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It is shown that Newton-Cartan theory of gravitation can best be formulated on a five-
dimensional extended space-time carrying a Lorentz metric together with a null parallel vector field.
The corresponding geometry associated with the Bargmann group (nontrivially extended Galilei
group) viewed as a subgroup of the affine de Sitter group AO(4, 1) is thoroughly investigated. This
new global formalism allows one to recast classical particle dynamics arid the Schrodinger equation
into a purely covariant form. The Newton-Cartan field equations are readily derived from
Einstein s Lagrangian on the space-time extension.

INTRODUCTION

It has long been recognized that Newtonian gravitation
theory admits a geometric formulation like general rela-
tivity. The quest for a geometric approach to Newton
theory actually goes back to the eve of Einstein's 1916
theory. We refer to Refs. 1—3 for a survey of the subject
and a complete bibliography. Because Cartan first pro-
posed a strictly geometrical definition of the classical
gravitational field in terms of linear connections with
values in the Lie algebra of the homogeneous Galilei
group, this theory is often referred to as the Newton-
Cartan theory.

From a more contemporary viewpoint, Newton's theory
may be considered as a testing ground to several open
problems in general relativity such as the description of
extended bodies and the two-body problem. It also helps
to better understand some specific features in field theory
(e.g., the question of the gauge nature of gravitation). In a
systematic classification of all available space-time struc-
tures one thus would like to incorporate the eldest viable
theory of gravitation.

Apart from its intrinsic interest, the Newton-Cartan
theory yields a coherent framework to mathematically in-
vestigate various aspects of classical physics [e.g., the
principle of general covariance and its plausible exten-
sions, ' the geometric prescriptions of minimal cou-
pling, ' the group-theoretical derivation of the classical
gravitational field equations, and the appearance of the
Bargmann group (extended Galilei group) " the covari-
ant Newtonian limit of some solutions of the Einstein
equations, ' new trends in analytical mechanics, ' clas-
sical solar system physics, ' and Newtonian cosmology, '

etc.].
Recently, the sharp experimental verification of .the

principle of equivalence at the nuclear level [the so-called
Collela-Overhauser-Werner (COW) experiments on neu-
tron interferometry in a weak gravitational field] ' '
naturally raised the question of the reformulation of the
Schrodinger wave equation in a covariant guise. Howev-
er, difficulties stem from the fact that the Bargmann
group (the symmetry group of the free Schrodinger equa-
tion)' does not effectively act on flat Galilei space-

time. This might explain why the Schrodinger equation
retains such an intricate, although gauge-invariant, form
on a curved Newtonian space-time. ' The same remark
applies to the four-component spinor Levy-Leblond equa-
tion's'922 (the nonrelativistic analog of the Dirac equa-
tion).

Dealing with Newtonian structures in a way that
resembles the geometric approach to general relativity al-
lows one to give the Bargmann group a purely classical
(nonquantum) status. For example, the classification of
all physically relevant elementary Bargmann systems has
been carried out ' arid replaces advantageously Souriau's
classification of elementary Galilei systems (free-
classical-particle symplectic models) without appealing to
such elaborate concepts as the symplectic cohomology
generated by the mass. Here the mass is simply intro-
duced as a Casimir invariant of the global Bargmann
symmetry group of the theory (see Sec. IV).

Moreover, the Schrodinger group (the "conformal"
symmetry group of the free Schrodinger equation
gains a well-defined status in terms of Newtonian struc-
tures. 3 The quantum group-theoretical approach hid for
some time the geometrical origin of that group of local
space-time transformations. See Refs. 27 and 28 for an
introduction to the second-order Cartan structures associ-
ated with the corresponding "chronoprojective" geometry
of classical space-time. This matter will be more ap-
propriately recast in terms of conformal Bargmann auto-
morphisms (in preparation).

Let us recall that a Newton-Cartan space-time is en-
dowed with a degenerate "metric" structure, i.e., a Galilei
structure defined by a rank-3 contravariant symmetric
tensor (the Euclidean metric of instantaneous three-space
slices) and an orthogonal time covector that defines a
canonical fibration over the absolute time axis. The de-
generacy of a Galilei structure unfortunately results in the
nonuniqueness of a "metric" torsion-free connection that
would describe the Newtonian gravitational field just as in
the relativistic framework: we already know that singling
out a class of Galilean observers (e.g., the geodesics of the
flat connection of Galilei space-time) is somewhat in-
dependent of choosing rulers and clocks in nonrelativistic
physics. As a consequence, the theory admits a larger
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gauge group that extends space-time diffeomorphisms.
The eleven-dimensional Bargmann group B (2.1) turns out
to be nothing but the stabilizer of the flat Newtonian
structure, and plays about the same role as the Poincare
group in special relativity.

It is worth noticing that the Bargmann group can be
viewed as a group of transformations of a trivial five-
dimensional space-time extension. This point has in fact
already been foreseen in earlier work on. Galilei spinors
connected with the de Sitter group, ' also in Ref. 32
where the 5 X 5 matrix realization (2.2) of the homogene-
ous Galilei group H emerges from a careful analysis of
point-particle scattering. The same remark appears in
filigree in Ref. 11 where Newton's homogeneous field
equations (1.15) are derived from a particular property of
the 5th component of the Bargmannian torsion. See also
Refs. 33 and 34 for earlier arguments in the "light-cone"
formalism.

