
PHYSICAL REVIEW D VOLUME 31, NUMBER 8 15 APRIL 1985

Restoration of spontaneously broken continuous symmetries in de Sitter spacetime
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We formulate a functional approach to scalar quantum field theory in (n+1)-dimensional
de Sitter spacetime and solve the functional Schrodinger equation for the conformally and minimal-

ly coupled scalar fields in both the k=O and k=1 gauges. We show that there is a natural initial

condition, the requirement that the field energy remain finite as the scale factor a becomes small,
which specifies a unique, time-dependent, de Sitter vacuum state. This initial condition is closely re-

lated to Hawking's prescription of including in the functional integral only those field configurations
which are regular on the Euclidean section. The Green s functions constructed using this initial con-
dition are explicitly shown to be the analytic continuation of those derived using the Euclidean
path-integral formalism and the regularity (boundary) condition. These Green s functions are used

to study the Hawking effect and the restoration of continuous symmetries. In particular we study
the restoration of a broken O(2) symmetry of a N" theory. We argue that spontaneously broken con-
tinuous symmetries are always dynamically restored in de Sitter spacetime.

I. INTRODUCTION

Quantum field theory in nontrivial backgrounds has
served as a particularly useful semiclassical approxima-
tion to the quantum theory of gravity. Scalar field theory
in de Sitter space is a system that has come under much
scrutiny, not only because de Sitter space is a space of
high symmetry, and hence exact solutions for the free
field theory can be written down, but also because it is a
space of constant nonzero curvature, and thus field theory
in a de Sitter background is not a trivial rewriting of Min-
kowski field theory. In this paper we will study scalar
quantum field theory in a de Sitter background in some
detail. We shall be particularly interested in the vacuum
state.

The main purpose of this paper is to clarify issues
relevant to scalar field theory in de Sitter spacetime by
constructing and studying in some detail the functional
Schrodinger equation. A major part of our discussion will
be devoted to the question of the correct boundary condi-
tions for quantum fields in de Sitter space. The specifica-
tion of these boundary conditions is far from trivial. ' In
fact, some authors have suggested that the vacuum of
field theory in de Sitter space depends on a parameter
whose value is determined by an "extra" requirement.
We will show that this is not the case, in both de Sitter
and Minkowski space if a sensible boundary/initial condi-
tion is used to specify the state. We suggest the following
physically quite natural initial condition: In spatially flat
coordinates, the wave function should tend to the wave
function of the Minkowski vacuum as t~ —ao. Remark-
ably, this boundary condition is equivalent to the condi-
tion of regularity on the Euclidean section introduced by
Hawking. ' Much of our analysis will be devoted to an ex-
plicit demonstration of this equivalence.

A recurring theme in attempts to study the quantiza-
tion of gravity (particularly at the semiclassical level) has
been the connection between quantum field theory in cer-
tain nontrivial gravitational backgrounds and at finite
temperature. This connection is suggested by the periodi-
city in imaginary time of the Green s function in the grav-
itational background, or by the relation, usually ascribed
to systems in thermal equilibrium, satisfied by the Bogo-
liubov coefficients between basis states at different times.
The archetypical example of this phenomenon is the
thermal spectrum of Hawking radiation found when sca-
lar quantum field theory is studied in the background of a
Schwarzschild black hole. Field theory in de Sitter space
is another system which exhibits similar behavior. Of
course, any semiclassical theory —i.e., a quantum field in-
teracting with a classical source —will have inconsisten-
cies, and the ultimate explanation of this effect will prob-
ably require some understanding of the quantum theory of
gravity. However, its importance should not be understat-
ed, as this has led Hawking to suggest that quantum
mechanics might need to be modified if we want to quan-
tize gravity. ' As an application of our formalism, we
will study some aspects of the Hawking effect in de Sitter
space and extend the DeWitt-Unruh construct of a parti-
cle detector. Motivated by the analogy between nontrivial
backgrounds and finite temperature, we study symmetry
restoration in de Sitter space. Surprisingly, we find that
spontaneously broken continuous symmetries are dynami-
cally restored, in any number of spacetime dimensions,
leading us to believe that this analogy may not be quite
complete. We will show that this symmetry restoration
actually does not depend on the boundary conditions; for
this demonstration our Schrodinger-picture formalism is a
necessity.

De Sitter space has recently figured prominently in the
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application of field theory to the early universe. Banks,
Fischler, and Susskind have perturbatively solved the
Wheeler-DeWitt equation for the inflationary universe.
They have found that to the lowest order in which the
matter (scalar) field enters the calculation, the wave func-
tion of the universe factorizes into a part that describes
the gravitational dynamics, and a part that describes the
matter dynamics; the matter part is exactly the same as
the wave function of a scalar field propagating in a de
Sitter background. So, at least to this order, the semiclas-
sical approximation of quantum field theory in a nontrivi-
al background seems to be a good approximation to the
complete theory.

In Sec. II, we review the de Sitter solution of the
(n+1)-dimensional Einstein equations. In Sec. III, we
develop the functional Schrodinger approach to field
theory by analyzing the conformally coupled scalar field
in spatially flat (k=0) coordinates; our analysis is semi-
classical in that the dynamics of the background metric
are predetermined. We calculate the Feynman Green's
function and use it in Sec. IV to analyze the Hawking ef-
fect in (n +1)-dimensional de Sitter spacetime by consid-
ering a conformally coupled scalar field interacting with a
comoving detector. We establish a criterion by which one
can decide if a given transition probability is thermal. In
Sec. V, we discuss the minimally coupled scalar field in
k =0 de Sitter spacetime. We solve the functional
Schrodinger equation in n + 1 dimensions for the vacuum
wave functional and calculate the Green's function. We
analyze the (3+ 1)-dimensional case in some detail. We
note that the equal-time Green's function is time depen-
dent; in particular, the coincidence limit of the massless
Green's function depends linearly on time. We show that
the massless Green's function, in any number of dimen
sions, depends logarithmically on the separation (for large
physical separation). This behavior is analogous to that of
the scalar-field Green s function in flat spacetime in 1 + 1

dimensions; thus it suggests that it is impossible to break
a continuous symmetry globally in (n +1)-dimensional de
Sitter spacetime. In Secs. VI and VII, we repeat the above
analysis for a scalar field in k=+1 de Sitter coordinates.
In Sec. VIII, we evaluate the Green's functions using the
path-integral formalism with the boundary condition of
Hawking, i.e., integrating over those field configurations
which are regular on the Euclidean section of (n +1)-
dimensional de Sitter space (in k=+1 coordinates), an
(n+1)-dimensional sphere. In Sec. IX we discuss how
the requirements of finiteness of the field energy as the
scale factor a ~0 and that of regularity on the Euclidean
section might be considered to be different aspects of the
same "boundary" condition that uniquely specifies the
vacuum wave functional, in k = + 1 coordinates. We
analyze symmetry restoration in more detail in Sec. X,
where we compute the Gaussian fluctuations about a state
of broken U(1) symmetry and show that these fluctuations
restore the symmetry. However, the correlations die out
very slowly, as an inverse power of proper distance ra (t),
where r is coordinate distance. Physically, this calcula-
tion suggests that the scalar field expectation value
wanders slowly as a function of position on a scale set by
the scale factor. A local observer would always claim to

be in a broken-symmetry phase of the theory. Although
we only exhibit explicit solutions in k=+1 and k=0
coordinates, we expect this phenomenon to be coordinate
independent.

The appendices contain technical details of the calcula-
tion. In Appendix E we examine the behavior of the
equal-time Green's function of the minimally coupled sca-
lar field for large and small spatial separation. We see
that as the mass of the field goes to zero, there is an infin-
ite contribution which appears both in the infrared and
the ultraviolet and can be interpreted as being the zero
mode on the n-sphere.

II. TECHNICAL PRELIMINARIES

De Sitter spacetime is the unique, maximally sym-
metric, negative-spacetime-curvature (i.e., positive Ricci
scalar) solution to Einstein s equations with a cosmologi-
cal constant and without matter. To solve Einstein's
equations we need to make a choice of gauge. The con-
ventional choice is the synchronous gauge where the
metric is taken to be of the form

1 0
0 —a (t)g;J(x') (2.1)

(ci) = —k —~a (2.2)

where k is the sign of the spatial curvature, which can as-
sume the values +1 or 0, and ~ is the constant spacetime
curvature, to which we might assign the values +h or 0;
h is a real constant. ~ is related to the Ricci scalar by
~= —R/n(n+1). De Sitter spacetime is the (essentially
unique) z= —h solution of this evolution equation. ' It
is conventionally viewed as being an (n +1)-dimensional
hyperboloid embedded in (n +2)-dimensional Minkowski
space. " As is well known, there is still some "gauge"
freedom —i.e., different ways of aligning the de Sitter time
axis with the embedding Minkowski spacetime axis. This
exhibits itself in three different "de Sitter" solutions
which correspond to three different ways of laying a coor-
dinate system on the hyperboloid (i.e., three different ways
of slicing spacetime into space and time). ' " These form
one-parameter families. There is also a static de Sitter
coordinate system. We list the solutions of (2.2) which
have real Lorentzian sections:

(Greek indices assume values from 0 to n, latin indices
from 1 to n. ) The requirements of spatial homogeneity
and isotropy restrict g;J(x') to be the metric for an n-
dimensional maximally symmetric space. We can then
reduce Einstein's equations to an equation of evolution for
the scale factor a (t), which for an empty, spatially homo-
geneous and isotropic universe with a cosmological con-
stant becomes
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de Sitter
cosh(ht)/h

de Sitter-Lanczos
sinh( h t) /h

de Sitter-hyperbolic

Minkowski

sin(ht)/h
Minkowski-hyperbolic anti-de Sitter

We first consider the mathematically simplest case: the
solution corresponding to k=O in which the spatial hyper-
surfaces are flat. This allows us to use a Fourier expan-
sion as opposed to an expansion in spherical harmonics.
The scale factor is then of the form a (t) =e-+"'. We ex-

amine the expanding solution; some remarks about the
contracting solution will be made later on. In these coor-
dinates, the metric becomes

diag(1, —e "'5;J ) (2.3)

e
—ht 1

ha (t)
(2.4)

which puts the metric in a conformally flat form:

g&„——(1/h t )rt„(t runs from —ao in the far past to 0 in
the far future). For the contracting solution we define

eht
tc

A
(2.5)

1

ha (t)

so t, H [0, oo ] and H =a/a = —h.
When the metric is of the form (2.3), the embedding

space coordinates are

sinh(ht) h
Zp-

h 2
+—e' x

ht
~i e xi

cosh(ht) h
~n+1

h 2

(2 6)

The distance between two points on the hyperboloid is the
square root of

h(t+t')
o. — [(e ' e "') h (x x') ]

h

which is not static; also, the coordinate system has a hor-

izon and only covers half the hyperboloid. ' '" The Hub-
ble constant H =a/a =h. We can introduce a new time
variable, conformal time

boosts.
We then consider the de Sitter solution in the gauge

corresponding to k=+1 (Lanczos). The spatial hypersur-
faces are now n sp-heres; hence we will have to expand in
generalized spherical harmonics. The scale factor is of
the form a(t)=cosh(ht)/h, so de Sitter space is an n

sphere, of radius a (t), that first. contracts and then ex-
pands; the Hubble "constant" H =a/a =h tanh(ht). In
these coordinates the metric is

diag 1, — (l, sin 8„(l, sin 8„ i( ))) , (2.8)
cosh (ht) . 2 . z

h

where 8i H [0,2'), 8; H [0,~), i&1. This coordinate system
covers the hyperboloid. ' Conformal time can be de-
fined by

sec t=cosh (ht)=h a (2.9)

it assumes values from —m/2 to m/2. The metric is then
in the conformally flat form

Xcos(8„+&;),

diag(l, —(l, sin 8„(l,sin 8„&( )))) . (2.10)
h

When the metric is of the form (2.8), the embedding
space coordinates are given by

1
zo ———sinh(ht),

h

z, =—cosh(ht)cos(8„),1

h

(2.11)

1
z; =—cosh(ht)sin(8„)sin(8„&) sin(8„+2;)

h

[(t—t ) —(x —x') ] .htt (2.7) z„+,———cosh(ht)sin(8„)sin(8„&) . sin(8z)sin(8&) .

