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Charged spin fluid in the Einstein-Cartan theory
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We propose a variational principle describing a charged spin fluid in the Einstein-Cartan theory.
We show that this fluid can be described by the current vector V; which has a potential decomposi-
tion and generalizes the results given by Taub. We also derive Maxwell's equations in the presence
of spin and torsion. The Eulerian description of the fluid is given by an action integral whose La-
grangian is the pressure plus the free Lagrangians of the gravitational and electromagnetic fields.
Finally, we analyze the circulation and Bernoulli theorems using the current vector V;.

I. INTRODUCTION

In previous works' we dealt with spin fluids in the
Einstein-Cartan-Kibble-Sciama theory (ECKS theory) and
gave a variational principle and an Eulerian description by
means of the potential decomposition of the current vec-
tor V;. Moreover, by considering some particular situa-
tions, we described some features of this fluid.

In the present paper we extend this discussion to a
charged spin fluid. The theory of a charged fluid in gen-
eral relativity (GR) is completely established (see Ref. 3
and references therein). Moreover, a Lagrangian formula-
tion for charged polarized media, which are similar to
charged spin fluids, may be found in Ref. 4. However,
our aim is to give an Eulerian description of a charged
spin fluid in the presence of torsion.

The concept of torsion was introduced in 1922 by Car-
tan, but it was only in the 1960's that Kibble and Scia-
ma utilized it to account for the effects of spin in a
general-relativistic theory (a complete discussion of the
subject can be found in Ref. 8).

We assume that the Lagrangian for the present case is
similar to the Lagrangian given in Ref. 1. We have to
modify the total energy density term by adding the in-
teraction between the electromagnetic field and the mag-
netoelectric moment (proportional to the spin tensor by a
factor e/2m ); 0moreover we have added two terms. One
is (1/16~)FJF'J, the Lagrangian of the electromagnetic
field; the other one is —J;A', the electromagnetic poten-
tial energy.

We demonstrate that this new material Lagrangian den-

sity is given by

g p+ FJFV

where we now have also to consider the electromagnetic
interactions in the pressure p [see (2.13)]. In this formula-
tion it is still possible to construct the current vector V;
and decompose it into potentials, as in Refs. 1, 10, and 11,
among which appears now the four-vector electromagnet-
ic potential 3;. We propose, finally, to extend the circula-
tion theorems (see Refs. 2, 3, 11, and 12) to the charged
case.

In Sec. II we give the variational principle and the evo-
lution equations and then we discuss the physical proper-
ties of the Lagrangian density. In Sec. III we derive
Maxwell's equations in U4 spacetime from a variational
principle and extend them to account for the presence of
spin. The equations for the tetrad vectors are derived in
Sec. IV, where we define the current vector V; and we
also give its decomposition into potentials and finally we
construct the canonical energy-momentum tensor. In Sec.
V we derive the Einstein-Cartan equations and the
dynamical energy-momentum and spin tensors. In Sec.
VI we extend the circulation theorems to the present case.

II. VARIATIONAL PRINCIPLE

In Ref. 1 we introduced for a spin fluid the Lagrangian
density

W=v' —g [p(p, S,h )+pU'8;P+pi9U'8;S+pCU'8;8

+phoa U'V; bk

+A,J (a'a~+ b'bi+ o , 'cr ~ U'UJ g'J )]— —
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S»/ =e»jk~ U cr"=ph 0 (a»bJ —a1b; )

and the spin kinetic energy

W = —,'o)'&S,, =ph pakbk,

(2.1)

extending to the ECKS theory the special-relativistic ap-
proach given by Halbwachs' and generalizing also the
general-relativistic formulation of the dynamics of a per-
fect fluid given by Schutz in Ref. 11 using the velocity po-
tentials. In W, p(p, S,h 0) is the total energy density; p is
the matter density (the number of particles per unit
volume); S is entropy; P, 8, and C are Lagrange multi-
pliers that impose, respectively, the conservation of the
number of particles, of the entropy, and of the identity of
the particles, 8 being one of the Lagrangian coordinates;
U' is the four-velocity, normalized such that O'U» ———1;
g,j is the metric tensor of signature ( —,+,+,+); o; is
the spin vector, and o; =o;/pho such that o 'o; =+ 1 and
it is normal to U' (U'o;=0); ho is a standard spin
modu1e function a' and b' are spacelike vectors con-
strained by the Lagrangian multipliers A, ,z to form with cr '

and U' a vierbein at each point of spacetirne.
By the vierbein properties we may define the spin densi-

ty tensor

or'4

~[iFkji =2S[ik Fj]m (2.3)

where S;J" is the torsion tensor and square brackets indi-
cate antisymmetrization. The second group of Maxwell's
equation wi11 be derived in Sec. III.

