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Time variation of coupling constants in Kaluza-Klein cosmologies
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%'e present a cosmologica1 analysis of a six-dimensional Einstein-Yang-Mills-Higgs model with
SO(3) invariance to which is added a matter term. An analytical expression for the time variation of
the internal radius is obtained together with the predictions for the variations of the coupling "con-
stants" involved. Their variation is limited to the very early stages of the cosmological evolution
since the internal radius quickly becomes constant. It is shown that, once the asymptotic behavior
sets in, the four-dimensional space-time expands linearly in time with a zero effective cosmological
constant, after fine tuning.

I. INTRODUCTION

Over the past ten years or so, the construction of a uni-
fied theory of gravity and the other fundamental gauge in-
teractions has received renewed attention. Generalized
Kaluza-Klein theories' offer the possibility of achieving
this unification via a geometrization of the gauge interac-
tions in which the space-time has 4 + D dimensions with
the extra D dimensions forming a compact manifold
whose isometry group is related to the invariance group of
gauge interactions (see Ref. 2, and references therein). In
this way, internal quantum numbers are associated with
translations and rotational invariance in the extra dimen-
sions much in the same way as energy and momentum are
associated with invariance properties of the four-
dimensional space-time.

Although this idea is extremely attractive for its formal
beauty, there are still a number of questions to be
answered and we are still far from obtaining a proper uni-
fied model. At the quantum level, there is the problem of
anomalies which impose strong restrictions on the possi-
ble internal spaces that can be used, whereas at the classi-
cal level there is the problem of obtaining fermions with
the correct chirality once the theory is reduced. In this
connection, it has been suggested that the inclusion of
magnetic monopoles in the models may play an important
role in solving the chirality question. "

Several models have been constructed in which a mag-
netic monopole is defined in the internal space. The in-
clusion of the two-index (or three and four for supersym-
metric theories) tensor field in the action allows solutions
of the Einstein equations where the (4+ D)-dimensional
space-time "spontaneously compactifies" into the product
form M + =M )&S with M" being our four-
dimensional space-time (usually a Minkowski or anti —de
Sitter space) and S being the compact D-dimensional
space mentioned above. ' Physical fields are then ob-
tained by harmonically expanding the (4 + D)
dimensional fields in the internal space.

At this point we might pause to ask to what extent the
extra dimensions should be taken seriously. Are there any
detectable effects that can prove or disprove the existence
of extra dimensions?

It is generally believed that cosmology can provide the
best way to look for evidence. Because of the intimate
relation between the coupling constants and the radius of
the internal space in these models, we expect that a time
variation of this radius would imply a time variation of
the coupling constants. It has also been suggested that
shrinking of the extra dimensions can generate enough en-
tropy to support an inflationary epoch and even explain
the origin of the cosmic background radiation. Although
these questions are obviously related, in this paper we
wish to concentrate on the former, the main reason being
that it is possible, as will be shown, to obtain a solution of
the field equations that produce a shrinking of the inter-
nal radius without taking temperature into account.
However, the physical consequences of our model can
only be fully understood when both aspects are considered
and we propose to present these results elsewhere.

In a recent paper, we obtained a number of power-law
solutions for the D-dimensional Einstein-Maxwell,
D = 11, X = 1 supergravity and D = 10, X =2 supergrav-
ity theories. A careful examination of these solutions
shows that the inclusion of a scalar field may be the key
to obtaining more attractive solutions, in particular if we
compare the Einstein-Maxwell with the D = 10 supergrav-
ity actions. In the former, a time-varying internal radius
implies a time variation of the cosmological constant
which is forbidden by the Bianchi identities. Thus, only
static internal spaces are possible.

For this reason, we decided to study the six-dimensional
Einstein-Yang-Mills-Higgs model proposed by Cremmer
and Scherk' which features an SO(3) monopole taking
values in the two-sphere. We have also added an extra
matter term which has proved to be of fundamental im-
portance in obtaining the solutions. As the analysis is re-
stricted to the broken-symmetry phase, we may conjecture
that this matter term is representing fermionic matter (in
a way not very different from the linear cr model" or as a
fermionic condensate). "

As is usual in these models, we have two free parame-
ters involved: the initial radius, Rzo, and the "compactifi-
cation time, " to. Whether to is the initial singularity or
the time of a dynamical compactification process is ir-
relevant for our solutions, so that for economy it was set
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to zero. More will be said about R20 later. The natural
scale for Kaluza-Klein theories seems to be somewhere
between the grand unification and the Planck scales. This
implies that if a completely isotropic phase existed before,
it can only be understood with quantum gravity effects
being included. ' Nevertheless, it is reasonable to adopt a
classical treatment if the product-space structure has al-
ready been achieved, as in the present case.