The purpose of this paper is to reconcile to some extent
the Newton-Cartan theory based on a four-dimensional
space-time manifold and the Bargmann covariance of
classical particle and field theory. We wish to show that
this program can be achieved by considering a five-
dimensional setting from the very beginning. Our investi-
gations will rely on a space-time extension M viewed as a
trivial principal (8, + ) bundle endowed with a Lorentz
metric. Hint: the homogeneous Galilei group can be real-
ized as a subgroup of the de Sitter group SO(4, 1). That
principal bundle structure follows, at least locally, from
the imposition of an H structure on M. The formalism
we will be dealing with is akin to the Kaluza-Klein for-
malism with two-major differences, however: the
structural group is noncompact (mass is not quantized)
and the principal fibration is assumed to be null with
respect to the Lorentz metric. We find that almost all
shortcomings due to the lack of true metric structure on a
Newton-Cartan space-time can thus be circumvented.

The paper is organized as follows.
We briefly recall in Sec. I the basic definitions and

properties of Galilei and Newton manifolds in terms of H
structures.

Section II is devoted to the introduction of the so-called
Bargmann structures. Considering the characteristic ma-
trix representation (2.2) of the homogeneous Galilei group
H naturally leads us to investigate the case of a Lorentzi-
an (I(l, + ) principal fiber bundle (M,g, g) over space-time
M. The group generator g turns out to be null and paral-
lel with respect to the canonical Levi-Civita connection.
That fibration is designed in such a way that the space-
time manifold M is automatically endowed with a canoni-
cal Newtonian structure. Several previous results" are
thus recovered and substantially simplified. The point of
view espoused in this section is appropriate for a global
definition of the Bargmann automorphisms that extend
Galilei automorphisms. We have thus at our disposal a
new geometry, namely, the Bargmann geometry associat-
ed with the pair (B,H). Local expressions in an adapted
coordinate system are explicitly worked out in Sec. III.

Classical free (elementary) Bargmann systems are intro-
duced in Sec. IV on the same footing as Poincare & IR ele-
mentary dynamical systems. For consistency, the relativ-

istic ' internal energy" is defined as the rest mass. It actu-
ally corresponds to a zero classical internal energy. The
simplest case of spinless massive particles is investigated
together with the geometric prescription of minimal grav-
itational coupling. Conservation laws are worked out by
means of the symplectic Noether theorem, the mass being
associated with the Killing vector field g. We do recover
from a different point of view earlier results concerned
with the symplectic geometry of the space of motions of
classical nonrelativistic dynamical systems, in particular
the "principle" of geodesic motion.

In Sec. V we outline the method of geometric quantiza-
tion in the case of free spinless Bargmann dynamical sys-
tems. By working on a five-dimensional Lorentzian
space-time extension, we find a set of partial differential
equations (5.14) and (5.15) which in fact replaces the
Schrodinger equation in its most familiar (although not
covariant) form. Schrodinger wave functions are essen-
tially harmonic complex functions of M that transform
under the (E, + ) structural group according to a multipli-
cative character that defines the mass of the particle.
These equations lead exactly to the Schrodinger equation
on a curved Newtonian space-time derived in Refs. 21 and
7 and are globally, invariant under Bargmann automor-
phisms.

The last section is devoted to the derivation of
Newton's field equations from a specific Lagrangian den-
sity which happens to be nothing but the scalar
curvature —just as in a pure Kaluza-Klein setting. The
source term (mass density) appears as a Lagrange multi-
plier to comply with the isotropy of the group generator

Miscellaneous solutions of Newton field equations are
finally listed in their Bargmannian form.

I. GALILEI AND NEWTON STRUCTURES:
A COMPENDIUM

R b

0 (1.2)

Such a reduction p:H(M)~M defines (and is character-
ized by) a pair of tensor fields (y, f) on M,

y=6" eqequi (A,B =1,2, 3), (1.3)

The (restricted) Galilei group G is usually introduced as
the multiplicative group of those 5&(5 matrices of the
form

Abc
0 1 e

001
where R H SO(3), b, c E &, and e H R. The boosts are
parametrized by b, while c and e represent space and time
translations, respectively.

Let us recall that a proper Galilei structure is defined
as a reduction H (M)~Gl( M) of the frame bundle of a
four-dimensional connected smooth manifold M to the
homogeneous Galilei group H=SO(3)~IR C:G which is
faithfully represented as the multiplicative group of the
4)& 4 matrices
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g4 (1.4)

kery.=span/ .

The signature of y is given by

sign(y)=(+++0) .

(1.5)

(1.6)

A Galilei space-time (M, y, g) is orientable since there ex-
ists a canonical volume element "vol" defined by

Here we denoted by (8')=(O~dx ) (a,a= 1, . . . , 4) the
soldering form of H(M) whose typical element is a
Galilei frame (e, ) at x&M. We have

terms of Bargmann structures (see Ref. 6 for preliminary
considerations related to the Bargmann covariance of clas-
sical particle and field theory). That remark constitutes in
fact the main motivation and the physical justification of
the geometrical structures we will be dealing with in the
sequel.

Let us recall that translations (IR, + ) constitute a redu-
cible subgroup of G, and, hence, that the h restriction of
the Maurer-Cartan one-form of G provides us with the
distinguished Galilei (or Newton) flat connection on
space-time G/H.

As for the inhomogeneous field equations, they can be
written intrinsically as

8'h, O R, 61 R, O =p*vol . (1.7) Ric=4mGpgg, (1.17)

co(gg) =0 (A,B = 1,2, 3)

with cozen =5cz~z,. C

co,
"=0 (a = 1, . . . , 4),

(1.8)

(1.9)

(1.10)

Galilei connections are then introduced as torsion-free
connections co on H(M) [taking their values in the Lie
algebra h of H (Ref. 4)—see (1.2)]

where Ric denotes the Ricci tensor of the connection V
and 6 is Newton's constant. Note that mass density p is
the only source of the classical gravitational field. Equa-
tions (1.15) and (1.17) constitute the complete set of
Newton(-Cartan) field equations (analogous expressions
can be found in Ref. 4).