As in Ref. 3 the electric current J; is defined by

Ji =peUi+oc UjFi~ ~
(2.4)

where o., is the conductivity of the fluid medium.
We shall consider the case with 0, =0; i.e., the electric

current is purely convective.
In Ref. 1 we have found that the spin alone influences

the fluid thermodynamical behavior; but Ray and Smal-
ley' showed a similar result in a more general way.

In their approach we have also to consider the interac-
tion between spin and the electromagnetic field; i.e., we
have to consider the relativistic extension of that coupling
density energy (e/2mo)S»JF'i. Taking into account this
new energy contribution, following Lichnerowicz we as-
sume that the first principle of thermodynamics in this
case becomes

where co'J is the angular velocity associated with the spin
of the particle,

dr=p 'dp+ T dS+ , co»~dS'J+—S~dFJ,
2mp

(2.5)

co'~ = —,( a 'a 1—a 'a 1+b 'b J b'b 1—
+o'o i o' cr» U'UJ+—U'U 1)—

FJ ——8;Aj —Bjd; . (2.2)

From this the first group of Maxwell's equations may be
derived:

~[kFij]

and the dot means f=U'V;f for a tensorial quantity f
and ~ =V; (pFU') for a density tensor P =pf.

We sha11 consider a fluid constituted by only one family
of particles characterized by a charge e, a rest mass mo,
and a spin function hp.

We recall that ' minimal coupling does not apply to
the electromagnetic field Fz in a U4 spacetime, so it is
still defined by

where the density of enthalpy e is given by e=(»»», +p)/po,
p is the pressure, 6=mph' and pp=mpp,

»t» =»M(p, ho, S)+ S; F'i
2mp

is the total internal energy density. We are assuming that
the new coupling energy contribution appears linearly in
the expression of the total energy density; the reason for
this assumption is that from the expression of the first
principle and the definition of e, we have

Bp e
"dF»J 2mp

furthermore, in the limit. of the neutral spin fluid, using
this assumption we immediately get back the expression
already found in Refs. 1 and 15.

To describe the charged spin fluid we propose the La-
grangian density

p (p, ho, S)+ S»/F'J+ p U'd»P+ pOU'd»S+ pCU'8;B+ ph Oa 'U"Vkb;
2mp

+A,; (a'aj+b'bj+cr'cri O'UJ —g'J)+ —F; F'J —J»g; V' —g (2.6)

Varying (2.6) with respect to P, 0, S, C, 8, and ho we
have, respectively,

5S: 0=—:T,
p, h, , S,,F'~

(2.9)

5P: V; (pU') =0,
50: S=O,

(2.7)

(2.8)

5C: B=O,

58: C=O,

(2.10)

(2.1 1)
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kl +~V+ e SFJ 0
2mphp

and, by Eqs. (2.8) and (2.10), we get

(2.12) Using (2.5), and the expression for e, from the (3.1) we get
the Maxwell's equations

5p: +/+boa "bk eU—'A;+ S;,F"=0 (2.13)
Bp 2mo

from which since pressure is given' by

V1 ( V' gF—"1
) +V' gF—'JS;J.

r

=v' —g 4m.J" 4m.—VJ &—g S ~

mp

(2.14) (&—gS'J)SJ .
mp

(3.2)

we have that the Lagrangian is physically interpreted as

(2.15)

As in Newtonian mechanics, ' special relativity, ' gen-
eral relativity, " and ECKS theory, ' on the field equations,
the material Lagrangian is the pressure (with a negative
sign) plus, in this case, the free electromagnetic Lagrang-
ian.

