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Magnetic monopoles from antisymmetric tensor gauge fields
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Vfe consider the generalization of the Dirac monopole solution of Maxwell theory to theories of
antisymmetric tensor gauge fields of arbitrary rank. A Dirac quantization condition is derived.

These generalized monopoles are expected to be relevant for models of strings and higher-

dimensional extended objects, and perhaps also for Kaluza-Klein theories.

INTRODUCTION

Antisymmetric tensor gauge fields play a prominent
role in theories of closed strings, and hence also in the
corresponding (a'-0) gravity theories. ' Moreover,
such gauge fields can trigger interesting compactifications
in Kaluza-Klein models, and may even be responsible for
the smallness of the cosmological constant.

Here we investigate rank- n antisymmetric-tensor-
gauge-field configurations which are direct generaliza-
tions of the Dirac magnetic monopole. Such generalized
magnetic monopoles are solutions to the Kalb-Ramond
equations, and, in fact, were first considered by Freund.
(We became aware of Ref. 6 as our own investigation was
nearing completion. Since there are some differences in
the two approaches, and the former work is no longer
readily available, we deemed it useful to present our work
as well. ) For clarity of presentation, we first exhibit the
(static) spherically symmetric solutions, corresponding to
point magnetic monopoles; we then study solutions which
correspond to extended (i.e., string, bag, . . . ) magnetic
charges. The extended monopoles are the objects that
necessarily appear in the electric-magnetic dual cases (i.e.,
those cases for which the electric and magnetic fields have
the same number of components), except of course for the
four-dimensional case.

That extended objects enter the picture should come as
no surprise: whereas vector gauge fields couple to point
electric charges, higher-rank antisymmetric tensor gauge
fields couple to "electrically" charged extended objects.
This coupling contributes to the amplitude for transport-
ing such an object along a path. In the latter part of this
paper, we examine parallel transport in the presence of
our generalized magnetic monopoles. The analysis is
analogous to the familiar Maxwell theory case of point
particles; in particular, a Dirac quantization condition is
deIlved.

POINT MAGNETIC MON@POLES (.D =n +3)

Let 8 denote the n-form corresponding to the rank-n
antisymmetric tensor gauge field 8„.. . ~ (x),I'l ' ' ' I' n

8:B. . ~ (x)dx —''dx, pi=0, 1, . . . , D —1

Here, x& are Cartesian coordinates on D-dimensional

Po= l':—
n+2
g x'x'
a=I

1/2

k

pk=r + sin8„+&--, 1&k(n.

The field configuration 8+ {8 ) on the upper {lower)
hemispheres of S"+', corresponding to a po'"™gnetic
monopole at the center of the sphere, is

8+ =k„[+c„+f„(8„)]dA„, (2)

where c„and k„are constants, the function f„(8)satisfies

df„(8) =sin"0,

and dQ„ is the n-form,

n —1

dQ„= +sin 8 d8- dP;

that is, dQ„ is the area element on a sphere S", which is
the equator (8„=n./2) of S"+'.

The constant e„ is determined by a simple consistency

argument. Observe that the field strength

H =H& . . .&
dx"' - . dx""+' is given by

H=dB+ ——k„dQ„+),

hence the magnetic charge is

Minkowski spacetime; as will soon become evident, we re-
quire D =n+3 for constructing static spherically sym-
metric field configurations, corresponding to point mag-
netic monopoles. Furthermore, we choose the gauge

Bo~, . . . ~ (x)=0, a;=1, . . . , D —1,
and take 8 to be time independent.