Let us finally mention an additional constraint on the
Newtonian curvature that might be considered as a sup-
plementary field equation, ' namely,

R~p~ ——0 (1.18)

The corresponding covariant derivative V thus satisfies

V@=0,

V/=0,
torsion V=O .

(1.12)

(1.13)

(1.14)

R y
——Ry~~p6 ~p (1.15)

Since g is closed, there exists (locally) a fibration
M~T:M/kerf ov—er the absolute Galilean time axis T
(which is assumed to have topology R; cf. Refs. 23 and 27
for a solution of Newton's field equations with T=S').
A Galilei space-time is thus time orientable and space
orientable as well.

Unlike the (pseudo)Riemannian case, V is not fully
determined by the Galilei structure (M, y, g). This entails
that the Galilei connection must be specified in addition
to the Galilei structure to yield the full geometrical setting
of Galilean physics.

Newtonian gravitation theory can easily be geometrized
in terms of special Galilei connections. Newtonian con
nections ' are merely Galilei connections whose curvature
tensor satisfies the nontrivial constraint

or equivalently (in terms of the curvature two-form)'5

&p ——,' B~R~„pdx" R—dx"eg=O . (1.19)

It implies that the SO(3) bundle H (M) /R of direct
orthonormal spacelike frames is flat and, hence, trivial (no
rotational holonomy).

II. BARGMANN STRUCTURES
AND SPACE- TIME EXTENSIONS

A. Definition

R b 0 c
0 1 0 e

'bR b /2 1 —f—
0 0 0 1

(2.1)

The Bargmann group B (nontrivially extended Galilei
group) is isomorphic to the multiplicative group of 6&(6
matrices of the form

where

p 5 perR~ y p R~~y

5 5 5 cr
Rapy =Rapy = (~[a~p]y+ ~cr[a~p]y)

(1.16)

The original Levy-Leblond matrix representation has
been slightly modified here in order to emphasize -the
specific semidirect product structure 8 =H&R which
will be extensively used throughout this paper. We have a
surjecttve homomorphism

Note that the extra condition (1.15) (which, roughly
speaking, means that the Newtonian gravitational field is
curlfree) must be introduced heuristically at this stage and
cannot definitely be interpreted in terms of Galilei struc-
tures. We will presently see how naturally it shows up in

B~G:(R,b, c,e,f) l~(R, b, c,e),
whose kernel is the center of B generated by fH]R. The
homogeneous Galilei subgroup H (c =O, e =f =0) clearly
inherits from (2.1) the following 5 X 5 faithful representa-
tion:
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R b 0 over M. We thus have the commutative diagram
0 1 0
Ib—R b—/2 1.

(2.2) H(M ) +M—
P

From now on we will be assuming that nonrelativistic
physics is governed by H structures. We are therefore led
to look for Bargmann structures, i e., reductions
H (M )~Gl(M ) of the frame bundle of a five-dimensional
smooth manifold M to the homogeneous Galilei group H.

The free right action of H (2.2) on Gl (M) is

H (M) +M-,
P

(2.10)

where m, denotes the push-forward operation on frame
vectors of M. The canonical lift to H(M), :- say, of the
generator g is defined by

ez ~eBR& —bBR&e5,

e4 ~ebb +e4 (b /—2)e5,

es i e5 .

g=8=0, p. ==/

(2 3) so that

&'=g (:-)

(2.11)

(2.12)

g =0'e 0B5»+04@05+05@O4,

=—e5

[or, equivalently, a pair (g, g) with P—:9 ].
The symmetric tensor g is invertible,

g ~A ~B~ +e4e5+e5e4
and has the signature

(2.4)

(2 5)

(2.6)

Computing the tensorial invariants of (2.3), we find that
H(M) defines (and is characterized by) the pair (g, g) of
tensors on M,

descends to H(M) as

g4

Moreover, since

(2.13)

y=m„g '=e~e&6" (ez —=n„e~;A =1,2, 3) (2.14)

clearly satisfies (1.5) and (1.6), the couple (y, 1t) is the
desired Galilei structure on H(M).

The notion of a Bargmann connection is quite naturally
introduced at this stage. Let us first note that H is in fact
a subgroup of SO(4, 1) where the I.orentz metric (2.4) is
given by

sign(g)=(++++ —) . (2.7)

The base manifold M is thus endowed with a Lorentzian
structure (2.4) together with a nowhere vanishing null vec-
tor field g',

(2 8)

(g, b )=
0 1

1 0

(2.15)

B. The Bargmann-Newton morphism

Let us now investigate the relationship between Barg-
mann structures and the previous Newtonian structures
on space-time. Start with the observation that
B/H~G/H is a trivial principal (R, + ) bundle over flat
space-time:-

B~B/H =H

G~G/H =8 (2.9)

We would like to keep that principal fibration in the
curved case as much as we consider space-time a funda-
mental physical concept. Since g never vanishes, we may
assume that there exists a global one-parameter group of
transformations of M which induce g. From now on we
will thus confine considerations to the situation of a prin-
cipal (R, + ) bundle m:M —+M with group generator g.

Let us show that M is then canonically endowed with a
Newtonian structure inherited from the original Barg-
mann structure.