III. MAXWELL'S EQUATIONS IN A Ug SPACETIME

Let us derive the second group of Maxwell's equations.
From (2.6) the electromagnetic action is

&—g —J'W;+ F; F'J+i (p, h„S)

Equations (3.2) generalize the second group of Maxwell's
equations derived by Prasanna' in a U4 spacetime, the
presence of the last two terms being due to the interaction
between the magnetoelectric moment density and the elec-
tromagnetic field.

IV. THE CURRENT VECTOR V;

AND THE CANONICAL
ENERGY-MOMENTUM TENSOR

If we vary (2.6) with respect to the vierbein vectors, we
have

5u'. p(a;/+Ha;S+CaiB+hoa "V;bk —eA;)

—2A, ,J UJ=O, (4.1)

2mp 6a': phpbs+2A, ,JaJ+ ph pb mF; =0
mp

(4.2)

The variation of I with respect to the electromagnetic
four-potential A is 5b' —pa;ho . phoa;+—2kzb + phoa F~; =0, (4.3)

mp

5I= —J V —g J'5A; — F'15F;—
2 p

S'J6F; d x .lJ

(3.1)
I

6o': 2A, ;Jo.J=O. (4.4)

Multiplying (4.1) by Uk, (4.2) by ak, (4.3) by bk, (4.4) by
o.k, summing and antisymmetrizing, we have

Sk;+ SkF; — S; F k
mp mp

+pUk(a;p+Oa;S+Ca;B+hoa V;b —eA;) pU;(akp+Oak—S+CakB+hoa Vkb —elk)=0 . (4.5)

Equation (4.5) represents the motion equation for the spin
density tensor. Contracting (4.5) with U and using (2.13)
we get

From (4.6) we note that vector V;,

V; =eU+SIJ. U + F" Um
mp

(4.7)

may be decomposed into potentials.
This vector, quoted as current vector according to Ref.

SI„U +p&U; — SkmF U; — S; FmkU
e km e m

2mp mp
™

=p(aip+Oa;S+Ca~B+hoa V;b~ —eA;) . (4.6)

hp ——0, (4.8)

i.e., the spin module function is constant along the flow
lines. The canonical energy-momentum tensor is defined
by

aw aw~—g x,j= v, q+ a, ~„—5,w,'=a, @
' aa, ~, '

where we do not apply the minimal coupling to the defini-
tion of the electromagnetic energy-momentum tensor.

11, generalizes both the current vector defined by Taub'
and the current vectors defined in Refs. 11 and 1 for the
presence of spin and the electromagnetic interactions.

From (4.5), contracting by a",b', we get
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Using (4.6), we get

rJ = p(a, y+ea, S+Cd, B+a,a "V,b, )UJ

Lz being the free Lagrangian density of the electromag-
netic and gravitational fields, i.e.,

+ Fjmg A + SJmg A
4~ '

mo
L =A+2k FjF'J1

++ p —
1

Fk F"
16~

(4.9)

In order to symmetrize the electromagnetic terms we add
the divergence

A;SJ4' mo

(4.10)

or by (4.7)

and by using the second group of Maxwell's equations,
written with ordinary derivatives, we get

XJ = pFU; UJ+S; UJ U — F™U + F; FJ~ e 1
m 4 lm

k k k k
KIJ SiJ +SJ I S iJ

we get

TiJ —«)J —k z SiJ U (5.3)

where Tz =SJ +25(;SJ) is the modified torsion ten-
sor given by

1 M Tji
&—g M;J.

and w;J" is the dynamical spin tensor defined by

R being the scalar curvature of U4 and k the relativistic
gravitational constant. By (5.2) we shall get both the field
equations of ECKS theory and the results of the preced-
ing sections. Varying (5.2) with respect to the contortion
tensor K,J"defined by

l 4 im 4 l m

SJ F; +&lp .
rno

(4.11)

~ 6p

m,,k
(5.4)

In the energy-momentum tensor (4.11) the following three
terms appear:

We want to note that the canonical spin tensor connect-
ed to the Lagrangian density (2.5) has the expression

p V;UJ+&'p,

the energy-momentum tensor of the charged spin fluid;
U+ AtiFA+ ri A4a

(5.5)

4 im 4 i m

the electromagnetic energy-momentum tensor;

SJm
Nl o

the energy-momentum tensor due to the interaction be-
tween the spin density and the electromagnetic field.