The geodesics in de Sitter spacetime are the intersec-
tions of the hyperboloid with planes through the origin.
The de Sitter group in n + 1 dimensions is just the homo-

geneous Lorentz group in n+2 dimensions, SO(n +1,1),
i.e., those Lorentz transformations in the (n +2)-
dimensional Minkowski embedding space which do not
move the hyperboloid around. The group SO(n +1,1) has

(n +2)(n + 1)/2 generators which correspond to the fol-

lowing symmetries of the line element: n spatial transla-
tions, 1 dilatation, n(n —1)/2 spatial rotations, and n

z 2 cosh(ht)cosh(ht')
2

1+sinh(ht)sinh(ht')
cosh(ht)cosh(ht')

+cosp

2
[—cos(t t )+cosy]—,

h cos(t )cos(t')
(2.12)

The d.istance between two points Q, Q' is the square root
of
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where y is the angle between 0 and A', given in 2 + 1 di-
mensions, for example, by the familiar formula

cosy =cos82cos82+ sin8zsin8zcos(8( —8'& ) . (2.13)

9„+&
=tE ——iht+ —+rnid,Pl + (2.14)

where tF is Euclidean "time" and m an integer. In these
coordinates the metric is

In this (k=+1) gauge, de Sitter space has a Euclidean
extension in which the metric is definite. It is convenient
to implement this analytic continuation by introducing
the periodic real coordinate 8„+&, with period ~ (see Fig.
3), defined by

The action for the massless case is

5= f drd"x W(x)

= f d«"x+ Ig I
(g"'() 0''()4 —kR ~4' ~') (31)

where W(x) is the Lagrangian density, P(x) is a complex
scalar field, g&,

——diag(1, a(t—)oj ), a (t) =e"', and

(3.2)
4n

to make the resulting Klein-Gordon equation conformally
invariant. In de Sitter space we have R =n(n+1)h .
Then the action becomes

diag(l, sin 8„+((I,sin 8„(l,sin 8„((. . ))))
h2

' s'"+" (2.15)

5= f dtd "x
I
vy

I

'

a"
8

(n —1)(n + 1)h (3.3)

where 5&"+ ' is the metric on S("+'
~, the (n + 1)-

dimensional unit sphere. The embedding space coordi-
nates z„E are given by (2.11) with (sinh(ht), cosh(ht)) re-

placed by (i cos8„+(,sin8„+&) and zo=izoz The .square
of the distance between two points QE, AF becomes

2= 2
crz —— (1—cosy„+(),

h2

where

(2.16)

cosy„+ &
——cosO„+~cosO„'+ &+sinO„+ ~sinO„'+ j cosy .

(2.17)

An implicit assumption of all of our calculations is that
the scalar field's contribution to the stress energy can be
neglected as compared to the contribution from the
cosmological constant. In other words, we assume that
the addition of a scalar field (to de Sitter spacetime) does
not radically modify the background geometry.

III. THE SPATIALLY FLAT METRIC:
THE CONFORMALLY COUPLED FIELD

De Sitter spacetime is conformally flat, so a suitably
rescaled, conformally coupled scalar field does not recog-
nize as special the length scale set by the curvature of the
spacetime in which it lives (this rescaling symmetry is ac-
tually broken by the conformal anomaly but this is not
relevant at the level to which we calculate). It is thus a
trivial matter of rescaling variables to get the de Sitter
two-point functions from the corresponding Minkowski
two-point functions. Because this case is simple, though,
it is instructive to use it as a first example of our more
generally applicable methods. In this section we will solve
the functional Schrodinger equation for the evolution of a
conformally coupled field; the resulting wave function
will provide the Green's function of this field.

We shall deal with the massless scalar field so that the
equation of motion is conformally invariant. The solution
of the massive conformally coupled case can be obtained
from that of the massive minimally coupled case, solved
in Sec. V, by means of a suitable redefinition of the mass.

We can rewrite this in terms of a dimensionless field
(n —1)/Zy.

2 2a
(3.4)

where we have integrated by parts once and dropped a
surface term (this affects only the phase of the resulting
Schrodinger wave function). Let us now introduce con-
formal time t [see (2.4)], by dt =a '(t)dt; then

r

S= f drd"x iX i'
2

/

V'X
/

'
2

(3.5)

where the dot now means a derivative with respect to con-
formal time.

Fourier expanding,

X(x)= f „X(k)e'"'",
(2')"

we can rewrite the action as

S= fdr ""W„
(2m )"

d "k X(k)X( —k) k'X(k)X( —k)
dt

(2m. )" 2 2

(3.6)

(3.7)

or in terms of the real and imaginary parts of 7
(=X(+&X2),

X;(k)X;(k)S= dt (2'�)" 2

k'X;(k)X;(k)
2

(3.8)

where i runs over 1,2.
In the following development we will treat the real and

imaginary parts of P as independent real variables, which
we denote generically as X. The action for X is

d "k d "kS= fdt Wk ——fdt(2~)" (2~)"
(X)' k'X'

2 2
(3.9)

We recognize that P is a quantum-mechanical variable
with the Hamiltonian density
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2 I 2y2
k (3.10)

where p is conjugate to X. The functional Schrodinger
equation

harmonic-oscillator (Gaussian) ground state (we cannot
determine the constant for the zero mode since f vanishes;
however, we may choose it to have the same value as for
the other modes; this will also be done for the other exam-
ples we consider). Then we have for the vacuum wave
function for mode k

~k'41k[X, t j =i 4k[X, t]
Bt

becomes

(3.11)
1/4

'Pk, (X,t ) = (X
~

Ok }= k
e ikt/2—e

—kX /2 (3 19)

~ 8 1 8 kX+ +k ——0.
2 Qg2 2

(3.12) This is normalized so (Ok
~

Ok. }= J 4k Vk dX=1. The
complete vacuum wave functional is given by

We will look for solutions of the form

+k[X 3t =g(t }exp[——,
' f(t »'j (3.13}

k k
(3.20)

Equating coefficients of X and X to 0, we see that we
need to solve the pair of equations:

We can easily evaluate the equal-time Green's function
in momentum space:

f—i—+—=0,
g 2

if f +k =—0.

(3.14)

(3.15)

(O„iX'(i,t) io, }=
2k

(3.21)

This is time independent, so the wave functional does not
spread in field space [in fact,

The first equation determines g in terms of f. To find f,
substitute f= —iR/R into the second equation to reduce
it to

n —1

(0/P' fO}=
(4m)" I (n/2)(n —1)

(3.22)

R+k A=0, (3.16)

where v„ is an ultraviolet proper momentum cutoffj. Re-
turning to position space we have

which has as solution a"-'

R ( t ) c eikt+c e ikt— (3.17)

Hence f is given by

e ikt ~ e —ikt

f(t)=k
e lkt+ ~ ~

—lkt
(3.18)

so the vacuum wave functional depends on infinitely
many undetermined constants, one for each mode
(demanding de Sitter invariance effectively makes these
constants mode independent). This is the same as what
we would have found in flat spacetime. This problem is
not noticed in the conventional method for determining f
(separation of variables) because separating variables (even
at one time) effectively imposes an initial condition by re-

quiring that f vanish at a particular time. One can then
show that all higher temporal derivatives off need vanish
at this point; hence f is a constant. The requirement of
normalizability of the wave function then fixes the sign.

If this wave function is to describe a harmonic oscilla-
tor with a time-independent frequency, as it must, and is
to be normalizable, then we need to choose c2 ——0. We
may impose an initial condition by requiring that far in
the past (t~ —Oo or a~0) the wave function be in the

I ((n —1)/2} 1

4~'"+" ' [a (t)
f

x —x'
f

]"
(3.23)

Here a (t)
~

x—x'
~

is just the proper distance, so we have
found the Minkowskian Green s function suitably modi-
fied to take account of the conformal factor relating the
de Sitter and Minkowski line elements [the (1 + 1)-
dimensional massless case needs to be treated more care-
fully since it is logarithmically infrared divergent, as in
flat spacetime J. To find the Green's function for "non-
equal" times, we need the propagator of the functional
Schrodinger equation. We can write

( TX(t, k)X(t, k) ) = —I dX dX'XX'0 k (X,t )

X G„'(X,X', t, t )4'k, (X', t ),
(3.24)

where Gk is the Schrodinger propagator. The
Schrodinger equation is just that of a harmonic oscillator;
hence the propagator is
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Gh(X, X', t, t )=
2m.i sink T

1 /2

exp [coskT(X +X' ) —2XX']
2 sinkT

(3.25)

where T= t t .—Performing the Gaussian integrations in (3.24) we find

(Oh
~

TX(t,k)X(t, k) ~oh}= e (3.26)

which again shows that the system is conformally trivial. We can now Fourier transform to recover

( TP(t, x)t(tt(t, x') }= f " " e"'"-*'&TX(t,k)X(t, k) )
[tt (t)tt(t )]" (2')"

I, 2-, p (n —i)n I «n —1}/2} 1

4tr'"+" '
[ ~

x —x'
~

' —(T—ie)']("

or in our original coordinates (2.3)

(3.27)

( TP(t, x)P(t', x') }=
4~(n+1)/2(eh(t+t'))(n —1)/2[

~

X X
~

2 (1/h2)(e ht e
— ht' —i&)2](n —1)/2

In the flat-space limit (h ~0) we recover the usual Green's function:

I ((n —1)/2)
(n+1)/2 2 2 (n —1)/24tr "+ [ ~

x —x'
~

(t —to ie) ] "— —

(3.28)

(3.29)

For the exponentially contracting case, f is again given by (3.18). We can require that the wave-function approach a har-
monic oscillator as a ~0 (or t, —+ oo, which is in the far future); then it is given by (3.19).