As a subgroup of Diff(M), the structural group (R, + )

can be lifted to H (M). Now H and (R, + ) actually com-
mute on H (M) and the quotient H (M):H(M)/R is-
indeed a principal H bundle, the bundle of Galilei frames

(a', b', . . . =1, . . . , 5) .
We call any torsion-free connection co on H(M) a Barg-
mann connection,

co(a'b') =0
~ (2.16)

I

co5 ——0 (= —co, ),
where

I

~a'b'=~ a'gc'b' ~

(2.16')

(2.17)

0 0 0

( —aI ~&~a)

(2.18)

w&th co(») =0.
In view of (2.18), (2.17) becomes

dO"= —coB AO —~4 hO

dO =0,
dO = —cog AO =co4 R, O 5»

(2.19)

(2.20)

(2.21)

As a Lorentzian connection, co is uniquely determined by

I I ~
bdO' = —cob P O

Equations (2.16) express the fact that co takes its values in
h Co(4, 1),

(
—A) 0
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g. To achieve the reduction of the Lorentz bundle of
(M,g) to H(M), the connection co must satisfy the addi-
tional constraint (2.16').

Introducing the associated covariant derivative V, we
get

b' d' d' b'Ra, =R,
specialized to indices running from 1 to 4 yields

(2.33)

Now the fundamental identity satisfied by the Riemann-
Christoffel tensor

Vg =0,
V/=0,
torsion V=O .

(2.22)

(2.23)

(2.24)

d a'b b a'dR aa'cg =R ca'ag

and (2.15), (2.30), and (2.31) finally lead to
d eb b ed

Raec 3 Rcea 7

(2.34)

(2.35)

If:- denotes the canonical lift (2.11) of g to H (M ), we au-
tomatically have

8'(:-)=0,
cob(=)=0 (a, b =1, . . . , 4) .

(2.25)

(2.26)

Now g is a Killing vector field of (M, g), whence the af-
finity relationship

X=co =0 . (2.27)

cd dcR, b
—Rb, (2.28)

This remark shows that (8') and (cob) (a,b =1, . . . , 4)
are integral invariants of the flow generated by =. They
descend to H(M) as (8') and (coq), respectively. More-
over (2.18)—(2.20) imply that (cob) is actually a Galilei
connection [compare (1.8)—(1.11)].

We have thus proved that there exists a unique Galilei
structure associated with a given Bargmann structure. In
other words, given a Bargmann bundle (M,g, g), the base
manifold M —=M/R inherits a canonical Galilei structure
(y, g) [(2.13) and (2.14)] together with a specific Galilei
connection, the projected Levi-Civita connection. Let us
emphasize that the Galilei connection is now completely
determined by the Bargmann structure.

Of greater physical interest is the fact that the Barg-
mann connection induces a Newtonian connection on
space-time. To prove this, let us rewrite the Newtonian
constraint (1.15) in a Galilei frame as

which is identical to condition (2.28) or (1.15) .
A Bargmann bundle M is orientable:

0'hO RO RO R t9 =p'vol .

The same is true for the associated Galilei manifold:
vol(g) —=m'vol.

Returning to the original group-theoretical considera-
tions, we find that the flat Bargmann structure is the prin-
cipal bundle B +B/H e—ndowed with the h restriction of
the canonical Maurer-Cartan one-form of 8 as flat con-
nection form [the translations B/H form an Abelian
reducible subgroup of 8 (Ref. 35)]. The canonical flat
Bargmann structure then clearly induces the canonical
flat Newtonian structure on space-time [cf. (2.9)]. Note
that the additional constraint (1.18) or (1.19) does not
seem to fit naturally into our formalism.

C. Structural automorphisms

We recall that the group Aut(H(M}) of automorphisms
of a principal bundle H(M) is defined as the subgroup of
Diff(H (M) ) consisting in those diffeomorphisms which
commute with the structural group H. There exists a sur-
jective homomorphism Aut(H(M))~Diff(M) whose ker-
nel is the group of "vertical" automorphisms of H(M).

Let us now look for the group of automorphisms of a
Bargmann structure, i.e., the group of those automor-
phisms of the principal bundle H(M) that preserve the
soldering form L9,

where Barg(H (M ) }—:I a H Aut(H (M ) );a '8= 8] . (2.36)

R, 'q =y"R„b [(y' =y ~8'Op)=diag(1110)] .

Since (cob) induces a Galilei connection (cob) on H(M),
the curvature two-form Q satisfies

Using standard results known in fiber-bundle theory, we
find that Barg(H (M ) ) is actually isomorphic with the Lie
subgroup of Diff(M),

nb ——,R. b be PO Barg(M, g, g) = Isomo(M, g) A Aut(M ~M), (2.37)

= —R,d L9'R, L9", (2.29)

R bed =Rgcd (2.30)

where R denotes the Riemann-Christoffel tensor of V
while R denotes the curvature of the Galilei connection V.

From (2.29) we easily get

i.e., the identity component of the group of those
isometrics of (M,g) which also leave invariant the princi-
pal fibration M~M (and hence project onto M as space-
time transformations).

An elementary calculation shows that we recover the
original Bargmann group B (2.1) in the flat case,

R bsd=o.