V. EINSTEIN-CARTAN EQUATIONS

Going back to the results of Sec. II, where the material
Lagrangian is given by (2.15), and considering that, by
Eqs. (2.14) and (4.7), the pressure p can be written

which is different from the one given for the dynamical
spin tensor [equation (5.4)], because of the presence of the
gauge-dependent terms (1/4m)A(;FJ)" which represents
the spin of the photon, and (e/mo)A[, Si]k a te~ due to
the interaction between the electromagnetic field and the
spin of the particles. This happens because in (5.2) we
have not applied the minimal coupling to the electromag-
netic field, so Fz cannot be coupled with the contortion
tensor in the Lagrangian. Moreover, from a dynamical
point of view, the spin tensor r,j is linked through the
field equation (5.3) to the torsion, which is a measurable
quantity.

Varying (5.1) with respect to the metric tensor g,j, we
get

p= —V;U' —p, (5.1)

where V; is expressed through its decomposition into po-
tentials [see Eq. (4.6)]

V~ 8;/+OS;S+——Cd;B+ boa "V;bk —eA; (5.2)

we can now consider the variational principle according to
Refs. 10, 11;and 1, whose action integral is

I.F—2kp —g d x,

1=k p~(iUJ)+g'iJ J 6
FkmF +4 FimFJ

16m 4m

e m+
mo

(5.6)

G,J being the Einstein tensor: G,j——R,j+—,
'
g,jR. Apply-

ing equation (5.3) in (5.6), we have
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G,'J = k ,' V—k(S;JU )+pV(;UJ)+grj p—

mp

+ V„(S—"'UJ+S"1U') .
2

(5.7)

The Bianchi identities imply immediately the conserva-
tion laws for XJ and ~" .

VJX; =2SJ"X'k+dgmRij~

Vk&ij =&[ij]-

(5.9)

(5.10)

O'V jX~=0, (5.1 1)

By Eq. (5.3) and by Weyssenhoff condition, the projection
along U' of (5.9) becomes

By using the Weyssenhoff condition (SJ UJ=O) and the
equation (4.5) one can write i.e.,

mp

(5.12)

S, F kU'U'+ S~ U'V, I, +I =0.
Plp

1 km+ag u —
16

+km+ (5.8} Equation (5.10) is the motion equation for the spin den-
sity tensor, equivalent to (4.5),

where the last term in (5.7) can be eliminated adding, in
the integral action, the null term

SJ ——U "(S(k UJ. Sjk U;)+ — F" U~(sk UJ —Sjk U;)
mp

gg JVk(—S"'Uj+S"JU')d x . + (F;SJ FJ S; )—.
mo

(5.13)

The right-hand side (RHS) of Eq. (5.8) is the dynamical
energy-momentum tensor which is equivalent to the
canonical energy-momentum tensor X;~. of Eq. (4.11).

The variations of (5.2) with respect to P, 0, S, C, 8, ho,
ak, and bz give us the equations from (2.7) to (2.12) and
the equations (4.2) and (4.3).

I

By using (2.3), (2.6), and (5.13) in (5.12), we get

TS=0
according to (2.8). Contracting (5.9) with the projector
P/ =(5'k+ Uk U'), if we use (5.3) and the Weyssenhoff
condition, we get

P„'r);p= pe—Uk+Sk U — f ' 'PkS; — SI, (F U +F U )
mp mp

+ S PkVJ.F;~ fk fk — —p ho f—; cr'(Tk,
foal p Alp

(5.14)

where f (k
' eUJFkJ is ——the Lorentz force, f k

U~Rk. is the Mathisson force.
Equation (5.14} is the Euler equation for a charged spin

fluid; it generalizes the one given in Ref. 1 in the case of a
neutral spin fluid because of the presence of the elec-
tromagnetic terms and of a corrective term due to the
coupling between the electromagnetic energy-momentum
and the torsion.

r(IV)= II) V,.7'dr, (6.1)

Let us define the V-vorticity tensor

where A,
' is the vector tangent to the closed line, and 8'

parametrizes the integral curves of velocity or the integral
curves of the vorticity vector co' defined by

VI. CIRCULATION THEOREMS
that is,

(6.2)

In Sec. IV we introduced the current vector V; which
generalizes the current vector introduced in Refs. 1, 2, 3,
11, and 12. As it can be seen by Eq. (4.6), V; is gauge in-
variant since the RHS is a gauge-invariant expression, '

moreover, if we make the transformation A;~A;+(};P
the gradient can be balanced by the substitution
();Q~B;(P—eg). This does not affect the Lagrangian
(2.5) and the equation (2.13).