IV. THE SPATIALLY FLAT METRIC:
THE HAWKING EFFECT FOR THE CONFORMALLY

COUPLED SCALAR FIELD

Now that we have the Green's functions for a corifor-
mally coupled scalar field in a de Sitter background we
can analyze what an idealized, comoving DeWitt-Unruh
detector, ' interacting with this field, will see. Following
DeWitt, ' we assume a coupling of the form
W;„t=m (r)P(x(r)) between the detector and the scalar
field along the detector's trajectory, where m (~) is the
monopole moment operator of the detector and x(r) is
the detector's trajectory. First-order perturbation theory
then gives the transition probability per unit time for the
detector to go from an energy level E; to an energy level

EJ as

P
~

(0)
~

2
y d(, )

(EJ E;)(t ).—

To evaluate

+ ao e —i (hE)v.

I(bE) = dr
[sinh(br/2 —ie)]"

(4.3)

so

(bE)n —2e ttE2tr/h—
P; =P(bE)=c(n) ~m(0)J;

~

1 + ( 1 )n ttE2tt/h—

(4.5)

where

we note that the integrand has poles on the imaginary ~
axis at ~=i 2nm/h +is, where n is an integer. So we can
choose a contour C, as illustrated in Fig. 1, and use the
method of residues to get

1 )n(i)n + 1(bE)n —2e aE2tt/h—
I(b,E)= —aE2 /h1 )

n aE 2 /htt—

X(0~$(x(t))P(x(t')} ~0},
(4.1)

it "+'I ((n —1)/2}c(n) =
2n (n —1)/2 (4.6)

We would now like to show that this transition proba-
bility is exactly the same as would have been gotten if the
scalar field were in equilibrium with a thermal bath at
some temperature T in flat spacetime. In the usual exam-
ples treated, e.g., the massless scalar field in Rindler coor-
dinates (or interacting with a uniformly accelerated detec-
tor) in (3+ 1) dimensions, ' the appearance of a "Planck
factor" in the transition probability is taken to mean that
the detector is in thermal equilibrium at some temperature
T. This argument is, however, incomplete, as can easily
be seen either by looking at the massive scalar field (in an
arbitrary number of dimensions), where the transition
probability is a Bessel function, or by looking at the mass-
less case in some other number of dimensions. For both

where

(0
~

y(x(t))y(x(t )) ~0}=(0
~
TP(t, x)P(t', x)

~

0}

+ oo
—i (hE)~

X
[sinh(h r/2 —ie) ]" (4.2)

for t &t'. To be able to talk about equilibrium thermo-
dynamics we need to work in a coordinate system in
which goo is time independent (so we have a time-
independent scale of energy}; hence, we use the coordi-
nates (2.3). Defining b,E =EJ E;, r=t t', we h—ave—

~
m(0)~;

~

h"+'I ((n —1)/2)I'.
1 2n+1 (n+1)/2( 1}(3n—3)/2
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Following the manipulations of the previous section, we
can put this in the form

S= t
d"k

(2m )"

y~ d"k
(2m )"

(X)' 1 n' 1—
4g 2

2 —k
Q2 2

(5.2)

C

where the dot now means a derivative with respect to con-
formal time. From this equation, we see that the Hamil-
tonian for 7 is

p g 2 1 vl n —1
2 2 2 2

Ak —— + k+ (5.3)

FIG. 1. The contour C for integra1 (4.3).

of these cases one can show that the transition probability
is thermal. We now establish a criterion by which one can
decide whether a transition probability is thermal or not.
The states of a system in thermal equilibrium satisfy the
principle of detailed balance, i.e., if the probability of be-
ing in the ith state is n;, then dn;/dt =0@i. Now we can
relate dn;/dt to the transition probability per unit time
between states by

(5.4)

Again we look for solutions of the form

+kP' t J =g (t )exp'
' f(t »' j—— (5.5)

Equating coefficients of X and g to 0, we see that we
need to solve the pair of equations

Notice that the Hamiltonian is explicitly time dependent;
hence, the Schrodinger equation will not separate; also, far
in the past it reduces to that of a harmonic oscillator.

The Schrodinger equation is

2 ()y 2 4)2

dni
Pj~qnj —g P;~~n;

J J
—E

—+—=0gf.
g 2

(5.6)

A thermally populated set of states also satisfies nj—P(F. .—E, J= n; e ' ', where P is the inverse temperature.
Hence a system in thermal equilibrium with a heat bath
will satisfy

(4.7)

and vice versa.
In the conformally coupled case we had P(b,E) given

by (4.5) and it is easy to see that this form satisfies

P ( gE) P (gE)e EE2m lh

so P=2m. /h or T =h/2m. So it seems that a conformally
coupled scalar field in the (n+1)-dimensional de Sitter
spacetime vacuum behaves like a scalar field in Min-
kowski spacetime at a temperature T =h /2m. where
h =H is the Hubble constant, in these coordinates.

V. THE SPATIALLY FLAT METRIC:
THE MINIMALLY COUPLED FIELD

if f—n —1

4 2

2

k =0.h't' (5.7)

As before, we substitute f= —iR/R into the second
equation to reduce it to

7?lR+ k+
A t

2 —1
R =0.

4t
(5.8)

R(F)=c,t ' 'H'"(kF)+c, t ' 'H"'(kt3), (5.9)

where H"' and H'„' are Hankel functions, and hence we
can solve for f and g. In general,

ciH„"'i(kt)+cqH', 'i(kt)
2t c,H„(kt)+c,H, (kt)

(5.10)

This is just a form of Bessel's equation; defining
v=(n /4 m lh )'~—we get

We repeat the analysis of the previous section for the
minimally coupled, massive scalar field in ( n + 1)-
dimensional de Sitter spacetime. We have

S= J dt d "xW(x)

= J dtd"xV ~g ~ ,'(g" B„P'BP m~ P—~ ) . (5.—1)

g(t)=
&&

——Cexp ——J f(t)dt
L

(5.11)

where C is a normalization constant. As in the confor-
mally coupled case we see that the wave function for each
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mode k depends on an undetermined parameter. If we
impose as our boundary condition the requirement that
the vacuum wave functional tend to the harmonic-
oscillator (Gaussian) ground state in the far past (t~—oo

or a ~0), then it can be written as

(X
~
Ok) =4k[X,t]=C exp ——f f (t)dt ——,

' f(t)X2

Ref
1/4 1/2

R

(5.12)

where

kH'.",(kP
2t H' "(kt )

(t)= i—
and

R(t)=c t' H"'(kt)

(5.13)

(5.14)

(5.15)

C was chosen by requiring (Ok
~

Ok ) = 1. Of course, if we
did not make use of an initial condition, any R satisfying
(5.8) would be allowed and the vacuum wave functional,
of each mode, would form a one-parameter family. Re-
quiring that the wave functional be de Sitter invariant is
not enough to remove this degeneracy, although it does
reduce it tremendously by effectively making the con-
stants mode independent. Equation (5.14) is also the wave
function in the exponentially contracting coordinates if a
boundary condition is used in the far future.

The equal-time Green's function in momentum space is
just

(X'(k, t)) = = [J„'(kt)+Y„'(kt)],
2Ref(t) 4

(5.16)

&X Iok) =q'k[X 3~=-k
' 1/2

kt

i +kt

where J„and Y„are Bessel functions. Here, unlike the
conformally coupled case, the Green's function is time
dependent.

If we restrict ourselves to (3+ 1) dimensions and look
at the massless scalar field, we see that the wave function-
al is

h a(X'(k t)) = 1+, = 1+ (5.18)

(P') = J k'dk (X'(k, t ) ) .
2& a

(5.19)

This integral is logarithmically infrared divergent in
(3 + 1) dimensions; in fact, it is in any number of dimen-
sions. The infrared structure of the scalar field propaga-
tor in de Sitter space is very similar to that of the propa-
gator in (1+ 1)-dimensional flat spacetime (see Ma and
Rajaraman ). As we will discuss in detail in Sec. X, the
logarithmic infrared divergence in the de Sitter scalar
field propagator leads one to the same conclusion about
symmetry restoration as in the low-dimensional flat-
spacetime examples.

Evaluating this integral with suitable infrared and ul-
traviolet fixed proper momentum cutoffs, we find in
(3 + 1) dimensions

&P') = h'(t —t;)+h'ln
4m

(5.20)

and in an odd number (n) of spatial dimensions:

which differs from the conformally coupled Green's func-
tion by a piece which grows in time (remember that con-
formal time t~0 corresponds to the far future). This ex-
pression is also valid in the exponentially contracting
coordinates.

Brandenberger' has also derived this expression for the
real part of the coefficient of X in the exponent. There
are, however, differences between our wave functions; pri-
marily the time-dependent normalization, which is of
some importance, and the imaginary part of the coeffi-
cient of X . These do not affect the two-point function in
momentum space (X (k, t)). It should be pointed out
that Brandenberger has exactly the same (X (k, t ) ) as we
have obtained for de Sitter space; not, as he claims, some-
thing that is valid only in a de Sitter phase of a
Friedmann-Robertson-Walker (FRW) cosmology. The re-
sult he attributes to Hawking' is applicable only for very
long wavelengths —much outside the horizon —where the
k term in (5.18) dominates the k ' term.

To study the spreading of the wave functional in field
space we need to look at this Green's function in position
space:

&exp ——kt ——i — l. &+k t
2t 1+k2t'

(5.17)

(5.21)

up to a (formally infinite) phase in the exponent. So, we
see that a minimally coupled scalar field in de Sitter
spacetime looks like a collection of harmonic oscillators
with time-dependent frequencies. The flat-spacetime limit
of this wave functional is just the harmonic-oscillator
wave functional we found for the conformal field, times.
an infinite phase which cancels the phase alluded to
above.