Note that in view of (2.23) (recall that P =5& ),

(2.31)
A C
() 1

', A %SO(4, 1)t;Aeq ——eq', CER (2.38)

/aR b~ ~5=0 . (2.32)
Since the automorphisms (2.36) also preserve the fibration
H (M )~H(M) (2.10), they induce the group
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Gal(H(M), a})—:Ia HAut(H(M));a*0=8;a*a) =~I
(2.39)

isomorphic with the group of Galilei transformations

Gal(M, y, P, V) = [a—E Affo(M, V');a, y =y; a*/ =Q I,

where X and Y are any infinitesimal automorphisms of M
that project onto X and Y, respectively (X&aut(M ~M)
iff [g',X]=0): we simply use the fact that g is a Killing
(hence affine) vector field of (M,g) together with the fol-
lowing expression of the Lie derivative of a connection,

(2.40) +&1 (X,Y)=9&V-Y V-fg, Y—] V Y, (3.8)
where Aff(M, V) denotes the group of affine transforma-
tions of (M, V). Again, the subscript 0 stands for "identi-
ty component. "

We already know that Aut(M —+M) is an extension of
Diff(M); now since the isometric vertical automorphisms
actually reduce to a subgroup isomorphic to (I, + ), we fi-
nally have the exact sequence

1~I~Harg(M, g, g) +Gal(M—,y, f,V)~1 (2.41)

III. LOCAL EXPRESSIONS
OF BARGMANN STRUCTURES

From now on a Bargmann manifold is defined as a
principal (IR, + ) bundle n-.M ~M over a four-dimensional
connected smooth manifold M such that

M is endowed with a Lorentzian metric g

which means that Bargmann automorphisms constitute a
nontrivial one-dimensional central extension of Galilei au-
tomorphisms.

to prove that

[g,V- Y]=0 . (3.9)

&=& &a a&,
P= Padx

(3.10)

(3.11)

we obtain g P=y P in (3.5); g5 =pa in (3.6) and (3.11)
and g55 ——0 in (3.2). Hence,

Thus Vx Y lies again in aut(M —+M), hence projects on M
as a well-defined vector field. The proof that (3.7) really
defines a connection on M uses the fact that the right-
hand side of (3.7) only depends upon X and Y. A direct
computation then shows that V is Newtonian.

Since M is isomorphic with the trivial bundle M&CR,
we will choose to work in the adapted coordinate system
(xj)=(x,x') induced by a local chart (x ) of
(j=1, . . . , 5;a=1, . . . , 4).

Setting

g(g, g)=0,
V/=0,

(3.2)

(3.3)

of signature (+ + + + —), (3.1)

the group generator f satisfies

g p=y p 2H'A'p-
g"=V, g.s=g,

gss =055

with

(3.12)

(3.13)

(3.14)

g(g)=sr*/ (dg=O) . (3.4)

Since g is a Killing vector, the pushed-forward twice con-
travariant tensor

(3.5)

where V' denotes the Levi-Civita connection of (M,g).
Now all ('I", + ) principal bundles can be made trivi-

al; this entails that M is isomorphic with the trivial
principal bundle M && R. We are thus dealing with a rath-
er loose structure whose global topology (and cohomolo-
gy) is in fact governed by that of the base manifold M.

The results of the preceding section can be quite easily
recast as follows. The one-form g (g) turns out to be a no-
where vanishing closed basic one-form of M; hence

/V=1, ypV=O, y y =5 —Vg (3.15)

U
1 a$ p y (2(3(ayp}cr ()ayap)+ U d(asap) (3.17)

All components [(3.12)—(3.14)] g,J depend on x only
($=()& is a Killing vector field). The metric g in that
coordinate system defines a unit vector field V (a pre-
ferred observer) and a function P of M.

Let us recall that every Newtonian connection on M
can be decomposed (once a choice of observer U
[P(U) = 1] has been performed) according to

1'p=1 5+0( Fp) y" (3.16)

where'

is well defined on M and satisfies E p ——281 Ap) . (3.18)
y(f) =0 . (3.6)

Vg Y=—m~V- Y, (3.7)

Using (3.1) and (3.2) we prove by inspection that the sig-
nature of y is as in (1.6). Clearly (y, g) is a Galilei struc-
ture on M.

As for the induced Newtonian connection, it turns out
to be defined by

The one-form A (reminiscent of the local expression of an
Abelian connection form) can be physically interpreted as
the combination of gravitational and inertial potentials
with respect to the observer U. Dealing with a pair ( U, A)
in place of the given Newtonian connection I amounts to
choosing a "Bargmann" gauge. The corresponding gauge
group has been studied in Ref. 7.

If we calculate the Levi-Civita connection components
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I,J from (3.12)—(3.14) we find that

(3.19)

i.e., the space-time components define a Newtonian con-
nection in a particular gauge. By equating expressions
(3.16) and (3.19) we find the relation to a "boost" gauge
( U, A), namely,

y&pg

/=A /2 —A~U (A:y—~A~Ap)

(3.20)

(3.21)

Q)g =A~ax +gx (3.22)

on the (E, + ) principal bundle M over M. This connec-
tion form then has the special property of being null, i.e.,

g (cog, cog, )=0 . (3.23)

Now U=g (co„) is an infinitesimal automorphism of
M~M that projects onto the unit vector field U (3.20);
observers can thus be viewed as null (E, + ) connection
forms on (M,g, g). As far as we are considering Barg-
mann structures intrinsically, no fundamental physical
status should be attached to these observers. However,
they happen to be often necessary in the four-dimensional
picture (e.g., the formulation of the Schrodinger equation
on a curved Newtonian space-time. ) '

The expression [(3.12)—(3.14)] of the Lorentz metric g,
leads to the only nonvanishing components of the Chris-
toffel symbols, namely,

[with reference to the general gauge group discussed in
Ref. 7 the expressions for V, P in terms of ( U, A) are in-
variant under the boost subgroup: U [ U +y p8'p,
A~ ~ A + W —(W~U~+ W /2)g~]. The general
gauge group of Newton theory thus reduces here to
Aut(M~M) (see Sec. II C).

