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Gravitational models of a Lorentz extended electron
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We show how the Einstein-Maxwell field equations of general relativity can be used to construct a
Lorentz model of an electron as an extended body consisting of pure charge and no matter. In con-
trast with Lorentz's approach using inertial mass, we associate the mass of the electron with its
Schwarzschild gravitational mass. The Schwarzschild mass of an extended charged body as seen at
infinity arises from the charge as well as the matter that the extended body possesses. The field
equations for a Lorentz-type pure-charge extended electron are obtained by setting the matter terms
equal to zero in the field equations for a spherically symmetric charged perfect fluid. Several expli-
cit solutions to the pure-charge field equations are examined.

At the turn of the century, Lorentz proposed a modql
of an electron as an extended body consisting of only pure
charge and no matter. ' The mass of the electron was to
arise from the energy in its electric field. The main diffi-
culty with Lorentz's model was that it had no mechanism
to overcome the electrostatic repulsion of the charge, so
that the body was unstable and would "explode. " To
maintain stability, Poincare postulated stresses that would
hold the charge together. Because the Poincare stresses
were introduced in essentially an ad hoc fashion, the
Lorentz model of an extended electron has not been wide-
ly accepted.

In his work Lorentz dealt only with the inertial aspect
of mass. Lorentz certainly was aware of the Newtonian
gravitational aspect of mass, but he probably disregarded
gravitational effects because Newtonian gravitational
forces are many orders of magnitude smaller than electri-
cal forces for the values of the charge and mass of an elec-
tron. Inasmuch as Lorentz's ideas were developed before
1905, no use could have been made of Einstein's theories
of special and general relativity.

In previous works ' we have obtained results indicating
that it is possible to construct a model of a Lorentz ex-
tended pure-charge electron within the context of the
Einstein-Maxwell field equations of general relativity,
This problem has also been addressed by others, and,
with particular relevance to the present paper, recently by
Tiwari, Rao, and Kanakamedala (TRK). In the ap-
proach taken here and by TRK, the electron's mass is as-
sociated with the Schwarzschild gravitational mass given
by general relativity, and not with the inertial mass used
by Lorentz.

We take the metric around an electron to be of a static
form

—dg 2/y +g d/ y dT

dQ =dO +sin Hdg
(2)

s =g; dx'dxj —V dT

that for large distances away from the electron reduces to
the Reissner-Nordstrom metric

where

V2=1 2M/R —+Q2/R2 . (3)

In terms of the gravitational units we are using, we have
for an electron

M =676X10 m, Q =1.38X10 m,
c =M/Q =4.90X 10 (4)

du, =(g)'r'dx'dx'dx', (6)

where g is the determinant of the spatial part of the
metric.

The Schwarzschild mass M in (3) can be expressed in a
similar manner in terms of the integral of a
"Schwarzschild mass density" pM,

M = f pMdu3, (7)

where pM is given by

pM
——(M —M4) V+@+ . (8)

Here the total stress-energy tensor TP is the sum of the
material and electrical parts,

T =M +EP P P (9)

and %' is the electrical potential inside the source.
The density expression in (8) shows that in addition to

the material components Mz, the charge density p of (5),
with its associated electric potential %', also contributes to
the Schwarzschild gravitational mass M seen at infinity.
It is here where the possibility of a Lorentz pure-charge
extended electron is seen to exist within the Einstein-
Maxwell equations of general relativity, for even with no

R, =Q /M =2.82X10 ' m (classical electron radius) .

The charge Q of the electron is obtained by integrating
the electron's charge density p over its proper volume U, :

Q= J pdv3 (5)

where the invariant volume element dU3 is given by

31 1860 1985 The American Physical Society



31 'GRAVITATIONAL MODELS OF A LORENTZ EXTENDED ELECTRON 1861

actual "matter" present, charge density and stresses will
result in a source that has a Schwarzschild gravitational
IDass.

For static, spherically symmetric fields the metric (1)
can be written in the form

ds =dR /A +R dO —V dT (10)

The Einstein field equations Gz ———Sm. T& yield the fol-
lowing relations:

—V (2 /V ) =SvrR (T( —Tg),
dR

[R(A —1)]=8m.R T4,

Tq ——T3 —— (T& )+T&+(R/2V)(T~ —T4) ( V) .
2dR GR

(12)

(13)

Epa =FpFaa 4 gpaFapF aP (14)

The electromagnetic stress-energy tensor and Maxwell's
equations

pM =(3p+p»)V+V q'.