This wave function gives

Here we have retained some of the cutoff-dependent terms
[all terms discarded either depend on the ultraviolet cutoff
or disappear when the infrared cutoff is removed (a;=0
or t; = —oo)]; v„and a; are the ultraviolet and infrared
proper momentum cutoffs and t and t; are the times at
which the momentum scales ~„and x; were the size of the
horizon. The (1+ 1) de Sitter propagator exactly repro-
duces the flat-spacetime result in the limit h =0. The ex-
tra piece (for h&0) arises from the red-shifting of the
proper momentum cutoff in de Sitter space.
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We could view (5.21) as describing field theory in a
'universe which at time t; went from a Minkowski to a de
Sitter phase; the infrared cutoff would then correspond to
eliminating all information outside the initial de Sitter
horizon which could not influence the scalar field's evolu-
tion. The symmetry group of such a spacetime would not
be as big as the de Sitter group; equivalently we may say
that the momentum cutoffs do not preserve the de Sitter
symmetry. This is the reason that the form of (P ) seems
to be inconsistent with the fact that de Sitter spacetime is
a maximally symmetric space. This expression is prob-
ably also valid for even n. The time dependence may be
interpreted as the wave function spreading linearly with
time in field space. Massive scalar field theory in
(1 + 1)-dimensional fiat spacetime with a time-dependent
mass that goes from a constant nonzero value to zero
abruptly also has a time-dependent (P ). The (3+ 1)-
dimensional result has been noted previously by Linde. '

Hawking and Moss' have noticed that the propagator is
logarithmically infrared divergent in (3+ 1) dimensions.
Their result is of interest particularly because they use the
Euclidean version of the coordinate system which covers
the whole de Sitter hyperboloid, i.e., the coordinate system
in which de Sitter space is a contracting and then expand-
ing compact three-sphere (we shall look at scalar field

I

theory in this coordinate system in more detail in the next
three sections). This checks that the infrared properties of
the propagator are independent of the coordinatization of
the hyperboloid. Field theory in the contracting metric
will also be infrared divergent.

We make a short digression to discuss how to recover
the massive conformally coupled case from the massive
minimally coupled case. Looking at the Schrodinger
equation for the minimally coupled case we see that for a
particular value of the mass, m /h =(n —1)/4, we re-
cover the conformally coupled Schrodinger equation; for
this value of the mass, v= —,

' and f(r) =k; thus we have
the conformally coupled wave functional (up to an unim-
portant phase). In fact, if we had an arbitrary coupling to
the curvature of the background geometry —i.e., a term of
the form ——,v'

~ g ~
gR p in the Lagrangian with

arbitrary —we would just need to make the replacement
m ~m +JR [i.e., m ~m +gn (n +1)h ] to obtain the
wave functional.

Let us now compute the full equal-time Green's func-
tion, taking some care as regards the divergences. To re-
move the trivial ultraviolet divergence we evaluate the
two-point function at finite separation; to handle the in-
frared divergence we study the case of a nonzero mass.
Then

(P(x)P(x')) = „,I d"ke'"'" "'[J„2(kt)+Y„2(kt)]
4(2n. )"a" (5.22)

+4I/2 ~ 2~/2 ~ ~ 2~/2 f dk k J(pg 2)/2(kr)[J (kt)+ Y (kt)] (5.23)

h" ' I (n/2 —v)l (n/2+v) + n n n +1 rF —V, +V,'(4~)I"+ "/ 1 ((n+1)/2) 2
'

2
'

2 '
4r 2

(5.24)

h" ' 1 (5)l (n —5) n+1 r
(4 )'"+"/ I ((n+1)/2)

(5.25)

where 5=m /nh, r =
~

x —x' ~, and F is a hyper-
geometric function. The integral in (5.23) has been
evaluated in Appendix A. The massless limit of this
two-point function, in (3+ 1) dimensions, is exhibited in
Fig. 2 (we have suppressed the zero mode). We will con-
sider the case 5« I. To study the infrared properties of
the integrand in (5.23) we need to look at its behavior at
low momenta; consequently we can use the limiting form
of the Bessel function for small arguments,

i I I I l

zJ (z)=P r(~+1)

O. I

I I I I I

IO

Clearly the infrared divergence comes from the second
term in the integrand. At low rnomenta the momentum
integral goes like

PROPER DISTANCE (IN HLIBBLE LIN ITS)
FIG. 2. The massless limit of the twopoint function,

in 3 +- 1 dimensions (with the zero mode removed)
[(P(x)P(x')) —h2/Sm 5]/h; as a function of proper distance
ha

~
x—x ~, in Hubble units. All contributions in the ultraviolet

from scattering off of the background have been suppressed.
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dk k2g+g(g2)
k

(5.26)

This is logarithmically infrared divergent for the massless
case. For fixed n an infinitesimal positive mass cures this
divergence (even with a fixed positive mass the integral is
still divergent in the limit n ~ oo).

In spite of a claim to the contrary, ' this infrared diver-
gence is a real physical divergence —it is not an artifact of
a wrong choice of initial condition but is present in the de
Sitter invariant vacuum state (we will elaborate on this
later). It is easy to see that even if we start out with a

I

c)
C2

cos(ktp)+ [iktp (k—tp) ]exp( —iktp)

sin(ktp)+i [iktp (kt—p) ]exp( ikt—p)
(5.27)

[the coefficient of X approaches that in (5.17) in the limit
tp~ —oo], aild

state which has no infrared divergences initially, time evo-
lution will generate them, provided the state is allowed to
evolve for a sufficiently long (formally infinite) period of
time. Consider the following initial condition —let the
[(3 + 1)-dimensional massless] wave function go to that of
a harmonic oscillator at some finite time tp in the past
(not at —oo as before). Then we obtain

1

Ref (t)
1

p [ + J+[( p) (kt) —(ktp) +2(kt())(kt)](sin kT —cos kT)k ktp)'(kt 2

+sin kT+(kt) cos kT+[4(ktp) (kt)+2(ktp) —2(ktp)(kt) —2k~]coskT sinkT~ (5.28)

where T=t —to. Clearly,

Ref (tp) =k (5.29)

and so this state describes a harmonic oscillator with a
time-independent frequency. There are no infrared diver-
gences. Consider a much later time, T~ 00, then
sin kT-cos kT- —, and sinkT-coskT-0; we obtain

1

Ref (t)
1+(kt)2 1+(kt)2

2k(kt) (ktp)
(5.30)

The first term is what was present when we imposed the
initial condition at to ———m,' it has a logarithmic infrared
divergence. The second term has an even more infrared
divergent structure, but we need not consider it if we are
interested in finite t, i.e., to~ —ce. This exercise sug-
gests that the conclusions we draw about symmetry res-
toration (in Sec. X) probably do not depend too strongly
on our choice of initial/boundary condition. One can
check explicitly, from (5.28), that for T «k ', these in-
frared divergence's disappear.

In the coordinate system (2.3), the equal-time two-point
function is

d nk e ik (x—x')
lim ((()(x)P(x') ) = —,

'

h~0 (2~)n (k2+ m 2)1/2

dkOd nk sk (x—x')

c+ (2~)"+' (k —m )
(5.33)

2htr2 h(t+t') r2 (e ht e ht' —t~)2 —2

h 2

(5.34)

(notice that in the equal-tiine limit the right-hand side
reduces to the left-hand side). In conformal coordinates
we are making the replacement

(where C+ is a contour in the complex kp plane enclosing
the positive pole), the Minkowskian result.

At this point we could repeat the analysis of the previ-
ous section by finding the path integral of the Schrodinger
equation and the "nonequal" times Green's function for
the minimally coupled scalar field. However, we do not
have to go through this exercise as there is an easy way to
obtain the Feynman Green's function; looking at the con-
formally coupled case we see that we just need to make
the substitution:

pn —1

(4~)(tt +1)/2
I (n/2 —v)I (n/2+v)

I ((n + 1)/2)

~2g 2e2ht
)(, F —V~ +V;

2 '2 '
2 ' 4

(5.31)

a r ~ [r2—( t+t ie)—]—(5.35)
(ht)(hP)

which is the unique object, up to a multiplicative- factor in
front, that is de Sitter invariant, and that reduces to
[r —(t —t') ] in the flat-spacetime limit. So we have

Jtb(x)+ Yb(x) = (5.32)

The flat-spacetime limit may be obtained by letting h —+0
in (5.23). In this limit v becomes imaginary. We make
use of the asymptotic formula valid for large real b and x:

( TP(t, x)P(t', x') }
I n —1

(4 )(tt+()/2
I (n/2 —v)I (n/2+v)

I ((n + 1)/2)

XF ——v, —+v;,&+
pg yg n+] . $ g
2 '2 ' 2 ' 4

(5.36)

which gives us
The Minkowskian limit may be obtained as before by let-
ting h —+0.
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VI. THE LANCZOS METRIC: THE CONFORMALLY COUPLED FIELD

In this section we again consider the massless conformally coupled scalar field, but in the k=+1 background. The ac-
tion is given by Eqs. (3.1) and (3.2). Using Eq. (2.8) and integrating, spatially by parts, it becomes

f dtdnxan Ig I

1/2 14 I' 1 ye~2 y
« —I)«+1)h'~~~

2 2Q
(6.1)

where W~„~ is the Laplacian on the unit sphere S (see Appendix 8). As before, we rewrite this in terms of a dimension-
less field X=a'"

IXIz n —1

2 2
+ p x w(gix (6.2)

where the dot now means a derivative with respect to con-
formal time (we have integrated by parts and dropped a
surface term).

The eigenfunctions of W~„~ are generalized spherical
harmonics F~w with n indices (W represents the n —1

magnetic indices), which we shall generically denote by k;
these are discussed in Appendix B. Now

~(n)I'~w= —~ (~ +n —I ) &gw, (6.3)

so

The equal-time two-point function in momentum space is

&x') =
2 Ref(t)

1

2A +n —1
(6.10)

Yk(Q)I'k(Q')
a" '

k 23+n —1

The addition formula (B13) simplifies this to

(6.11)

it is time independent. Transforming back to position
space we have

I xk I

'
2

I
xk

I n —1

2
+

2
(6.4)

I ((n —1)/2)
4~th+ ( ~ )

fl— (6.12)

x's=g f dt — A+ (6.5)

or

2 X2p g ~ n —1

2 2 2
(6.6)

or, treating the real and imaginary parts of Xk as indepen-
dent real variables, which we generically denote as 7, we
have

This is the same as the expression we had for the k =0
metric (3.28).

VII. THE LANCZOS METRIC:
THE MINIMALLY COUPLED FIELD

We extend the analysis of the previous section to the
minimally coupled scalar field, where the action is given
by Eq. (5.1). We can write the conformal Hamiltonian as

r

3+ n —1

2

An analysis similar to that performed in Sec. III then al-
lows us to write the functions R and f as

ei(@+I/2)t+c e t(@+i/2—)tC2e

and

where

sec t=li a

2 m n —1
2 2

+sec t
4

(7.1)

(7.2)

C ei (p+1/2)t
C e —i (@+1/2)t

f(R =(p+ —,
'

)
ei (@+1/2)t C e

—i (@+1/2)tC1e ~C2e
(6.8)

2@+1

2m'
exp[ ——,

' (p+ —,
' )(tt+X )] . (6.9)

where p=A+n/2 —1. As we are considering a confor-
mally coupled scalar field we need to have a time-
independent f which means that we need to choose cr ——0
(the choice ci ——0 gives us an unnormalizable wave func-
tion). This choice will be discussed in detail later on. So
the vacuum wave function for mode A is

+,,(x,0=&x Io„)
1/4

Unlike the Hamiltonian for field theory in the k =0 back-
ground, this Hamiltonian does not have a classically al-
lowed asymptotic region in which it approaches that of a
harmonic oscillator with a time-independent frequency.
The formal similarity to (5.3) should, however, be noted.
Also, at t =0, A z has no explicit time dependence and
hence the t=0 hypersurface might be a good surface on
which an initial condition can be prescribed (this is not
what we do). Notice that as a ~0 (this limit does not lie
on the Lorentzian section of de Sitter space) this Hamil-
tonian approaches the conformally coupled Hamiltonian;
this fact shall be used to impose a boundary condition on
the Schrodinger equation.