To exhibit the spherically symmetric configuration, it is
convenient to change to spherical coordinates:

x„+2 k =PkcosO„k 0 Q k +tl —1

x2 ——p„smP,

x& =pncosf,

with
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f,H =k„f, d 0„+i ——k„
I —, n+2

Alternatively,

f „H=f, da+ f, da

= f (8+ —8 )=2k„c„f dII„

2~(n+] ~&2

=2k„c„
r( —,

'
(n + 1)}

Comparing the two expressions, we see that

~~ r( —,
'

(n + 1)}
Cn

2 I ( —,(n+1)}
2n —1

[I ( —'(n +. 1))] . (4)

S = (H, H), — (7)

Finally, by fixing the normalization

,H =4',
we see that k„ is given by

k„=g2m. " r( ,'(n+—2)).

Clearly, our construction is a direct generalization of the
four-dimensional Dirac monopole. By smoothly covering
the sphere with two patches, we have avoided the use of
the Dirac string.

It is not difficult to see that (2) is a solution of the
Kalb-Ramond theory. Recall that the action S is

with all other components of Hz . . . z vanishing.I"1
' ' ' I'n+1

We close this section with the following observation:
from the action (7), it is evident that the field strength
H„.. . & has dimensions (length) . It follows from
(8) that the magnetic charge g (to which k„ is proportion-
al) has dimensions (length)'"+"

EXTENDED MAGNETIC MONOPOLES (D & n +3)

For D & n+3, static spherically symmetric magnetic
monopole solutions are no longer possible; indeed, the
monopoles are then extended objects. One way to see this
is to observe that the magnetic current 5+H is a
(D n ——2)-form, corresponding to an extended object of
dimension D —n —3.

In particular, consider the case D =2(n + 1), for which
both H and eH are (n +1)-forms, and for which also the
action is conformally invariant. (See, e.g., Ref. 10.) This
is the so-called electric-magnetic dual case. By the previ-
ous counting, the monopoles of the electric-magnetic dual
theories are extended objects for n & 1.

Monopole solutions for D ~ n +3 can be obtained trivi-
ally by imbedding- the spherically symmetric solutions
presented above. Suppose that the monopole has coordi-
nates 0=x'=x = . . =x"+; i.e., it lies on the spacelike
(D n —3)-—hyperplane spanned by x"+,x"+, . . . ,
x '." One can verify that a solution to the field equa-
tions is given by

k„
n+1 n+2 a1 . . an+lan+2r

which is gauge invariant, since H (which locally is equal
to d8) is itself invariant under the gauge transformation
8~B+d A. The corresponding field equations are

n+2
a;=1, . . . , n+2, r = g x'x'&0,

a=1

(9)

dH =0,
5H =0.

with all other components of H„.. . „(wherel"1' ' ' l"n+1
p; = 1, . . . , D —1) vanishing. [Compare with (8).] Tak-
ing k„ to be given by (6), one can see that

Although H is a priori a form on a D-dimensional
(D=n+3) spacetime with Lorentz metric, the gauge
condition (1) and the requirement that H be static imply
that we can treat H as a form on a (D —1)-dimensional
space with Euclidean metric. It then follows that such
an H is a solution to the field equations if and only if H is
harmonic; i.e., hH —= (d5+5d)H=O. In fact, the area ele-
ment (3) is harmonic; indeed, a fundamental result of
deRahm cohomology is that dQn+& is the unique non-
trivial harmonic ( n + 1)-form on S"+'. (See, e.g. , Ref. 9.)

The magnetic monopole field strength (3) can readily be
re-expressed in Cartesian coordinates. Using the relation

k„H= ~a . . a agn+1 gn+1 n+2 1 n+1 n+2r

&&x "+'dx ' dx "+'=4mg, (10)

where S"+' is the sphere r =const, which is imbedded in
the ( n +2)-hyperplane orthogonal to
x"+,x"+, . . . , x '. We say that this S"+' "sur-
rounds" the monopole, although this does not coincide
with the usual notion of the word. For the electric-
magnetic dual case, the constant g is dimensionless. Solu-
tions of this type were first considered in Ref. 6.

dQ„+) ——
n+2 1

x n+'dx ' - dx n+'
n+1 n+2

a;=1, . . . , n+2,
n+2r'= g x'x'&0,
a=1

it follows that

k„ aH, . . ., = e xn+'
a1 . a„+1 n+2 a1 an+1 n+ (8)