We recognize in (3.21) the most familiar expression of
the scalar potential with respect to the observer U [the
"gravitational" potential —A (U) plus the "Coriolis" rota-
tional potential A /2]. ' We can now consider A~ as the
local components of a connection form

where R—:R~~y ~ denotes the "scalar curvature" of the
connection I . Again, the Newtonian constraint (1.15) is
merely a consequence of the identity (2.33), and (3.26),
(3.27).

IV. BARCxMANN DYNAMICAL SYSTEMS

Let us now turn to the formulation of classical dynam-
ics in terms of Bargmann structures. We will use in this
section the structural relationship between relativistic and
nonrelativistic mechanics which appear to be quite easily
unified —at least in the free case—in a five-dimensional
setting.

Let us start with 8 ' endowed with the Lorentzian
metric

P= I som(0 E',g) 8Rut(E ' ~E ' ) =P X E, (4.2)

where P denotes the restricted Poincare group, i.e., the
identity component of the affine-orthogonal group
AO(3, 1).

Since P is merely a trivial extension of P, we should not
reasonably expect to learn anything new from it in the
framework of special relativity. There is a subtlety, how-
ever. If we slightly change the point of view by means of
the following linear diffeomorphism

x =xA

x'=(x'+c 'x')/2,
x =x —c x5 5 2 4

(4.3)

the Lorentz metric g turns out to be e independent in this
new coordinate system

g =5q~dx "dx —c dx4dx4+c dx5dx5 (4.1)

viewed as a (E, + ) fiber bundle E~'~E3 ):(x",x~,
x~) ~ (x",x~) over Minkowski space-time.

The group generator g=B/Bx is spacelike [g((,g)
=c ] and parallel transported by the flat Levi-Civita
connection of E '. As for the group of automorphisms
of (E ',g,(), a simple calculation already leads to the
group

~ap ~ap ~ &3.24)
g =6&zdx (Sdx +dx (Sdx +dx (3)dx (4.4)

where I is given by (3.19) and

~~p= y (a~p)V d(A'0p) (3.25)

We thus see that the Bargmann connection I projects
onto M as a well-defined Newtonian connection I" (3.24).
(3.24).

As for the Riemann-Christoffel tensor, its nonvanishing
components read

Moreover, the principal fibration m-. E '~E ":(x",x,
x ) ~ (x,x ) induced by the null parallel vector field
g—:8/Bx is designed in such a way that the pair (y, P)
defined by (3.5) and (3.4)

(4.5)

(4.6)
5 5R ~py

——R~py,
5 5R +py —2 II) I'4 p]y& 4 +p= I +p

The Ricci tensor then satisfies

R~p ——R~p, R~5 ——0, R55 ——0,
and the scalar curvature is finally given by

R=R,

(3.26)

(3.27)

(3.28)

(3.29)

is in fact the canonical flat Galilei structure of E " (see
Sec. I). (The semicolon reminds us that the signature is
now Galilean rather than Lorentzian. )

Both Minkowski and Galilei structures lift isometrical-
ly to their common five-dimensional Lorentzian exten-
sion. The interesting feature is that they are actually asso-
ciated with two different (E, + ) principal fibrations, the
Galilean one being null as previously noticed [cf. (4.4),
also Sec. II].
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We find that the group of automorphisms of the new
structure (R ',g, g)

B= Isomo(R ',g) 8 Aut(8 '~ lR ") (4.7)

is isomorphic with the Bargmann group (2.1) and (2.38).
We thus have at our disposal two different geometries
respectively associated with the pairs (P,L) and (B,H)
[L=SO(3, 1)t]. If we denote by S the identity component
of the affine de Sitter group AO(4, 1), these results can be
diagrammatically summarized as follows:

N = —rflc 0 +Epc 6 (4.11)

The velocity of light "c"enters formula (4.11) in order to
comply with the physical dimension of the soldering form
8 [the (R, + ) components of the Maurer-Cartan one-
form of P]: [0 ]=L; [0 ]=T; [85]=A.M ' where
3 =M L T ' (=[co])stands for "action. "

The one-form ~ descends as the canonical one-form

It is not hard to find the one-form of P (pulled-back
from S) that gives rise to the symplectic structure of the
coadjoint orbit Q(O, m) && I Eo [,

co=pjdxj (j= 1, . . . , 5) (4.12)

on the sub-bundle of T*R ' defined by the constraints

3, 1

(4.8)
g'~p;p~ =(Eo —m c )/c

p P=E /c

(4.13)

(4.14)

Although the Bargmann group originally occurred in
the quantum-mechanical context, ' we believe that
appealing to the Bargmann covariance of classical particle
mechanics helps to bridge the gap between relativistic and
nonrelativistic dynamics by embedding the limiting pro-
cedure (e.g., group contraction c~ oo ) into the common
five-dimensional Lorentzian framework.

A. (Poincari XR) dynamical systems

The mathematical setup for particle dynamics is con-
cerned with the canonical symplectic structure of the
space of motions (locally, the phase space) of a dynamical
system. According to the Kirillov-Kostant-Souriau or-
bit method, ' ' elementary relativistic dynamical sys-
tems (free particles) are classified as coadjoint orbits of
the (restricted) Poincare group P (the universal covering
of P is not needed for our purpose). These orbits turn out
to be labeled by two Casimir invariants, namely, spin s
and mass rn, . For example, the symplectic structure of a
spinless massive Poincare-orbit Q(s =O, m ~ 0) is defined
by the exterior derivative of the one-form

a=——mc 04 (4.9)
of P viewed as an "evolution" space above Minkowski
space-time P/L inasmuch as the leaves of the characteris-
tic foliation ker(da) do project onto timelike Minkowski
geodesics. The space of motions P/ker(da) is nothing
but the orbit Q(O, m)=-R itself endowed with the sym-
plectic two-form o.,

da = [P~Q(O, m)]*cr . (4.10)
In the case of a curved Lorentzian space-time (M,g),

the evolution space to consider is rather the bundle of
Lorentz frames L (M) endowed with the same dynamical
one-form (4.9) (which amounts to minimal gravitational
coupling). See Refs. 40, 41, and 23 for a more detailed ac-
count on these questions, especially those related to classi-
cal spin which we will skip here for the sake of simplicity.

