiation as a perturbation, there is no disagree-
ment between the co-existence of the Rayleigh-Jeans law
and the Juttner distributiori in equilibrium. Earlier work
has taken exception to the possibility of incompatibility
between the Planck distribution and the relativistic parti-
cle distribution. Recent papers by Boyer, invoking the
equivalence principle, support the idea of a specific
acceleration-dependent Planckian distribution in equilibri-
um with relativistic matter, when zero-point radiation and
accelerated frames are involved.

In the present paper we show that to order (v/c) there
is no disagreement between Rayleigh-Jeans law and the
Juttner distribution. Thus, at least to an approximation
for which a relativistic mechanics and relativistic statisti-
cal mechanics of interacting particles are well defined,
the expected result follows. This does not mean that a
statistical mechanics of interacting relativistic matter and
radiation can or cannot be thought to exist rigorously in
equilibrium. Present ambiguity with regard to relativistic
transformation of thermodynamic quantities is noted,
with particular attention paid to the temperature' occur-
ring in the Rayleigh-Jeans law.

II. EQUILIBRIUM FOR MATTER AND RADIATION

The system chosen is that of Einstein and Hopf, ' who
associated a nonrelativistic particle distribution with the
Rayleigh-Jeans law', the addition of zero-point energy'
shows that the Planck radiation law can be made compati-
ble with a nonrelativistic particle model, but such may not
be the case for a relativistic particle distribution. Howev-
er, it is not to be expected that the Rayleigh-Jeans distri-
bution will be exactly compatible with a relativistic parti-
cle since equipartition does not hold for relativistic parti-
cles.

From the virial'
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Thus, already from the assumed form
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Since the spectral energy density associated with a fre-
quency co is

p(ro)=(ro /sr c )(Ei), (4)

Tk ——(h v/k) [exp(h v/kT ) —1]

where also, for a particle distribution of matter, '
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where (,E; ) is the average energy per normal mode, the
Rayleigh-Jeans law does riot follow strictly. We shall see
later that there is an approximate sense in which agree-
ment can be said to exist.

To see more explicitly the problem posed by the relativ-
istic case, we ask whether a "temperature" can be defined
consistently, such that a gas of "free" particles can coexist
in equilibrium with radiation. Define a kinetic tempera-
ture Tk by
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The right-hand side of Eq. (6) follows from the analysis of
the average energy for a particle in a Juttner distribution.
The K functions are modified Bessel functions. However,
in the relativistic regime, Eqs. (5) and (6) lead to incon-
sistency, although in the nonrelativistic regime kT &&mc
and kT «hv, the equipartition limit is defined and the
equilibrium temperature T and the kinetic temperature
TI, are the same.

The incompatibility of the Juttner and radiation distri-
butions may have roots in other directions as well. The
assumption of a Lorentz-invariant zero-point energy
should be compared with the requirement' '

n'Iv' =nlv

general considerations, allowing other relativistic thermo-
dynamic formulations, as derived from statistical mechan-
ics' ' ' should be examined here. There will be a discus-
sion of the latter later in the paper.

III. EQUILIBRIUM WITH FOKKER-PLANCK
EQUATION

Further, thus, we follow the procedure of Boyer, to see
whether consistency may be obtained in the case where
distributions are involved in a kinetic equation context.
The conuergent P -relativistic kinetic equation which is ex-
act to order in the coupling constant squared, for a Ham-
iltonian of the form

which may be cast in the form

v'IT'=v/T . (8)

H;„,= g H,J. (p;, p, r; ),
I (J

(10)

Above, the n, v, and T are the photon density, frequency,
and temperature, respectively, and the primed quantities
refer to a transformed frame of reference. Thus the
frame-independent isotropy of zero-point radiation should
be examined with the temperature form required by (8),
and by the (anisotropic) Doppler shift, ' namely,

T'(9') =T(1 U lc )—'~ [1—(U/c)cos8']

While zero-point motion is permitted in Boyer s formu-
lation, ' observable effects due to velocity-dependent
forces are not, since otherwise an anisotropy could be in-
duced at absolute zero. Note that the walls and their ef-
fects on isotropy, though ingeniously treated by Boyer,
should really have more explicit justification. Also, more

I

has been given in Ref. 21. (For a charged gas the explicit
forms for the coefficients in the kinetic equation ..have
been investigated ' and the divergences typically associat-
ed with the long-range Coulomb force and the point-
particle limit are cancelled; it is important to recognize
that the cutoffs traditionally associated with the Fokker-
Planck equation do not give any formal difficulty in this
case. )

Starting with the equilibrium condition for the
Fokker-Planck equation (see the Appendix)

&(p)F (p)—+ [P(p)—(&'(p))]=0,
2 Bp

where
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Equation (11) may be written in the form
r

&(p)F„(p)+ ' &(p)F„(p)
Bp c p

F„(p)
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(13)

(14)

&(p)F„(p)
p

F (p)
CkT

where p =mcyP and C is defined as I'coo Ic. The formal
solution of (14) is given as

~
F„(p)

~

((CkTmcy/p, (16)

In (14) and (15) it is important to note that in fact the dis-
tribution is independent of the damping constant.