This paper is organized as follows: In Sec. II we give a
brief description of the model and obtain the field equa-
tions. In Sec. III we derive the solution for Rz(t) and
analyze the asymptotic behavior of the solutions. We con-
clude by discussing our results in Sec. IV.

Rmn =—
4

Az d Rz
dt R,

3R3 2R2 R2+ R + R R gmn
3 2 2

(3c)

TMz"' (eP +——e'P' )gMx+(p +P )UM Ux,

where K3 and E2 are the curvature constants for the
three- and two-dimensional spaces, respectively.

In view of Eq. (1), the most general form of the
energy-momentum tensor for matter is

II. DESCRIPTION OF THE MODEL

0

gM~(z ) = 0 R3 (t)g J(x')
0

0

As usual, we take the metric to be of a generalized
Robertson-Walker form. This ensures the homogenei-
ty and isotropy of each space separately, stressing the
product structure of the (4+ D)-dimensional space-time
It can be written as

where

0, MN=p, v

1, M X=m, n

0, MT= m, n
and e= .

1, M,X=p, v

p~, P~, and P~ are the matter density, the external, and
internal pressures, respectively.

The six-dimensional Einstein- Yang-Mills-Higgs action
is given by'

where

0 0 Rz (t)g (h~)
6

g
I,'6) j. /2 1 Fa FMN

16+6 4

M, %, . . . =0, 1,2, 3,5,6,
p, v, . . . =0, 1,2,3,
l,J, . . . =1,2, 3 ),

m, n~. . . =5,6 ~

where

+ 2DM4"D 0.+ 2
I (0'0. )

so that the index splitting is z~=(x", Y ). We also take
c =fz= l.

Here, g;&(x ) is the maximally symmetric metric of the
three-dimensional spacelike hypersurface, whereas

g~„(8,$)=d8 + sin 8dg

is the metric of the two-sphere written in terms of the po-
lar coordinates y =8, y =g. R3(t) and Rz(t) are the
scale factors (radii) of the three- and two-dimensional
spaces, respectively.

With this choice of metric, the nonvanishing Ricci ten-
sor components are

F~g ——BM A~ —()~A~+ee g~A~A~ (6)

I'(0 0")=
4

(4'0. —0o')+&

where e is the six-dimensional Yang-Mills coupling, k & 0,
A is an adjustable constant. Also,

R and 6 are the six-dimensional curvature scalar and
gravitational constant, respectively. The gauge group is
taken to be SO(3). Thus a, b, c, . . . =1,2, 3, and A' and

are triplets in SO(3). e'b, is the usual Levi-Civita per-
mutation symbol. The covariant derivative and the
symmetry-breaking potential are defined as

DM (1' ~M 0 +e +bc ~ill 0

3R3 2R2

R R3 2

2%3 d R3 3R3 2R2 R3
+dt R +

R 2+ R R gV

(3a)

(3b)

4o'=«I0 P. Io&=2m'~~.

From the action (5) we obtain the following field equa-
tions:

(i) Einstein equations:

(10)

and we add the matter contribution to T~& which is
given by
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+MN TkN +TMN

TJrIN DM4' DNka +PMPFN a

z—gMN l 2i PP'gFa

+DPI''D

4 a + I (p'&. ) J .

(1 la)

(1 lb)

~ ~

2E2 R2 R2 3R3 R2

R, R ' R3 R2
+ +

=8mG + (p —t))to2)2
4e R2

MN MN MN
;N (Tgauge+ Tmatter );N

(ii) Higgs field equations:

(12)

We have to satisfy the energy-momentum conservation: A 1+ +—(p —3Pm—)+
2

(ii) Higgs equation:

(16c)

1
g

(6) )1/2FMNa] e ea (D Myb )ye
( (6))1/2 be (14)

In order to obtain a solution of the field equation that
exhibits spontaneous compactification, we must have an
ansatz for the Yang-Mills and Higgs fields compatible
with the SO(3) invariance of the internal space. We fol-
low Cremmer and Scherk' to write

Ap=0,

A 5
———( —sing, cosg, 0),1

e

(15a)

(15b)

/I 6
————( —cosg cos8, —sing cos8, sin8)sin8, (15c)Q 1

e

P'=p(t)(cosg sinO, sing sin8, cos8) . (15d)

From Eq. (15d) we see that P'(t, 8,$) is proportional to
the normal vector to the two-sphere at each point but now
the radius need not be constant. For a more detailed dis-
cussion of the symmetries of the model we refer the
reader to Ref. 10. For us it is sufficient to note that our
ansatz preserves the required symmetry together with the
isotropy of the internal space.