The functions R and f appearing in the wave functional
have the form
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R(t) =cos'~ tjc(R"'„(singt+cqR' '„(sint)],

1 —2v c i R "'„'(sint ) +czR ' '& '(sint )f(t ) =i tant —i(p+ v)(p —v+ 1)
2 c(R"'„"(sint)+cqR ( '&(sint)

(7.3)

(7.4)

where =A+n/2 1—, v=(n /4 m—/h )'~, and
R("~,R( '~ are related to the Legendre functions P~, Q~
by

(7.5)

This is similar to the relation between the Hankel and
Bessel functions. The asymptotic analysis is more easily
understood if-one uses the R "~~ instead of the P~~ and
Q~~. Although these functions do not seem to have been
studied before, the formulas that we shall use may be de-
rived using the I.egendre functions.

Burges has attempted to use de Sitter invariance to ob-

l

tain an expression for f(0). He has considered a massless
scalar field with, presumably, no coupling to the back-
ground geometry. Our results, when restricted to t =0
and m =0 (and assuming that the ratio ci/cz is the same
for each mode) only agree with his expressions in 1+ 1

dimensions. We shall elaborate on this discrepancy later.
First we present a heuristic argument for the "correct"

initial condition. This is more of a self-consistency re-
quirement, that the minimally coupled solution should
reproduce the conformally coupled solution for some par-
ticular value of v, rather than the stronger requirement
concerning the behavior of the wave function as a~0,
which probably depends to some extent on the quantum
theory of gravity. For v= —,

' we have

z
c(R"'z ' (sint)+czR( '&

' (sint)'i +' (i(in — zionc (R ("& (sint ) +czR ( '& (sint )

Using the following relations,
1/2

(7.6)

R"' ' (sin8) =
P m. cos8

' 1/2

2l 7T
exp i 8——(p+ —, )

2p+ 1

(7.7)

R "i' (sin8) =
P

2
m cosO

exp i 8——((M+ —,
'

)

[R'""(x)]'=R' '"(x)

we obtain

(7.8)

ei (t —n /2){p+1/2) c e
—i(t —~/2)(@+1/g)

f(t) =(p+ —,
'

) i (t —m/2)(p+1/2) i C
—i (t —n./2)(@+1/2)+C2e

(7.9)

(7.10)

So if this f is to describe the conformally coupled scalar field, then we need to choose cq ——0. With this choice we have
1/2

e i (t wl2 )(p+—i /2)

and

f(t)=(p+ —,'), (7.11)

as in the conformally coupled case. A more general argument will be presented later on to show that this is indeed the
correct initial condition. We can temporarily accept this as an ansatz.

This ansatz then gives us

Ref (t)= 1 1 ( 1+(M +v)

1tcost [p ( t)]2 4
[Q ( t)]2 ~(1+@

(7.12)

The coincidence limit of the massless scalar (rescaled) field s two-point function in (3 + 1) dimensions is then given by

2 2

( P) 1 1
1

ha
2Ref(P 2(A +1) A(A +2)

(7.13)
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where the prefactor is the conformally coupled scalar s two-point function. This is very similar to (5.18), the expression
in k =0 coordinates. As before, the second term will lead to an infrared divergence in the propagator.

The position space two-point function can be expressed as

(p(x)Q(x')) = „,g Yk(Q)Yk(Q')
1 1

a" '
k 2Ref(t)

(7.14)

I ((n —1)/2) cost („1)/2, n —1
Cg (cosp A +

4~(n —1)/2a n —1

n
, r

2

-r a+ —+vn

2

X I [P„" „/2, (sint)]'+(4/1r')[Q„" „/2, (sint)]'I, (7.15)

where Cz" " is a Gegenbauer polynomial, and we have used (B12).
For the massless conformal case v= —, and so using (88), the expression above reduces to

I ((n —1)/2) ~ C(„1)/2 I ((n —1)/2)
4 (n+1)/2 n —1 ~ ~

4 (n+1)/2( 2)(n —1)/2a

which is exactly what we had before.
We can evaluate the general expression (see Appendix C) to obtain

h" ' l (n/2 —v)I (n/2+v) F n n n+1
1

h cr

(4')(n+1)/2 I ((n + 1)/2) 2
'

2
'

2
' 4

(7.16)

(7.17)

which is the same as (5.24) and also agrees with the earlier analysis of Ref. 19.

VIII. EUCLIDEAN GREEN'S FUNCTIONS

In this section we use the Euclidean path-integral repre-
sentation of the generating functional to evaluate the
Green's function. The generating functional, for any of
the theories we have considered, in the presence of an
external source J, is given by

('

Z[J]=a f &&exp iS+i f d"x d(ht)V' (g
~
Jp

(8.1)

Here S could be any of the actions which we have con-
sidered, X is a normalization constant chosen in such a
manner that Z [0]= 1, and we have chosen to work with
the variable ht instead of t.

As discussed in Sec. II, the analytic continuation of de
Sitter space is an (n + 1)-dimensional sphere embedded in
(n +2)-dimensional Euclidean space. Then

x s'"+ "&"aEy.aE)

(n +1)(n —1)+ 4
Integrating by parts, using the generalized spherical har-
monics defined in Appendix B and

~(n+1)Y~w= —~ (~+n»~w (8.7)

~ (8.6)

where

(8.5)
E

We first discuss the conformally coupled case. In Eu-
clidean space, using the Euclideanized version of (3.1) we
may write the exponent in (8.1) as

E I n —1

k-

) g ~

'/ d"xd(ht)= —
~

S'"+ '
~gn+1

where

n+1
dn+lx + d(9

(8.2)

(8.3)

aE) S("+") '"S'"+"~"aE (8 8)P P ~

we obtain for the momentum-space representation of the
exponent in the functional integral

and

g~"a /*ad= h'S'"+ "~"8'y"aEy—, (8.4)

1 n —1

2h- &'""+
~k

Jkdk
2

~+
2 0k

n+1

(8.9)
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By using an expansion in spherical harmonics, we effec-
tively exclude from the functional integral those field con-
figurations which are not regular on the Euclidean sec-
tion. We may introduce a shifted field

The path-integral measure does not change under this
transformation, so we obtain

Z[J]=Z[0]exp ) g 2

1
» —( h'2

( + )
)( + 3

) h 2

(( k .tjt'k

n —1+
2

A+"+n+1
2

(8.10) (8.11)
or rewriting the Green s function in the position represen-
tation

g(»+))
i

/2 i, (»+()
i

(/2 Yk(Q)Yk(Q')
(8.12)

So the Euclidean Feynman Green's function is

Yk(Q) YI*, (Q')
( TP(Q)P(Q'))k ——h"

k ()M+ p )(P+ p )

A+"+71+1
2

Using the equivalent of (B12) in n + 1 dimensions, we find

h" 'I (n/2) + (2A +n)
E

4 (n +2)/2
n —1

2

. Ca (cosY»+)),

(8.13)

(8.14)

which, from Appendix D, is equal to

h" ' I ((n —1)/2) 1 I ((n —1)/2)
2(2~)(»+()/2 (1 cosy )(» —()/2 4~(»+))/2 ( ~ 2)(» —1)/2cos7n +1 —Og

(8.15)

This is the Euclidean extension of the Feynman Green s function that we had calculated in Secs. III and VI.
The minimally coupled case is analyzed in exactly the same way. An appropriate definition of the shifted field pk al-

lows us to express the generating functional as

1 1Z [J]=exp
2h" '

k h (2 +n/2+ )(vA +n/2 —v) h

We can therefore write the Euclidean Green's function as

(8.16)

(8.17)

which is (see Appendix D) equal to

h" ' I (n/2 v)I (n—/ 2+)vn n n+1 &+cost'»+(
(4r)) "+" 11(n +1)/2) 2 '

2 ' 2 ' 2
F —+v, ——v,'

the Euclidean continuation of (5.36).

(8.18)

IX. THE INITIAL/BOUNDARY CONDITION
AND DE SITTER INVARIANCE

There is a widespread belief that the de Sitter vacuum
state belongs to a one parameter family and that some ex-
tra criterion must be used to pick a suitable vacuum
state. We have shown that if the wave function for each
mode is taken to be the general solution of the functional
Schrodinger equation without imposing an initial condi-
tion [on the Lorentzian section, or, equivalently a boun-
dary (regularity) condition on the Euclidean section], then
each wave function forms a one-parameter family. We

now elaborate on this statement and present an argument
for the initial/boundary condition; we then relate this
condition to Hawking s prescription for quantum gravity. '
We may rephrase the initial condition which we have been
using in the following manner: instead of requiring that
the wave-functional (as a functional of the dimensionless
field X) approach that of a harmonic-oscillator ground
state in some limit, we may equivalently require that the
energy of this state not diverge in the same limit.

The expectation value of the scalar field (P~) Hamil-
tonian, A z, for the mode p, is related to that of A

&
as

follows:
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(9.1)

&k= . «'+ff')
2a (f +f*)

Then from (3.18) we find

(9.3)

C1 +C2
&k=

2~ C1 —C
2 2

(9.4)

We have assumed that the ratio c~/c2 is real; in general it
could be complex. However, the independent argument
concerning regularity on the Euclidean section justifies
this choice. So, if Ek is to remain finite as a~0 we re-
quire

, (f' if+ff*) . (9.2)
2a(f +f*)

We have used the standard form for the wave function
(3.13) and eliminated g by using the equation of motion
(3.14). We may now eliminate f if by—using the other
equation of motion; this will result in a different expres-
sion for each of the cases we consider. As we will be
working with the wave functional for a particular mode,
we will refer to c~ and c2 as constants; in reality, they
could be different for different modes. We first consider
the k=O conformally coupled scalar field. Using (3.15)
we obtain

(h 2a2 1)1/2
sini =

ha
(9.9)

So the a —+0 limit is clearly equivalent to t~+i op, one
limit corresponding to the North pole and the other to the
South pole of the Euclidean section. We need to satisfy
the condition of finiteness of energy at only one of these
points, and it will be automatically satisfied at the other
because these points are identified on contiguous spheres
(so, effectively we use only one boundary condition). Let
us write t =iT, this places us on the Euclidean section;
then (9.8) becomes

(p+ ~

) 2 —(2@+1)T+ 2 (2@+1)Tc1 e c-2 e

2a 2 -(21 +1)T c 2e(2P+1)T .
c1 e —c2 e

(9.10)

Now —,
' (p+ —,) is the harmonic-oscillator ground-state en-

ergy, so to satisfy the requirement that the energy remain
finite at either T=+ oo or —oo we need to choose c2 ——0
(as before, we have chosen c~/c2 to be real). Alternative-
ly, we could have evaluated the energy on the Lorentzian

In these coordinates it is not clear, a priori, what the
a~O limit means. In fact, a =0 does not lie in the
Lorentzian section of de Sitter space. It is easy to show
that a =0 corresponds to two points, the North and South
poles of the Euclidean sphere in this coordinate system
(actually the Euclidean section consists of an infinite
number of spheres, one on top of the other, with the con-
tiguous North and South poles identified, see Fig. 3.
From (2.9) we can write

c 2+c 2

—1 orc2 —0
C1 —C2

(9.5)

which means that Ek is just k/2a, or all excited states of
the harmonic oscillator are unoccupied. The ground-state
energy just leads to a shift in the zero of energy and may
be taken care of by appropriately normal ordering the
Hamiltonian. Similarly, for the minimally coupled scalar
field in the same coordinate system we may use (5.7) to
rewrite (9.2) as

Ek=, [k +ff*+h a ( —,
' —v )] .