We propose, now, to extend the definition of circulation
given in Ref 2by usin. g the current vector defined here;
the circulation along a closed line is

n,, =2a[,- V,, +2S,,"V, . (6.3)

0j'2Sj'Vk +Ap'a bkR 'j +28[j ea, ]S

+28[j CBj]B+2V[j A pa V ']b +eFJ' ~ (6.4)

By comparing (6.4) with (6.3), we find that

If in (6.2) we consider VI, decomposed into potentials, ac-
cording to (4.6) we get
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28~~V;j ——28I 88;~S+28t CB;~8+6 a bkR;.

+2%[genoa Vi.)bm +eFij. (6 5)

Eq. (6.5) generalizing the expressions given in Refs. 2 and
11.

Since it holds that I'(W) =0 if and only if B(;VJ)——0,
then, from (6.5), this is equivalent to

F+ 2 g —+ Tp =const

where

(6.9)

Eq. (6.8) being reduced to Eq. (13) of Ref. 2 in the limit
e —+0. Finally, we may observe that also the Bernoulli
theorem holds, in the form given in Ref. 2, for the
charged spin fluid

Q,q
——2S,J Vk (6.6)

To ——Sok U
mp

FkmU (6.10)

Q,q
——2S,q FUk+2S;1 "Skm U

mo
F~~U

J

Moreover, in the irrotational case, if we contract (6.5) by
UJ, we obtain

TB S—a b 8 hp+/lp(a V b bV a —)
j(m) f (L) (6.8)

This expression may be reduced if one considers the
Weyssenhoff condition and the field equation (5.3),

Q,~ ———kS;Je,
i.e., in the irrotational case, the torsion is linked to the
macroscopical quantity A,J by

(6.7)

VII. CONCLUSIONS

In this work we have dealt with a charged spin fluid,
giving a Lagrangian description of it in a Riemann-
Cartan spacetime. We have considered a one-family fluid
with null conductivity (o, =0), i.e., the case in which the
electric current is purely convective. By this variational
principle we have derived Maxwell's equations for a
spacetime with torsion in the presence of spin.

We have demonstrated that the material Lagrangian
reduces to pressure plus the free electromagnetic Lagrang-
ian. This suggests that a more realistic model may be
constructed by considering the sum of different pressure
terms for a fluid with many families of particles.

In our opinion, the next step is to study the more gen-
eral cases of charged spin fluids with o.,&0 and the mag-
netohydrodynamic case in which conductivity is infinite.

R. de Ritis, M. Lavorgna, G. Platania, and C. Stornaiolo, Phys.
Rev. D 28, 713 (1983).

R. de Ritis, M. Lavorgna, G. Platania, and C. Stornaiolo, Phys.
Lett. 95A, 425 (1983).

3A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohy-
drodynamics (Benjamin, New York, 1967).

4I. Bailey and W. Israel, Commun. Math. Phys. 42, 65 (1975).
~E. Cartan, On Manifolds with Affine Connections and General

Relati vity (Bibliopolis, Napoli, 1985).
T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).

7D. W. Sciama, Recent Developments in General Relativity (Per-
gamon, Oxford, 1962), p. 415; Rev. Mod. Phys. 36, 463

(1964).
8F. W. Hehl, Gen. Relativ. Gravit. 4, 333 (1973); 5, 491 (1974).
9W. Pauli, Theory of RelatLUity (Pergamon, London, 1958).

R. L. Seliger and G. B.Whitham, Proc. R. Soc. London A305,
1 (1968). .

B. F. Schutz, Phys. Rev. D 2, 2762 (1970).
I2A. H. Taub, Arch. Rat. Mech. Anal. 3, 312 (1959).

H. Halbwachs, Theoric Relativiste des Fluides a Spin
(Gauthier-Villars, Paris, 1960).
A. R. Prasanna, Phys. Lett. 54A, 17 (1975).

5J. R. Ray and L. L. Smalley, Phys. Rev. D 27, 1383 (1983).