What is the situation in the case of P elementary
dynamical systems't Since P is isomorphic with the direct
product P &( R, all P-coadjoint orbits are clearly symplec-
tomorphic with the direct products Q(s, m) X IEOI, where

Eo is the (R, + ) Casimir readily interpreted as the relatiu
istic internal energy.

Note that p is interpreted as the momentum, energy, mass
(co)vector of the spinless particle, and since

do'=0 (e'=dx'), (4.15)

B. Bargmann dynamical systems

Let us now consider the situation from the point of
view of the Bargmann fibration IR '~R ".

If we assume that the one-form co in (4.11) of the affine
de Sitter group S should also rule nonrelativistic spinless
particle dynamics, we are led to consider this time the
one-form

P—:[B~S]*cu . (4.16)

The soldering form 0 of the principal bundle B~B/H is
related to 0 by

e'=o',
04=(e 4 —c -'/2e'),
0'=(&'/2+c'e4)

[cf. (4.3)] and thus

P=(Eo mc )8 + —,'(E—oc +m)85 .

(4.17)

(4.18)

But c-dependent coefficients should not occur in a non-
relativistic expression such as (4.18). Using the flexibility
in the choice of the relativistic internal energy Ep, we
would like to have the velocity of light c removed from
(4.18) by canceling some unsatisfactory coefficient. If we
assume positivity of energy, the only possibility we are left
with is indeed

Ep =Ale (4.19)

and the dynamical one-form P is finally given by the very
simple expression

introducing the relativistic internal energy Ep in this
five-dimensional setting does not modify space-time
dynamics —i.e., the space-time projection of the leaves of
the characteristic P-foliation ker(de). We simply have
the latitude of choosing mass and internal energy quite in-
dependently.
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p=m0' . (4.20) C. Conservation laws

It appears that the celebrated Einstein formula (4.19)
can be considered as providing the structural coherence
between relativistic and nonrelativistic dynamical systems
built from a common five-dimensional space-time exten-
sion. It implies a zero classical internal energy [the "time"
coefficient in (4.18)].

The one-form (4.20) can be shown to give rise to the
canonical symplectic structure of the 8-coadjoint orbit
with spin zero, mass m, and vanishing (classical) internal
energy. Let us stress that (4.19) also implies the identifi-
cation of relativistic and nonrelativistic mass Casimir in-
variants. See Refs. 6 and 23 for a classification of Barg-
mann elementary dynamical systems. It has already been
proved there that the leaves of the characteristic foliation
of the B-presymplectic two-form dp project onto flat
Galilei space-time as timelike geodesics (world lines).
Hence the straightforward generalization to the curved
case: the evolution space of a spinless test particle in the
Newtonian gravitational field is the bundle of Galilei
frames H(M) endowed with the one-form P (4.20) whose
exterior derivative (2.21),

dP=mto4 h8 5~~, (4.21)

(4.22)P—:pjdxj

on the sub-bundle VC T*M defined by the constraints
~ ~

g PsPJ =o
~ (4.23)

pg=m ) (4.24)

i.e., the momentum-energy-mass covector p [see (4.34)]
turns out to be null and the mass is related to the canoni-
cal Killing vector field g. Note that the constraints (4.13)
and (4.14) are identical to (4.23) and (4.24) as long as
(4.19) holds.

The equations of motion are quite easily derived by
computing the kernel of the presymplectic two-form
dp=dpj hdxj of the new evolution space V. We find
that a curve [t I-) pj(t),xj(t)] is tangent to ker(dp) iff

p J—O (4.25)

x '= Ap'+ pP (A, ,p e R), (4.26)

where p~—:x Vkpj and x J=dx~/dt.
The particle is not localized on (M,g, g) although it ap-

pears to be localized on a timelike geodesic of (M, y, Q, V),

pox 0 (4.27)

x =Ap (A, HR;g~ =m) . .(4.28)

defines the symplectic structure of the space of motions
U=H(M)/ker(dp). Compare Ref. 6. [The assumption
that the space of motions U be actually a smooth Haus-
dorff manifold forces us to pay special attention to some
particular cases such as the regularization of the Kepler
(or Newton) problem. ]

Again the one-form P descends as the canonical one-
form

Conservation laws are associated with the symplecto-
morphisms of the space of motions of a dynamical sys-
tem. We will investigate here those generated by the
Bargmann automorphisms (2.37). Let us recall that a vec-
tor field Z lies in the Lie algebra of Barg(M, g, g) iff

Xzg =o +zk=0 . (4.29)

Its canonical lift g to H(M) satisfies &CO=0 from (2.36).
It follows from (4.20) that necessarily

gyp=0, (4.30)

hence that the Bargmann automorphisms form a sub-
group of all symplectomorphisms of the space of motions
U. The function

h —=P(g) ( =p, Z') (4.31)

on H(M) satisfies X(h)=(g&p)(X) —dp(g, X)=0 for all
X~ker( dP). It thus turns out to be actually defined on
U (the Hamiltonian associated with g). In other words, h
is a constant of the motion.