2a (f +f*) (9.6)

Using (5.10) and the relevant asymptotic forms of the
Hankel functions, we see that in the limit a —+0 this be-
comes

~
~t=o

A

a=—I

h

tE=

p, a=0

77., a=0

C1 +C2

C1 —C2
(9.7) I t —7T

2a +
(9.8)

exactly as in the previous case (again we assume c ~ /c2 is
real). This should not come as a surprise as this Hamil-
tonian approaches the conformally coupled scalar field's
Hamiltonian in the limit a ~0. So finiteness of energy as
a ~0 again requires c2 ——0. Notice that de Sitter space in
k=0 coordinates has no real Euclidean section.

For the conformally coupled scalar field in k=+1
coordinates, we obtain

pit p
ak

77./2
&t 77

tt 277

FIG. 3. The Lorentzian and Euclidean sections of de Sitter
spacetime. The set of axes represent the complex time plane;
the vertical axis is imaginary "time" tE, the horizontal axes are
real time.
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section and then required it be finite as a ~0. The energy
on the Lorentzian section is

(p+-, ) c, '+c, '
t.

C& —C2
2 2

(9.11)

+ha2 2 2

~~c=~cc— (9.12)

and so, as before, we need c2 ——0.
The minimally coupled case in k=+1 coordinates can

be analyzed in a similar manner. The expressions for the
R "~ need to be analytically continued from ( —1,1) to
( —ao, ao). Evaluating the energy on the Lorentzian sec-
tion, we see that c2 ——0 keeps the field energy finite as
a~0. Equivalently, with c2 ——0, f(t) given by (7.4) ap-
proaches the conformally coupled scalar field's

f (t) =(p+ —,') in this limit.
We now argue that the initial condition we have

described above reduces to the boundary condition of reg-
ularity on the Euclidean section proposed by Hawking.
The analytic continuation (2.14) leads to what may be
considered to be an infinite set of (n + 1)-dimensional Eu-
clidean de Sitter spheres with contiguous North and South
poles identified; see Fig. 3 (it should also be possible to
identify the spheres and hence replace the infinite set by
one sphere; this is not important). The waist of the hyper-
boloid is the equator of the sphere.

Consider a trajectory which comes in from t=m. /2
(a = oo) on the hyperboloid and goes to t =0 (a = I/h)—
this point, t =0, will be at the intersection of a real time
axis and the Euclidean time axis in the complex time
plane. If we now analytically continue to Euclidean time,
this is equivalent to the trajectory moving off the equator
on the Euclidean sphere towards either the North or
South pole, depending on which way we move along the
Euclidean time axis. The requirement that the energy be
finite as a —+0 then corresponds to including in the func-
tional integral only those field configurations which are
regular on the Euclidean section (in particular we discard
field configurations which are singular at the poles).

It is instructive to discuss the approaches of Ref. 2 to
field theory in de Sitter spacetime. Chernikov and Ta-
girov have studied the conformally coupled scalar field in
k=+1 coordinates. They use the Heisenberg representa-
tion and exhibit normal mode expansions for the field
operators. Since they have not used an initial condition
when solving the equation of motion, they find a one pa-
rameter set of vacuums, which they show are invariant
under the de Sitter group. They then use the correspon-
dence principle to argue that particles with large momenta
must travel on geodesics and so choose a particular vac-
uum in which particles behave appropriately in this limit.

Barges, on the other hand, argues that the massless
minimally coupled scalar field's vacuum wave functional
must be de Sitter invariant and proceeds to construct gen-
erators which should annihilate it. His arguments seem
incomplete, for reasons which we now discuss. We can
write

w= —,
' a„canc* —v(ca*),

where the potential

(10.1)

v(@@*)= (c@')+ (c4')'Po ~o

2

has an O(2) symmetry. For A,o&0, po &0 we find the
conventional symmetry-breaking potential. The Euler-
Lagrange equation

(a„a~+p, ')C +X,e'=0
then has stable minima at

(10.2)

of a particle in a time-dependent potential. In fact, as the
expansion proceeds, the scale factor a grows and the
time-dependent term soon dominates the 7 term in A ~c,'
because of the relative minus sign, the time-dependent
term corresponds to an inverted harmonic-oscillator po-
tential. The time evolution of this system is easily visual-
ized; the equivalent quantum-mechanical particle oscil-
lates in a harmonic oscillator well which starts flattening
out. Eventually the potential turns over and the particle
is now in a position of unstable equilibrium. In a time-
dependent potential like this, the wave function does not
factorize into a part that depends only on time and a part
that depends only on the field —clearly the frequency of
the equivalent harmonic-oscillator ground state is time
dependent.

Burges requires that the symmetry generators annihilate
the vacuum state wave functional on the t =0 hypersur-
face. If the wave function describes a system of harmonic
oscillators, with a time-independent frequency, this as-
sumes the existence of a normal-ordering prescription.
For example, consider the total Hamiltonian on Po', using
the Schrodinger equation, we may reduce this to a time-
independent problem by replacing i 0/Bt with the total
ground-state energy (which is infinite). We may then con-
sider this equivalent to requiring that the normal-ordered
Hamiltonian annihilate the time-independent part of the
wave function. However, if the wave function describes a
system of harmonic oscillators with a time-dependent fre-
quency, we cannot reduce the problem to a time-
independent one and therefore do not have a normal-
ordering prescription. Even if we only consider the equa-
tions at t =0 we need to be able to normal order. Notice
that in (1 + 1) dimensions the massless minimally coupled
case has exactly the same Hamiltonian as the conformally
coupled case, i.e., v= —,'; hence the wave function describes
a system of harmonic oscillators with a time-independent
frequency and so it can be separated.

X. THE RESTORATION OF CONTINUOUS
SYMMETRIES

We study the restoration of continuous symmetry in de
Sitter spacetime by considering an interacting scalar field
theory which has a broken-symmetry phase, ' Goldstone's
original example, ' a complex scalar field @ in a @"po-
tential, lends itself readily to analysis. The Lagrangian
density is

so we see that the minimally coupled Hamiltonian A ~z,
for a particular mode, describes the quantum mechanics

Ic'I =a=
' 1/2—pp (10.3)
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(10.5)

If this correlation function asymptotically tends to zero
for very large physical separation the theory is in a sym-
metric phase; if it asymptotically tends to a constant ( & 0)
then the theory is in a Goldstone phase.

Now

(y( )y( ') ) (y( )y(0) )
P' P'

(10.6)

where we have regulated the object ((I) (0) ) by point split-
ting at equal time. This expression is ultraviolet singular;
hence we need to renormalize it: Z is a renormalization
constant chosen in such a manner that the correlation
function (4(x)4*(x') ) = 1 at a physical separation

~
x—x'

~

a(t)=I, where I is much less than a Hubble ra-
dius. With this definition

(e(x)C'(x ))

(C'(x)(()(x')) ((t(x)y(x'))
2 2

P
~
x—x'

I
a (t) = l

(10.7)

To study symmetry restoration, we would like to evaluate
this expression in the limit

~

x —x'
~

a (t)~ 0() . Now from
Eqs. (E6) and (E12) we see that the part of the exponent
which depends on X =(bar/2) in the appropriate limit is
just

it" ' I (n)
(4~)(n+I)/2 2 I ((p + 1)/2)

Therefore,

(10.8)

lim
] x—x' ~a(t)~~

( C&(x)@'(x')) =
h x—x' a(t)

(10.9)

The Goldstone modes of this theory are the massless exci-
tations along the circle

~

4
~
=p. These are spin-wave ex-

citations which do not cost energy (which is proportional
to gradients) since only the direction, and not the magni-
tude, of the field N changes. If we are interested in the
low-energy behavior of this theory we need only consider
these modes. We can, hence, approximate C&(x )
=p(x)e'@"' by N(x)=pe' '"' where 8&( —ao, &x&). From
the previous Lagrangian we get the new Lagrangian that
determines the equation of motion of the real field 8(x)
which lives on the circle:

w= ~ a„ca~8 . (10.4)P

Thus the field P(x)—:pe(x), which is essentially the field
on the circle, satisfies a minimally coupled Klein-Gordon
equation, as it must; any other term would break the U(1)
symmetry (translational invariance in 8 space). To study
symmetry restoration we need to look at correlation func-
tions such as

('

(4(x)C&'(x')) =p (exp exp
l

.
P P

where

h" 'I (n/2)
2~(n +2)/2 2

(10.10)

So, the correlation function asymptotically approaches
zero (as a power) for very large physical separations.

A related indication of symmetry restoration is

( 4(x) ) = (exp
i (x)

P

=exp — ((t) (x) )
2P

h" 'I'(n/2)
1

(n +2)/2 24~" p

a„a (t)

~;a(t;)
(10.11)

or (4(x) )~0 as ~;~0, so as we remove the infrared cut-
off, the expectation value of the field vanishes. For n =1
and h =0 we recover the massless (1+ 1)-dimensional
flat-spacetime result

Kg
(@(x)) =exp — ln

4mp
(10.12)

The restoration of continuous global symmetries by
anomalously large correlations in the infrared is a well-
known phenomena in lower-dimensional field theories and
spin systems in flat spacetime. For a nice discussion of
the physics involved, see Ma and Rajaraman. We briefly
review some of the points discussed in their paper. It is
clear that symmetry restoration is a quantum-mechanical
phenomena. Quantum fluctuations (zero-point motion)
usually lead to spreading of the wave function about a
classically allowed trajectory; if they are large enough
then no trace of the classical trajectory remains. Clearly
this is what happens to the field 8 which lives on the cir-
cle; a logarithmic infrared divergence in its two-point
function just means that there are many paths in the space
of 8's connecting two points; some of these will subtend
an angle that is equal to the difference between the two
points plus an integral multiple (which could even be in-
finite) of 2~ These corr. elations wipe out the classical
minimum, which is at some fixed value of 8 on the circle.