If we now use Eqs. (1) and (15) in Eqs. (10)—(14) we ob-
tain the following field equations:

(i) Einstein equations:

3R3 2R2
+ = —SaG

3 2

1 .2 l
4 2R 4 +P —

16 P —4'o
4e R2

——+—(p +P )+
4 m

[( (6))1/™Dy]a pa (13)
( (6))1/2 M - N

g(pbbs )

(iii) Yang Mills f-ield equations:

3R3 2R2
+ + —=—(p' —Po') .

P R3 R2 P 2

(iii) Yang Mills-equation:

e2p(t)2
R,(t)'

(18)

III. SOLUTIONS AND ASYMPTOTIC LIMIT

In order to solve Eqs. (16)—(18), we need equations of
state relating pm, P, and P' . Here, we have to face the
fact that we do not know how to write an equation of
state for the internal pressure. Nevertheless, we may im-
pose some conditions on pm, Pm, and I'm that provide
satisfactory behavior from the physical point of view. As
a first attempt, we may set

I I

—,'(p +P )+ = ——,'(p +P )+ (19a)

I

—,
'

(p 3P )+ =0—,
2

(19b)

which gives p = Pm = Pm/2 as —a—solution. This
choice is useful if we want to define a four-dimensional
effective cosmological constant, A4, from Eqs. (16a) and
(16b) at the asymptotic limit prouided that lim, R2(t)
= R2 ——constant, lim, R2(t) = lim, R2(t) = 0.
However, we will see that as a consequence of the time

~ ~

behavior of R2(t), this choice is ruled out. In order to
have A4 at t~ Oo, the model naturally offers another pos-
sibility which we will adopt. Namely, we can take I" =0
and Pm =p l3, i.e., we neglect the internal pressure and
assume that the matter contribution is in the form of radi-
ation. This choice for the equations of state will prove to
be adequate to obtain the desired solutions.

From Eqs. (16) we obtain

1= —8nG

L

4e R2

A

16
(p —4o ) ——

4

1 ~m——(p +P )+

2%3 R3 2R3 2R3 R2

R R3 R32 R3 R2

(16a)

(16b)

R2 P
R2 P

~ ~

R2 P'———+2
R2 P

(20b)

Using Eqs. (17), (18), and (20), we can write Eq. (16c) as
an equation for R2(t), independent of the equation of
state,

R2 —— +8+CR2
R

(21)
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where

(12e +k),
2e4

X~GyozB= —K2-
2e 2

(22a)

(22b)

dimensional couplings at their asymptotic limit, i.e., if we
substitute Rz(t) by Rz„ in Eq. (27. In order to do this we
must analyze the asymptotic limit of the field equations
as well, using that R2~0 as taboo. However, we still

~ ~

cannot conclude that lim, R2~0 so we set

~(40')'
C =2m.G

4
+A ——yoz .

2
(22c)

~ ~

R2lim—:—o., o.= constant (30)

The solution for Rz(t) is then given by

v b, B+(B—+v b. )a(t)
2C[1—a(t)]

where

5=—B —4AC, 6)0

a( t):—f(R zo ) exp[2'(t —to )],
CRzo +(B—Vb)/2

f«zo') =
CRzo )+(B+v b, )/2

(23)

(24)

(25a)

(the minus sign being chosen for convenience). We can
also write the energy-momentum conservation equation as

2R23Rg
pm+ R +

3 2

4pm 00 00+ Tgauge + Tgauge, O

Using Higgs and Yang-Mills equations and the fact
that lim, R2 ——0, we may write that
lim~ ~pm =pm ~ ——constant.

Thus Eqs. (16)—(18) give, for t~ op:
(i) Yang Mt'/ls e-quation:

We cannot say, a priori, if the condition 6)0 is always
satisfied. However, as we will see, for "realistic" values of
the coupling constants this condition is always fulfilled.
The other possibility, 6 & 0, would give a divergent solu-
tion for large t. '

An important feature of the solution (23) is that the
asymptotic limit (t~ oo ) gives a constant Value for R z„..