In the event that

=E exp
C ftlC P

p

c dp

F( )x p
CkT

(15)
then, ignoring the linear F„(p) terms in both brackets,

P(p)=NexpI —mc [1+(plmc) ]'~ IkTI .

Thus the Juttner result follows under these circumstances.
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, CkT—/3 .

In dropping the latter term, Eq. (15) becomes

(18)

The inconsistency between the Rayleigh-Jeans law and the
Juttner distribution is, to the extent of the above approxi-
mation, resolved. However, to establish this, we must in-
vestigate further Eq. (12), in terms of a velocity expan-
sion.

Expanding (12) and retaining terms of order /3, since
relativistic corrections are at least of this order,

F„(p)= —
5 Ck T(/3+ —,

' P + . . )

as P~O [note agreement with Eq. (18)]. Therefore, the
Rayleigh-Jeans law emerges in the nonrelativistic limit;
Eq. (20) also sustains a generalized Rayleigh-Jeans form.

Equation (21) satisfies the criterion of being an even
function of P.' Thus it is admissible as a temperature
transformation law, although it is possibly an inelegant
candidate when one is considering the foundations of a
rigorously relativistic statistical mechanics; however, in
comparison to the present problem, Marshall, for exam-
ple, argues for the transformation

(23)

—P(p) , CkT =—K'exp —J [1+(p /me) ]'~ (19)

IV. TEMPERATURE TRANSFORMATION

Finally we ask the question as to whether a redefinition
of temperature under Lorentz transformation might cir-
cumvent the problem of consistency, in general, between
rigorously relativistic distributions for matter and radia-
tion, in equilibrium. We reject the idea of different
transformations for matter and radiation, since, although
it is possible to do this in a Lorentz-invariant way in each
case, the concept of equilibrium (zeroth law) becomes
frame-dependent. '

For instance, if one sets, from Eq. (12),

I coo
F„'(p') = —— /3kT',

5 cy
where

(20)
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which leads to (17). The neglect of terms of order /3 and
retention of terms of order /3 is consistent with the pro-
cedure with relativistic theories, both quantal and clas-
sical, ' ' considered elsewhere. Of course, on the right-
hand side of (19) one would consistently expand the rela-
tivistic kinetic energy, retaining terms of order /3. [It
would not be incorrect formally to use (18) to all orders
for free particles, but then, (15) will give a P(p) different
from the Juttner distribution. It is important also to note
that, while time-delay effects enter in order /3, Cerenkov
poles are of lower order (P ) and so these radiation effects
are subsumed (see the first paper in Ref. 12).]

From Eqs. (7) or (8) it is not explicit how the temperature
of the relativistic distribution transforms. For example,
an assumed isotropy of the cosmic blackbody background
radiation would result in T transforming [see Eq. (8)] ac-
cording to

T'= T[(1—/3) l(1+/3)]' (24)

V. CONCLUSION

The view is taken that there is still disagreement be-
tween radiation and matter distributions in equilibrium,
from relativistic analysis of the Einstein-Hopf oscillator.
Assuming the equilibrium condition leads to consistency
to order /3, but, for higher orders, this may not be the
case. Analyses of multiperiodic systems, as given recent-
ly, possibly do not reflect properly the sensitivity of the
Lorentz and Lorentz-Dirac equat&ons to initial condi-
tions, since the system may respond in a chaotic way even
under the effect of a small stochastic perturbation. In ad-
dition, a fundamental basis for the relativistic statistical
mechanics of interacting particles has not been given.

ACKNOWLEDGMENTS

An analogy of the zero-point blackbody radiation with the
cosmic blackbody background radiation suggests itself in
the present context. On the other hand, the transforma-
tion (24) is not even, ' although neither is the form which
determines anisotropy in the blackbody radiation, namely,
Eq. (9).