It must be stressed that the zero mode on the n-sphere,
which is present both in the infrared and the ultraviolet
(see Appendix E), is not responsible for the spreading of
the wave functional in field space. Symmetry restoration
is a direct consequence of the infrared logarithm in the
propagator.

A few comments are in order; as we go up in dimension
a decreases (for fixed h " '/p ). This means that
(C)(x)Q'(x') ) for large separations dies more slowly in
higher dimensions; which is what we expect. The loga-
rithmic divergences present in scalar field theory in
(n +1)-dimensional de Sitter spacetime are very similar to
those in 2+ 1 flat-space finite-temperature field theory or
1 + 1 zero-temperature field theory. However, these
divergences do not seem to be like finite-temperature
divergences, because field theory at finite temperature can
effectively be identified with zero-temperature field theory
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in the same total number of dimensions but with the time
dimension curled up. So, as far as the infrared diver-
gences of the theory are concerned, the number of dimen-
sions has been effectively reduced by one, and not by
n —2 as seems to be the case in de Sitter space.

XI. DISCUSSION

The functional Schrodinger approach to field theory
has proved to be both intuitively and technically useful
for analyzing quantum field theory in curved spacetime.
Although we have only considered scalar field theory, our
results may easily be extended to allow analysis of
nonzero-spin fields in de Sitter space. Similar analysis
may also prove useful for understanding field theory in
other backgrounds of cosmological and astrophysical in-
terest. We are now investigating scalar field theory in
matter- and radiation-dominated FRW cosmologies using
these methods.

We have seen that spontaneously broken symmetries are
dynamically restored in de Sitter space. Although it is
clear that this is caused by an infrared divergence in the
propagator, it is not obvious why the propagator diverges
logarithmically for large physical separation —inde-
pendent of the number of dimensions. It is tempting to
try to identify the Hawki'ng effect as the cause for this
symmetry restoration, but this identification does not
seem to be correct. This is primarily because from finite-
temperature field theory, we know that the infrared prop-
erties of an (n+1)-dimensional finite-temperature field
theory are the same as the n-dimensional zero-
temperature version of the theory. Here it seems that the
(n+1)-dimensional field theory in a gravitational back-
ground is very similar to (1 + 1)-dimensional Minkowski-
space zero-temperature field theory. Furthermore, we
know, from the analysis of Shore, that discrete sym-
metries in de Sitter space do not seem to be as drastically
affected. Finally, similar analysis in other metrics, in par-
ticular the Schwarzschild metric, do not seem to reinforce
this interpretation; in fact, this phenomena may be pecu-
liar to de Sitter spacetime. Alternatively, this could be in-
terpreted as being inconsistent with the conventional iden-
tification of field theory in nontrivial backgrounds and at
finite temperature.

Whether this effect has any consequences for the infla-
tionary scenario remains to be seen. In the inflationary
scenario one can conceive of an earlier FRW phase effec-
tively acting as an infrared cutoff. However, as we have
seen, the de Sitter evolution will generate infrared diver-
gences, on a characteristic time scale of the order of the
Hubble time. It would be interesting to see if familons
would be affected by this phenomena and if so, whether
these effects would survive reheating.

To show that a broken continuous symmetry is restored
we have considered the simplest possible case, a broken
U(1) symmetry. In flat spacetime [(2+ 1) dimensions,
finite temperature] McBryan and Spencer have shown
that the two-point correlation function for the field @
[with a U(1) symmetry] can be used as a bound for two-
point functions of O(N) nonlinear o models, and so if a
U(l) symmetry is restored so will an O(N) symmetry. We

expect that the behavior of the U(1) will also bound the
O(N) case here.

The functional Schrodinger formalism readily permits
an analysis of the uniqueness of the vacuum wave func-
tional. We have shown that the coefficient f (t) of X, in
the exponent of the wave functional, satisfies a first-order
nonlinear differential equation which can be transformed
into a second-order linear differential equation. This has
two linearly independent solutions, but the transformation
connecting f to the general solution is such that only the
ratio of the constants is important; hence, f depends on
one constant (this is because the Schrodinger equation is
first order in time) whose value we must determine.

We find no substantial difference between the unique-
ness of this wave functional and the equivalent one in
Minkowski spacetime. The main difference between these
two wave functionals lies in the interpretation of the ini-
tial conditions imposed. In Minkowski space one can but
does not have to invoke regularity on the Euclidean sec-
tion. In de Sitter space, in k=0 coordinates, a real Eu-
clidean section does not exist; however, we may impose as
the initial condition the requirement that the field energy
remain finite as a —+0 (t~ —oo). When we try to do a
similar thing in k=+1 coordinates, we find that we end
up with Hawking s' prescription because a~0 (in fact, all
a & I/h) lies in the Euclidean section of the manifold.
Thus Hawking's prescription for the semiclassical case
may be interpreted, physically, as a special case of the re-
quirement that the field energy remain finite as a~0.
This interpretation could, perhaps, be extended to the
fully quantum-mechanical case; certainly it is correct if
we consider the metric fluctuation as just another quan-
tum field propagating in the background metric.

It seems conceivable that this formalism (along with the
initial/boundary condition prescription) can be used to
resolve the problem of the correct vacuum state (mode ex-
pansion) for those spacetimes to which it is applicable.
Particle production manifests itself in the time depen-
dence of the vacuum wave functional. ' Perhaps the ma-
jor advantage of such an approach is that it allows one to,
utilize physical intuition developed solving quantum-
mechanical problems. Also one need solve a first-order
(in time) differential equation instead of the Klein-Gordon
equation; hence, we require only one initial condition.

We have also succeeded in finding a creation operator
that allows us to explicitly construct the excited state
wave functionals from the ground-state wave functional.
We hope to discuss this and some other topics, in particu-
lar, the behavior of nonlinear a models and discrete sym-
metries in de Sitter spacetime, in the future.

ACKNOWLEDGMENTS

I am very grateful to M. Peskin and L. Susskind for in-
valuable guidance and many patient discussions. I also
thank I. Antoniadis, P. Franzini, E. Martinec, M. Muell-
er, P. Nason, and N. Tsamis for useful suggestions, as
well as P. Franzini and especially M. Peskin for extensive
comments on preliminary versions of the manuscript.
This work was supported by Department of Energy Con-
tract No. DE-AC03-76SF00515.



31 RESTORATION OF SPONTANEOUSLY BROKEN CONTINUOUS. . . 1949

APPENDIX A:
EVALUATION OF THE INTEGRAL (5.23)

We use

00 —k2J 2(kt)+Y 2(kt)= f exp +t y K„(t y)
y 2y

2

mt r

So

1/2
' (1—7i)/4

n ' n —2 r 2

I ——v I —+v t
2 2 4

2

X&(1—7i)/2 r
2i2

(A4)

(Al)

(Ref. 23, p. 94), to rewrite the integral in (5.23) as a double
integral and interchange orders of integration (all integrals
are convergent) to obtain

e' K (t' ) f dkk" 'e " '"J («)

(A2)

We can evaluate the second integral, using Eq. (5.9) of
Ref. 24. We find

( (x) (x'))= 1

(n + 1)/2& n —1„(n—1)/2

X
I (n/2 —v)I (n/2+v)

(4t 2 r2)(n —1)/4

2

XP(1—n)/2
v —1/2

2i

Or using Eq. (6) on p. 143 of Ref. 25, we find

(p()p(p))h"' I (n/2 —v)I (n /2+v)
(477)'"+" 2 I ((n +1)/2)

(AS)

rr" / '
dy y" / 'K„(t y)exp t y — y2

Then Eq. (3.31) of Ref. 24 gives us

(A3) n n n+1 r
X+ —~+—,v+ —; ;1—

2 2 2 4i

(A6)

APPENDIX 8: GENERALIZED SPHERICAL HARMONICS

The n-dimensional spherical harmonics are the eigenfunctions of W(n), the Laplacian on the unit sphere S [for coor-
dinatization and metric see (2.15)]:

n —2

s111 8„s1n 8„1 ~8 1

1

sin O„sin 8„1 . sin 82 881
(81)

where 8; stands for the derivative with respect to the
coordinate 8;. The n-indexed Y„w(Q) ( W stands for the
collection of "magnetic" indices B,C, . . . , which run
over the integers [—A, A], [ B,B], . . . , resp—ectively) are
defined by the following equations:

~( ) YAw(Q)=~A YAw(Q) (82)
where the O(n+1) symmetry makes the eigenvalues in-
dependent of all but 3; and

f dQ
i YAw(Q)

i
=1 . (83)

We can find /(, A by studying the case where W =(). Equa-
tion (82) gives us

A!(2A +n —1) I'
2

nI
2

24 —n~(n+2)/21 (g +n 1)

)& CA" " (cos8„) . (86)

which is just the Gegenbauer equation [Eq. (22.6.S) of
Ref. 22]. So A, A

———/I (A +n —1) and YA p(x)
=c)CA" " (x). To determine the constant c1 we make
use of the orthonormality of the Y's; using Eq. (22.2.3) of
Ref. 22 we find

1/2

S1n7i
sin" '8„88„()8„YAp(Q) =A,A YAp(Q) .

Using Eq. (22.3.12) of Ref. 22 we obtain

The substitution x =cos8„reduces this to

8 8(1—x ) nx YA()(—x) =A, A YAp(x),Bx

(84)

(8S)

n+1
2

Ypp(Q) =
(n+1)/22'"

1/2

(87)
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Explicit forms for the C' '(x) may be obtained from
the generating function [Ref. 22, Eq. (22.9.3)]

(1—2xz+z ) = g z C~ '(x) .
m=0

The addition formula is

CA" "/'(cosy) =c2 g YAw(II) YAw(&'),

where y is the angle between Q and Q' and c2 is a con-
stant which we must determine. The right-hand side is
invariant under rotations, so we can rotate 0' to the
North pole:

I'A w ( O' =North Pole) =6w o

/I!(2/I +n —1) I n —1

2

2 "ir'"+ ' I lA+n —1)

1/2

C(& —i )/2( I ) (B10)

Using

C(n —i)/2(1) (~ +n 2)!
/I!(n —2)!