2C

This result seems to rule out time-varying constants for
large values of t. But this is an asymptotic result; when-
ever the initial value of Rz(t) Rzo is different from Rz
there will be an expanding or shrinking Rz(t) that will
produce a well-defined time variation for the coupling
constants. To analyze this further, it is convenient to
write the expression of Rz(t) in terms of four-dimensional
constants. In order to obtain the correct dimensionality
we must have'

2=e p~
R2

(ii) Higgs equation:

3Rg

Rg

1= —8+G 4—
4e R2

1 2

e'R,

A o.

4 +pm oo 4 G

2K' R g 2R3

(iii) Einstein equations:

'2

('32)

(33)

(34a)

e =e4 4mR22= 2 2

G =G44mR2

A, =A,44mR2

$0 ——PO4 (4vrRz )

(27)

= —8mG
1

4e'R, „4

A pm'
4 3

'2

(34b)

Thus,

e4

e4

A4

k4 G4

2R2

R2
(28)

E2 3 k 1
z

—o.=8wG
z 4+ 16 z z

—PP
R2 4e R2 e R2

2

(34c)
We note that Eq. (9) gives a constant mass scale:

2p4 (404') 4 =0.
4

(29)
The right-hand side of Eqs. (34a) and (34b) suggests

that we may define an effective four-dimensional cosmo-
logical constant, A4, if we write that

So, our model falls in the second category studied by Mar-
esano.

We can obtain an explicit picture of Rz(t) provided
that w'e write 2, B, and C in terms of the four-

16m.G
pm~ .

A4 is given by

(35)



1908 M. GLEISER AND J. G. TAYLOR 31

1
A4 ——

4e R2

2

A o
4 16m 6 (36)

8mGE = +
e R

Without loss of generality, we can set E2 ——1. From the
asymptotic values of the four-dimensional couplings to-
gether with Eqs. (32), (33), and (37) it is easy to obtain the
expression for A, B, and C in terms of the four-
dimensional couplings and R2„,

As the present value of A4 is believed to be zero (or
nearly), we may fine tune it to be so. This allows us to ex-
press A in terms of other quantities and also gives an
asymptotic behavior for R3(t) of the form R3(t)=at, a
= constant. Also, from (34b) we obtain E3 ———a, which
characterizes an expanding Ricci flat four-dimensional
space-time. In fact, we have a Minkowski space written
in terms of Robertson-Walker coordinates. This result
agrees with our previous power-law solutions but with the
new feature that now this is an asymptotic behavior, not
valid for small values of t

Using that A4 ——0 in (34c) gives

o-R,„'
(37)

L3

Q

Ct

0.50

0.00
0.00 I

0.04

PLANCK

l

0.08

using two sample values for A,4, 0.1 and 0.01, respectively.

e4 &0.064,
(a) Negative root:

e4 &0.064.
0 01(e4'&0 041 e42 &0 85

e4 &1.21 .
(b) Positive root:

FICy. 1. The time behavior of the internal radius, [R2(t)], is
shown. We can see that it reaches the asymptotic limit R2„ in a
very short time of order 10 tp&,„,k. This behavior would not be
changed for another choice of R20, the "initial value. "

+64
A4 —— (12e4 +A4),

2e44

A4 ~64 32m 64 k4
B4—— —1—

2 2 2 2 2 2
4

2e4, e4 R2 e4 R2 e4.

(38a) It is easy to check that the positive root gives bigger
values for R2 /G4.

Figures 1 and 2 show the graphs of R2(t) and Rz/R2,
respectively. We have defined dimensionless variables

(38b)

(38c)

It is then easy

hm, Rz/R2 is

hm, „Rq/R2 ——0:

to check, using Eq. (38), that
not zero in general while

10+64 m G414 A 4
C4 ———

e4 R2 2e4"R2 2e4 R2

32m'64'

eg R2 R2

2 2R2 2 R3 t
T3

64 m.G4 tp&,«k

and used the negative root with e4 ———, and A,4
———,', . It is

not difficult to check that within the bounds, the smaller
the values for e4 and A,4 the quicker the curve reaches its
asymptotic value.

There is, of course, a freedom in the choice of R2o

R2 A4. B4
lim = „+ +C4 ——0,
&~~ R2 R2~" R2~

(39a)

~ ~

R2
lim .

~R2

—A4
+Cg&0 .