The field of a source composed of only pure charge and
no matter will be obtained by setting the matter density
terms equal to zero in Eqs. (22)—(25). Before this can be
accomplished, though, we must first identify those terms
that correspond to actual "matter. "

This identification is not at all straightforward. The
quantity p in (21) measures not only the density of matter,
but also the density of energy, including binding energy,
that resides in a given infinitesimal volume. If the source
contained only matter and no charge, setting the matter
density to zero would automatically produce zero binding
energy in a given volume, for there would be nothing for
the binding energy to bind. For the situation we are here
considering, however, even though there is no matter in a
given infinitesimal vo1ume, there will be charge on which
forces can be exerted. Therefore, setting p=o is not
necessarily the way to achieve a pure-charge source.

TRK (Ref. 7) and independently the present author
have suggested considering as a pure-charge equation of
state

Fpo =+a,p +p, cr ~ (15) p+ p =0 (pure-charge condition) . (26)

Fpn ( g)
—&l2 [( g)l/2~pa] Jp

Bx

become with the metric form (10)
2

(16)

Ei ——Ep —E3 —— E—g———(1/S—m)(A /V ) 4', (17)
dR A =V. (27)

Assuming p&0, (26) necessarily requires a negative pres-
sure, i.e., the source wi11 be under tension.

With the condition (26) we find from (22) that
2/V= const, and since outside the source 3 = V, we have
from conti'nuity of gz that everywhere

(2/R ) (3/V)R 0' = —4mp
dR dR

with

(18) When the pure-charge condition (26) or equivalently (27)
is imposed, Eqs. (23)—(25) and Maxwell's equation (18)
take the form

2

(19)

If we take the material part of the stress-energy tensor
to be a perfect fluid,

(RV')+ R % =Srj.R'p+1, (28)

Mpo (p+p) Vp Vo +pgpcr

we have

1 2 3 4M) ——M2 ——M3 ——P, M4 ———P .

(20)

(21)

dp/dR =(d+/dR)(1/4' ) R
dR

( I/4n. R ) R 4 = —p/V,
dR

(29)

With rz ——M&+Ez, the following set of equations for a
charged perfect fluid are then obtained: pM ——2pV+p+ . (31)

—V (A /V )=SmR(p+p),
dR

'2

(22)
A particular solution for the pure-charge condition (26)

has been obtained by TRK (Ref. 7) by observing that (30)
can be integrated directly if the charge density satisfies

(A'/V') (RV')+ R
dR dR

=8mR p+1, (23) p/ V =po ——const (32)

p =(2/V) 4 (I/4m. R )

X (&/V)R 0' —[(p+p)/2V ] ( V')

in which po is the charge density at R =0. The details of
the TRK solution can be found in Ref. 7. We note,
though, a point not brought out by TRK that at the ra-
dius R, of the source the boundary conditions ql, =Q/R„
q (R, ) =Q, and m (R, ) =M require that

R, = —,Q /M = —,R, .4 2 4 (33)

In addition (8) becomes

(24)
Thus the radius of the TRK "constant" charge-density
electron equals —', of the classical electron radius
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R, =Q /M. It is interesting that this is the same value
for R, that arises from a classical analysis of the momen-
tum of the electromagnetic field of an extended electron
with a uniform charge density (Feynman et al. , Ref. 1).

Another pure-charge solution different from the TRK
solution can be obtained by assuming that the source is
structured such that the ratio of the Schwarzschild mass
density pM given in (8) to the charge density p defined in
(5) is a constant c over the extent of the source:

so that

a = —c /Swapo .2= 2 (43)

The charge q(R) and the Schwarzschild mass
m(R)=cq(R) as a function of R inside the source are ob-
tained by using (36) to obtain

R
q(R) =m (R)/c = f p du3 ——cR [(a/R)sin(R/a)

pM/p=c =M/Q . (34)
—cos(R/a)] . (44)

We have previously investigated this type of source in de-
tail, and have shown in general that the metric corn-
ponent V, which represents the gravitational potential,
and the electric potential 4 are related both inside and
outside the source by

V =1—2c@+4 =(qi —c) +1—c (35)

This relationship for the exterior region R )R, was first
obtained by Weyl in an investigation where V and %' are
functionally related, so we refer to such fields as "Weyl-
type" fields. We thus have here the general-relativistic
analog of a Newtonian situation in which a source with a
constant ratio of mass and charge density produces gravi-
tational and electrical potentials that are everywhere func-
tionally related.