EXTENDED ELECTRIC CHARGES AND PARALLEL
TRANSPORT

The physical interest in antisymmetric tensor gauge
fields lies primarily in their coupling to extended electric
charges. Consider an ( n —1)-dimensional closed extended
object having the topology of S" '. (For instance, n= 1

corresponds to a point particle, n=2 to a closed string,
etc.) Let x"(o~,cr2, . . . , o.„) be the coordinates of the
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FIG. l. A loop of loops (keeping one point, the north pole,
fixed) is a sphere S . Similarly, a loop of S" ' spheres is S".

FICx. 2. The manifold M-S" has two capping surfaces g
and Q', which together form the sphere S"+'.

X Xgl I +n( ) dn g(D)( )

and e is the electric charge of the extended object. The
charge e has dimensions (length) ~ '"+".

Performing the integration over spacetime y&, (11)
reduces to an integral over the world surface M,

S;„,=e (12)

Thus the amplitude for transporting the extended electric
charge along M is proportional to exp(ie B)

M .Let us suppose that the (n —1)-dimensional charge(-S" ) is transported, keeping one of its points fixed,
slowly along a closed path, so that it sweeps out the sur-
face M -S". (See Fig. 1.) The corresponding amplitude
1S

ie f 8 ie f H
M —e Q

where H =dB, and Q is an (n +1)-manifold such that
BQ=M-S". However, there is an ambiguity in the
choice of capping surface for M; one could equally well
have chosen Q' (see Fig. 2), in which case the amplitude is

ref a ref a—
M —e Q'

Consistency requires

e H =e,H =2k~,
where k is an integer. If the sphere S"+' surrounds a
magnetic monopole of the type considered earlier, then
this and (5) and (10) imply the quantization condition

keg= —.
2

'

This result is independent of the dimension D of space-
time.

world surface M swept out by this object. The coupling
to the rank- n antisymmetric tensor gauge field
Bp . . . p (y) ls

S;„,= J dDy B„,. . .„(y)J"' ""(y),

where the current J ' "(y) is given by
P) ' 'Ppg

In passing, we observe that the recent cohomological
discussions' of covariant translation operators in the
background field of a magnetic monopole can now also be
generalized. In particular, following Ref. 12, a magnetic
monopole for a rank-n antisymmetric tensor gauge field
leads to an (n +1)-cochain (namely, the integrated field
strength) and a trivial ( n +2)-cocycle.

We have seen that the Dirac magnetic monopole solu-
tion has a natural generalization for antisymmetric tensor
gauge fields of arbitrary rank. These solutions are expect-
ed to play a role in models of extended objects, to which
these gauge fields naturally couple. Other situations in
which these solutions might arise can also be imagined.
For instance, Kaluza-Klein theories involving antisym-
metric tensor fields may compactify on such monopoles.
Interestingly, the D= 10, X= 1 supergravity theory con-
tains the rank-two gauge field B&„whose "preferred" di-
mension (electric-magnetic dual) is six.

Note added in proof. (1) It is easy to see that general-
ized magnetic monopoles are precisely Freund-Rubin
configurations. Indeed, recall that r "dQ„=d "yv g,
where y" are coordinates on S". (In the text, we used
Cartesian coordinates on R "+' instead. ) It follows that
H =Hp . . . @ dp ' . . dp"" =k d Q„ implies

k 1
Hp . . .~ = Ep . . .~ vg

Clearly, this is a Freund-Rubin configuration. We em-
phasize that if there is an extended object which couples
to 8& . . .

@
with strength e, then the product ek is

quantized. (2) Topological objects similar to those con-
sidered here have been discussed in a different context by
R. Savit [Phys. Rev. Lett. 39, 55 (1977)] and P. Orland
(Nucl. Phys. 8205 [FS51, 107 (1982)).
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