R
(39b)

Using Eqs. (30) and (33) we obtain a relation for R2
in terms of 64, A,4, and e4,

R2
8n.G4[4+(10+Aq/e4 )'~ ]

(4O)
6e4 —A,4

-0.60 0.00
I

0.04

We see that the model provides a prediction for R2
which is indeed of order of I.z (I.z —1.6&(10 cm), for
either root. However, we must remember that the solu-
tion for Rz(t) is based on the assumption that b, &0.
Below are the bounds on the value of e4, for positive b,

T/TPL„N0K

FIG. 2. We display'the time variation of R2/R2 since it is in-
timately connected with the variation of the coupling constants.
As R2~R2, R2/Rz~0 and no time variation can be detect-
ed.



31 TIME VARIATION OF COUPLING CONSTANTS IN KALUZA-. . . 1909

824

e4
(42a)

0. 25

0. 20

0. I5

8 A4P=, I+&4—
e4 4e4

8 Po44y= C4+
e4 2

234e4
8

(42b)

(42c)

0. 00 0.00

PLANCK 5= 11+ A4

e4'R, „4 4e4

FIG. 3. The time variation of the physical radius, R3(t). We
have chosen R2O/R3o ——50 as an initial condition in order to
maximize the effects from R2(t). As R2~R2„, R3 evolves
linearly in time.

64 1
4 6 2 2e4 R2 R2 e4

(42d)

6%3 6R3 6R3 A4 B4+ + + +C4
1/2

(41)

which is unavoidable in these models. Nevertheless, the
fact that such a well-behaved solution for R2(t) comes
naturally from the field equations is a reassuring fact,
especially when one notes that the time variation for the
couplings lies well inside the presently accepted limits. '

We can also use the fourth-order Runge-Kutta method
to solve for R3(t) and p~(t). Equations (16a) and (16b)
combine to give the following equation for R3(t):

Figure 3 shows the time behavior of R3(t) with
K3 = —1 R2o = 10.0, and A,4 and e4 as before. We can
see that because of the rapid fall of R2(t), the linear
behavior sets in very rapidly. We have used a "small" ini-
tial value of R3O in order to maximize the effects of
R,(t).

For p (t) we use Eq. (31) together with the Higgs equa-
tion and, of course, the solution for R2(t). The result is a
very complicated first-order equation for p (t) which,
nevertheless, has the interesting solution shown in Fig. 4.
It is not difficult to check that the asymptotic limit agrees
precisely with the one assumed in Eq. (35) in the ap-
propriate units. The matter term is responsible for the
asymptotic stability of the solutions, since it is balancing
the fact that lim, (R2/Rz)&0, in the first Einstein
equation.

where IV. CONCLUDING REMARKS

CL

X

I—

LLI
C3

0. 04

PLANCK

0. 06 0.08

FIG-. 4. The solution of the energy-momentum conservation
equation for the time behavior of the matter density is shown.
The asymptotic limit, p „, can be calculated analytically from
the requirement of a zero four-dimensional cosmological con-
stant. From dimensional analysis, it is easy to check that

tp ]=Lp '.

We have shown that the inclusion of the scalar field in
generalized Kaluza-Klein models provides a useful way of
studying the time behavior of the extra dimensions since it
offers the possibility of solving the field equations for the
internal radius. Although the model is nonrealistic due to
the small SO(3) symmetry, we believe that this treatment
can be extended to any SO(N) group provided that the
internal space is not a product of spaces. Also, an exten-
sion to a D =6, X =2 supergravity theory coupled with a
Maxwell field seems interesting. It is believed that it
could describe physics at the preonic level. '

We must note that, as we move towards the singularity,
there is an ambiguity in the initial conditions typical of
any cosmological model. Nevertheless, the time behavior
of the internal radius is always predictable from Eq. (23):
If initially R2(0)=0, (or very small), the internal space
would evolve quickly to its asymptotic value for any
choice of e4 and k4. If our universe can be described by
a higher-dimensional theory, the effects of the time varia-
tion of the internal radius are restricted to the very early
stages of its cosmological evolution.

Finally, we believe that the present model can be of
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help in a serious analysis of the effects of the extra dimen-
sions. %'e note that, in the recent literature, interesting
predictions have been obtained for the behavior of the
internal radius based in quantum effects and finite-
temperature analysis but that a dynamical model was
lacking. ' Although most of this work was done for
spheres of odd dimensionality, an extension of the present
work is possible and can then be adapted to these previous
results. This analysis is now in progress.
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