From (31) we obtain with (34)

Using this, (35) can be written as

22= V =1—2m(R)/R +q (R)/R

R, /R, 1+(a/R, )sin(R, /a),
R, /R, =(a/R, )sin(R, /a) cos(R—, /a) .

The two conditions (46) and (47) require

cos(R, /a) = —1,
which fixes the value of R, /a to be

(46)

(47)

(48)

—c [1+cos(R/a)][1+cos(R/a)
—(2a /R )sin(R /a )] . (45)

The boundary conditions at R =R, that 4'(R, ) =Q/R,
and q (R, ) =Q [or m (R, ) =M] yield

p/V= —2p/('P —c) .

Substituting this into (30) and using (29) we get

(1/p)dp/dR = [2/(4 —c)] (4—c)
4f

dR

whose solution is

(36)

(37)

R, /a =m. . (49)

[If we had assumed a positive value for po in (39), the re-
lationship corresponding to (48) would be cosh(R/a)
= —1, showing that po must be negative. ]

The condition (49) means that p will vanish at the sur-
face of the source. In turn, E I and T& will be continuous
across R, . In addition, (46) or (47) shows that

p/pp ——(0' —c) /(00 —c) (38)
R, =R, . (50)

where po and %0 are the values of p and 4 at R=0. Sub-
stituting (38) and (35) into (28) we obtain

dR
[R (0 —c)] . —[S~p, /(q, —c)'][R (q —c)]'=c'.

(39)

a = —(%0—c) /Smpo

the solution to (39) is

(40)

0' —c = (ac/R )sin(R /a), (41)

where the integration constant in the argument of the sine
function has been set equal to zero in order for 4 not to
be infinite at R =0. From (41) we then find

4'0 ——2c, (42)

The solution to (39) will depend on the sign of po. We
wiH show below that the boundary conditions at R =R,
will require po to be negative. From (38) it is seen that p
will then be negative throughout the source; that is, the
charge in the source is under tension. In turn, from (26),
a negative value for p corresponds to a positive value for
p. Setting

Thus the radius of a Weyl-type pure-charge electron is ex-
actly equal to the classical electron radius R, =Q /M.

To summarize the above results, the following expres-
sions hold in the interior region R &R, =R, of a Weyl-
type pure-charge electron:

4= c + (cR, /nR)sin(vrR /R, '),

p= —p =(c /SmR )sin (mR/R, ),
A =V =[(cR,/7rR)sin(~R/R, )] +1—c

(51)

(52)

(53)

We thus see that within the formalism of the Einstein-
Maxwell equations of general relativity it is possible to
construct a model of an electron envisioned by Lorentz as
an extended body composed of pure charge without
matter. In contrast with inertial mass considered by
Lorentz, we have here dealt with the general-relativistic
Schwarzschild gravitational mass of an electron arising
from a source structured such that it has only pure charge
and no matter. The pure-charge condition given by (26)
seems reasonable, but other possible conditions relevant to
the idea of Lorentz should be explored.

We have pointed out elsewhere' that the effective mass
MT of a source with Schwarzschild mass M and charge Q



31 GRAVITATIONAL MODELS OF A LORENTZ EXTENDED ELECTRON 1863

that attracts uncharged test particles is

Mr ——M Q—/R =M(l R—, /R i. (54)

It is seen that if the radius R, of the source is such that
R, &R„ in the region outside the source M~ will become
negative for sufficiently small values of R, resulting in a
repulsion instead of attraction of uncharged test particles
that approach the neighborhood of the source. ' With the
TRK model, R, = —,R, ~R„so that Mz will be negative
in the vicinity of an electron, with corresponding repulsive
forces being exerted on uncharged test particles in this re-

gion. With the Weyl-type model of an electron R, =R,
resulting in Mz ——0 at the boundary of the electron, so
that there will be no repulsive forces on uncharged test
particles around this type of electron. Effects such as
repulsive forces on uncharged test particles produced by
the gravitational effective mass Mz around elementary
particles like electrons could be subject to experimental
test.

I would like to thank Professor Banesh Hoffmann for
enlightening discussions on the matters of this paper.
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