If T is assumed to be a Lorentz scalar (and v is not)
then the reason for the disagreement of the Rayleigh-
Jeans and Juttner distributions is clear [from Eq. (8)]. On
the other hand, Eq. (20) is even in P and will give the for-
mal appearance of the Rayleigh- Jeans law in every
Lorentz frame, but the transformation law is complicated.
Of course, the last statement is predicated on the estab-
lishment of a consistent relativistic thermodynamics and
statistical mechanics of interacting particles. ' '
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Havas for comments on the present manuscript.

APPENDIX

Assuming a function R(p ), which goes to zero sufficiently rapidly as p —++ oo, but is otherwise arbitrary, define the
integral
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I dp'R(p') p p ' = lim f dp'R(p')[P(p ~p', t+b, t) P—(p ~p', t)]r)P(p p' t) . 1
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where the Markoff assumption has been made. Expanding in a Taylor's series about p", and assuming that only first
and second moments are proportional to ht,

f dp'R(p") = I dp"P(p ip", t)[R'(p")A(p")+ ', R "(—p")B(p")] . (A2)

Partial integration then leads to

J dp'R(p') +,(AP) —
2
—(BP) =0 .aP a 1 a'

Bp 2 Qp
(A3)

The quantity in brackets vanishes and, in equilibrium, the condition (11) follows. Explicit forms, for a charged gas, have
been given for 3 and B.'

*On sabbatical during academic year 1983—84.
M. Born, Atomic Physics (Hafner, New York, 1966).

~T. H. Boyer, Phys. Rev. A 20, 1246 (1979); Phys. Rev. D 19,
1112 (1979).

3P. Havas, in Statistical Mechanics of Equilibrium and 1Von-

equilibrium, edited by J. Meixner (North-Holland, Amster-
dam, 1965).

4R. Blanco, L. Pesquera, and E. Santos, Phys. Rev. D 27, 1254
(1983);29, 2240 (1984).

5U. Ben-Ya'acov, Phys. Rev. D 23, 1441 (1981); C. H. Braden,
R. F. Fox, and H. A. Gersch, ibid. 23, 1455 (1981);A. Peres,
ibid. 23, 1458 (1981).

T. H. Boyer, Phys. Rev. D 29, 1089 (1984); 29, 1096 (1984).
7F. Coester and P. Havas, Phys. Rev. D 14, 2556 (1976).
8T. Dengler and J. Krizan, Phys. Rev. A 2, 2388 (1970).
J. E. Krizan, Phys. Rev. Lett. 21, 1162 (1968).
H. W. Woodcock and P. Havas, Phys. Rev. D 6, 3422 (1972).
J. Stachel and P. Havas, Phys. Rev. D 13, 1589 (1976).
J. Krizan, Phys. Rev. D 22, 3017 (1980); Phys. Rev. 177, 376
(1968); Phys. Rev. A 10, 298 (1974).
J. Krizan, Phys. Lett. 71A, 174 (1979). Belated thanks to A.
Lightman for comments on this paper.
A. Einstein and L. Hopf, Ann. Phys. (Leipzig) 33, 1105 (1910).

~5T. H. Boyer, Phys. Rev. 182, 1374 (1969); see also Ref. 21.
tsW. Pauli, Theory of Relatiuity (Pergamon, London, 1958).
~7See, for example, J. L. Synge, The Relativistic Gas (North-

Holland, Amsterdam, 1957), p. 64.
P. J. E. Peebles and D. T. Wilkinson, Phys. Rev. 174, 2168
(1968).

9R. Balescu, Physica 40, 309 (1968).
J. E. Krizan, Found. Phys. 9, 695 (1979). Here a stochastic
model was considered in deriving the Lorentz and Lorentz-
Dirac equations [the Einstein-Hopf oscillator is assumed to
obey these equations (Ref. 15)] from an approach involving
only (point) particle degrees of freedom. Zero-point difficul-
ties are avoided in this formulation: the requirement of the
vanishing of the mean acceleration when external forces are
zero leads to avoidance of self-accelerated solutions; with
external forces present, the runaway solutions are also avoid-
ed.
J. E. Krizan, Phys. Rev. 140, A1155 (1965); 152 1366 (1966).
T. W. Marshall, Proc. Cambridge Philos Soc. 61, 537 (1965).
In the context of the wall problem (see p. 5) compare also T.
%. Marshall, Phys. Rev. D 24, 1509 (1981), as well as refer-
ences in the present paper's Ref. 4.
V. H. Hamity, Phys. Rev. 187, 1745 (1968).