(B1 1)

we eventually obtain

C( — )/2( osy)
4 (n+1)/2

g +A W(+) ~A W(+ )

(2A +n —1)I
2

We are now in a position to expand
~

x—y ~

'" "in spherical harmonics. Let
~

x
~

&
~ y ~; then

1 1 C(n —i)/2(
)

~x —y~" ' x" '
A ()

(n+1)/2

A+n —1

n —1 AR' x
2

&A*w«»A w«')
(2A +n —1)

(B13)

APPENDIX C: EVALUATION OF THE SUM (7.14)

Using Eqs. (18), p. 144, (13), p. 141, and (2), p. 143 of Ref. 25, we can write
2

P —A (n —i )/2( ~ t t )P A (n —) )/2( —~ t —
t )

2 nr w+ —+&
~ cost 2[ PA+n 2/ —i (sint)] + 2 [QA+n/2 —l(sint)]

gn —1 n n(P(x)P(x')) = I —+v I ——v
(4 )(n + i )/2 2

(1—n)/4
h o.

X 1+
J 2 2—i(v —1/2)g ~(1—n)/2 q + ~I

Now E . (10) on p. 140 of Ref. 23 allows us to replace P, /2'" "
( i tant) —with a linear combination of

P "(/2'" ' (i tant) and Q i/2" ' (i tant). Then using equations on p. 179 of Ref. 21 (the expansion for Q" =&"„,
has an extra factor of e ' "and of e ' ", dropping both of these corrects it) reduces (7.15) to

'(1—n)/4
2 2

4

Q2 2

+2~ J I (n —1 )/2 jn sin7T — & ~ ( 1 —n ) /2
1 +M v—1/2

wher«he»gn of the phase of the coefficient of P",/'2 is determined by the fact that this is the equal-time limit of the
Feynman propagator:

I 2 2

Im 1+
2

= hmIm
t~t' [r ( t+t ie) ] &0. —— —

a (t)a (t')

Then Eq. (10) on p. 140 of Ref. 25 allows us to write this as
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h" ' n n
((t(x)(t. (x')) = I —+v I ——v

(4 )(n + ()/2 2

(1—n)/4
h 0.

(1—n)/4
I 2~2

+

~p(1 —n)/2

L

v—1/2
h o.

1+

and finally, using Eq. (15.4.18) of Ref. 22, we have

h" ' I (n/2+v)I (n/2 —v) n n n+1 h o.

(4~)n+' I ((n + 1)/2) 2 2 '
2

(C4)

APPENDIX D: EVALUATION OF THE SUM (8.18)

In this appendix we establish Eqs. (8.15) and (8.18). Let

and

X =cosign+1
h" 'I (n)f, (x)

F((x)=
(4n.)'"+" I ((n +1)/2)

h" 'I (n)f2(x)
F2(x)= (4') "+" I ((n +1)/2)

h" 'I (n/2) (2A +n) C(n/2)
41T'"+ ' (3 +n/2+v)(A +n/2 —v)

r

h" 'I (n/2 —v)I (n/2+v) n n n+1 1+x—+v, ——v;(4~)("+"/21 ((n + 1)/2) 2 2 2 2

(Dl)

(D3)

and (D4)

F) (x) = F2(x)
dX ~ =~0 dX

It then follows that F)(x)=F2(x) (see, for instance, Whit-
taker and Watson, Sec. 10.21).

Clearly, F2(x) satisfies the hypergeometric equation,

We shall now establish that F((x) and F2(x) satisfy the
same linear second-order differential equation, and the
same boundary conditions:

F) (x() ) =F2(x() )

It is easy to show that Gegenbauer functions with nega-
tive integral subscripts vanish and, hence,

HF)(x) =0 .

Now using Eq. (15.2.1) of Ref. 22, we have

d 277

dx h2
F2(x)„= F2(x)„+2,

(D9)

(Dlo)

where the second subscript on F indicates the value of n

wherever it appears in the expression for F2(x), except in
the cosyn+( term, which remains unchanged. Similarly
[Eq. (30) on p. 178 of Ref. 25] we find

HF2(x) =0, (D5)
d =2~F((x)n =

2 F((x)„+2 .
dx

(Dl 1)

where

cEH: (1+x)(1—x) — (n + 1)x—
dX dX

n Il
+V —V

2 2
(D6)

We shall now show that the two functions satisfy the
same boundary conditions. It is convenient to work with
f((x) and f2(x). The series representation of f((x) [see
(D2)] becomes relatively simple at x =+1 and 0; we con-
sider the case x = —1. Then Eq. (22.4.2) of Ref. 22 al-
lows us to rewrite this as

Now

h" 'I n/2
(D7)

1 1 1f(( —1)= +I (n) „2+n/2+v 3 +n/2 —v

where we have made use of Gegenbauer's equation. We
may use relations between Gegenbauer polynomials (Ref.
25, p. 178) to express (D7) as

nh" 'l(n/2) [C( +2)/2( ) C( +2)/2( )]
4 (n +2)/2

(D8)

1(A+n)
( 1)

A!

and from Eq. (15.3.1) of Ref. 22 we find

f2( —1)= I ——v I —+v1 Il 7l

I (n) 2 2

(D12)

(D13)

Using the integral representation of I (A+n), and inter-
changing the order of integration and summation (the in-
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tegral and sum are convergent) we may rewrite (D12) as

f dy e-&y"-'

The integrand of this double integral is symmetric in y
and t; hence, we can extend the upper limit on the second
integral to oo while simultaneously dividing by 2:

CO 1
X +

A +n /2+v A+nl2 —v
( )A

A!

oof ( —1)= f dye 9"" '
y "X —+vyI (n) o 2

(D14)
Now, both of the series in (D14) are related to incomplete
gamma functions [see Ref. 22, Eq. (6.5.29)], so we find

oo OC

fi( —1)= dy dt e ye —~n/2 —v—]tn/ 2+v—
1(n) o o

1 (n/2+v)1 (n/2 —v) = 2
—

~

r(n) (D17)

So, we have established Fi( —1)=F2( —1). Then from
(D10) and (Dl 1) we see

+3' '7 —»3'
2

Fi(x)d
F2(x)

x= —1
dx

(D18)

(D15)
Using the integral representation of the incomplete gam-
ma function we then obtain

fi( —1)= f dy f dte ~e 'y"
I"(n)

Xt" (t'y '+y't ') .

(D16)

Thus we have established

Fi(x) =F2(x) . (D19)

The sum that we need to evaluate in the conformal case
(8.15) may be obtained from the general result by consid-
ering the value v= —, and simplifying the hypergeometric
function.

APPENDIX E: APPROXIMATE GREEN'S FUNCTIONS

In this appendix we develop two power-series expansions of the minimally coupled scalar field's equal time Green's
function, one valid for large, the other for small, separations. For large separations we would find a power series in (1/r)
helpful. Using Eq. (15.3.8) of Ref. 22, we have

I (a)I (b) I (a) —a —1F[a b c 1 —z]= . „z 'F[a c ba b+—1 z ]-
+ . z F[bc —a b —a+1 z ].r(b) —b . . —1

I (c —b) I (1—a +b) sinrr(a b)—
Defining X=(h a r )l4, we can convert Eq. (5.24) to the form

(El)

(p( )p( '))= h ~ 1(n/2 v)X F —+ i, n —;1—2;X
(4m)'"+ "/2 X"" I ( —,

' +v)1 (1—2v)sin(2mv)

I (n/2+v)X ' | n

I ( —, —v)l (1+2v)sin(2mv)
(E2)

We then use the power-series expansion for the hypergeometric function to write this as

I n —1 . I (-,' —v+p)r(n/2 —v+p)X-~
, xg

(4m )"+' 2 sin(m. v)X" ~ o I (1—2v+p)p! p=0

1 ( —, +v+p)I (n /2+ v+p)x
I (1+2v+p)p!

Now if we are interested in the X~ ao limit, the leading term will be the p =0 contribution from the first power series,
which is

h" ' I (2v)
(4~)(n+ I)/2 I (

i + )
X ~2P n

2
(E4)

or for a very small mass,

I n —1

X~ oo

(ES)
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(4~)(n+ "/2 I ((n +1)/2) (E6)

For small separations a power series in r would be helpful; Eq. (15.3.6) of Ref. 22 gives

I'(a)I (b)
[ b ]

m. I'(a)l (b)
I (c) ' ' ' I (c —a)I (c —b)sinn(c —a b)—I"(a +b —c + 1)

I (c —a)l (c b) ~—-n b-
r(c —a —b+1)

)&F[c—a,c b;c—b ——a +1;z] (E7)

so that

h" 'm.
(P(x)P(x') }=

(4m)'"+" X'" " I'( —' —v)1 ( —,
' +v)sinn[(n —1)/2]

1((3—n)/2) ' ' ' ' 2

(„1)/2 I (n/2+v)I (n/2 —v) n n 1+n
1((n+1)/2) 2 '2 '

2
(E&)

Using the power-series expansion for the hypergeometric function this becomes

(4~)'"+" sine[(n —1)/2]I ( —,
' +v)I ( —,

' —v)X'"

- r(-,' —v+p)r(-,'+v+p)X~
I ((3 n)/2+—p )p!

X(„1)/2 ~ I (n/2+v+p)I (n/2 —v+p)X~
I ((n +1)/2+p)p! (E9)

We notice that the Green s function has an X-independent piece which comes from the p =0 term in the second series
and is given by

n —I

n —1 3 —pl n nr I I —+v I ——v
2 2 2 2

)(n+1)/2 I'( —,'+ v) r(-,' —) )i+1
2

In the limit of small mass, we can write this as

gn —1

(4~)( n + 1)/2
I (n) 1

72+1
2

(E1 1)

However, if we keep all terms which contain negative powers of X we get a power series:
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I n —1

lim (P(x)P(x') ) =
X~O (4 )1n +1)/2

r(n)
n+1

2

—+1

5

1+n
2

n —1

2

~—[(n —1)/2]+

3+n
2

n —3
~—[{n—3)/2]

5+n
2

n —5
2I

2

~—[(n —5/2]+. . . (E12)

Notice that the first term is the only term that diverges as we let the mass go to zero (this can be interpreted as the zero
mode on the n sphere, see below). The terms with negative powers of X presumably are the ultraviolet divergences of the
theory; in fact, in (3+ 1) dimensions, the second term is just 1/4' a r which is the standard ultraviolet divergence in
three dimensions.

The contribution of the zero mode on the n-sphere to the propagator is [from (7.14) and (B7)]

n+ j.

2
( (x) (x'))o ——

1

4 (n+ I)/2 n —1 [R f( )]

For a small mass we have [from (7.12) and (Cl))

(E13)

I

[Ref(t)]~ =o ~cost
(E14)

Then using Eq. (14) on p. 150 of Ref. 25, we can rewrite (E13) (for a small mass) as

h" ' r(n) 1

(4 )'"+"/ r((n +1)/2) 5
(x)tb(x') o

—— (E15)

which is exactly the same as the first term in either (E6) or (E12). From (8.17) we see that this is also the zero mode on
the (n + 1)-sphere that is the Euclidean section of de Sitter spacetime.
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