Let us compute this Hamiltonian in the flat case. From
(2.1) we can find the general expression of an infinitesimal
Bargmann automorphism

Z =(codex +p x +))' )Bg +eB4+(X—pox ')Bg (4.32)

where co E so(3), P, y ER, e,X E R. Since h depends
linearly upon Z, we can put

h:——, L~aco G~—p"+P„Y—" Ee+MX—1

(4.33)

and readily find with the help of Eqs. (4.23), (4.24), (4.31),
and (4.32) that

L~~ ——2x(~~) (angular momentum),

G"=mx" —p "x (center of mass),

P =p " (linear momentum),

E = —p4 ——p~p "/(2m) (energy),

M =p5 ——m (mass) .

(4.34)

V. THE COVARIANT SCHRODINGER EQUATION

The question arises as to whether the wave equations of
nonrelativistic quantum mechanics can be recast in a dif-
ferent guise by means of Bargmann structures. The point
is that the geometric apparatus previously introduced can
be most naturally incorporated into Schrodinger theory.
Remember that the Bargm ann group was originally
discovered in the quantum group-theoretical context to
get rid of the unsuccessful attempts to let the Galilei
group act on the solutions of the free Schrodinger equa-
tion (cohomological obstruction). We will again deal with
the spinless case for the sake of brevity. The spin- —,

'

(Levy-Leblond) equation' ' will be revisited along the
same lines elsewhere.
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P=d (pj xJ) —q dp~ (5.1)

A. Geometric quantization
and the free Schrodinger equation

We rephrase in a Bargmann covariant manner the
method of geometric quantization ' "' to systematically
derive the quantum nonrelativistic wave equation for a
free (elementary) spinless dynamical system. Using the
expression (4.22) of the dynamical one-form 13 on the evo-
lution space V—:I(p,x) E T'R"', g '(p,p) =0, p(g) =m],
we get

[R /(2m)]A@+i%'84@=0 . (5.11)

With the help of (4.34) we find that (5.10) can be rewritten
as

4z(x,x )=Z f expI(i/A')[p~x —p /(2m)x ]I

X@(p)dp(p) (5.12)

where dp(p) is the Euclidean density
~

dp& hdp2 hdp3
of the fibers.

Our claim is that (5.10) is the general solution of the
free Schrodinger equation

with

q"=—x~ —p "x'/m (=G~/m) . (5.2)
which we recognize as the general solution of Schrodinger
equation (5.11) modulo an overall phase factor

Setting Z imx 5/A (5.13)

(i /A)p. xJz=—e (5.3)

[the Planck constant fi is introduced in such a way that
the phase z E U(1) is dimensionless] we find that P is ac-
tually the pull-back to V of the canonical U(1)-connection
one-form

which quite naturally shows up in our formalism.
The crucial remark is that the wave function N (5.10)

really satisfies the following set of partial differential
equations —compare (4.23) and (4.24):

(5.14)

co= (A/i—)dz/z —q dp„ (5.4) (5.15)

F—= spanIBIBq" ] (2 =1,2, 3) . (5.5)

The next step consists in looking for (polarized) wave
functions, i.e., complex-valued functions f:1'—&C con-
stant along I',

X(f)=0 (all XHF),
and equivariant with respect to the U(1) action on Y;

f (yz) =zf (y) (all z EU(1) ) .

(5.6)

(5.7)

We easily find that in our case (5.5) the F-polarized func-
tions are of the form

f(p, q, z) =zk(p), (5.8)

where @ denotes a complex function of (pz) only. Pull-
ing them back to the evolution space V we get

f (p, x) =e ' @(p) . (5.9)

We can then integrate (5.9) along the fibers (x=const)
and assuming for mere technical reasons that @ be com-
pactly supported, we readily obtain the function
@.R4, 1

of the (pre)quantum bundle (F=R XU(1),co) over the
symplectic space of motions (IR,dco=dpz h dq ) already
introduced in Sec. IV.

The geometric quantization of the model starts with the
choice of a Planck polarization F (in the real case, a max-
imal involutive distribution of horizontal hence isotropic
subspaces F~C:T„F, i.e., [F,F]C:F and co(F)=de(F,F)
=0 (Ref. 24)). This amounts to the choice of a "represen-
tation" (e.g., the p or q representation). For convenience
we will choose here the polarization [see (5.4)]

where Az denotes the Laplace-Beltrami operator of the
flat Bargmann manifold (H ',g, g) [see (4.4)]. The pair of
equations of (5.14) and (5.15) thus turns out to be strictly
equivalent to the Schrodinger equation (5.11).

C&(xa)=e' ' "C&(x) (all a&j(Il), (5.16)

where (x ~ xa) denotes the free (R, + ) action on the
Bargmann manifold [the wave function is associated with
a character of (R, + ) labeled by the mass of the particle].

The SchrodInger equation would then be nothing but
the harmonicity condition

Ag@=0 . (5.17)

B. The Schrodinger equation
on a curved Newtonian space-time

It is known that minimal gravitational coupling cannot
easily be formulated on the Schrodinger equation (5.11) in
a Galilei-covariant manner. The difficulties attached to
that problem were studied in Refs. 21 and 7. On the other
hand, geometric quantization does not provide us with a
general scheme to tackle the problem in full generality,
there being (up to now) no quite satisfactory formulation
of the so-called "pairing" method.

Just as in the framework of quantum mechanics on a
general relativistic space-time, we heuristically introduce
the prescription of minimal Newtonian gravitational cou-
pling by assuming that the Schrodinger equation retains
the same form as in (5.14) and (5.15) on any Bargmann
manifold (M,g, g).

A Schrodinger waue function describing a spinless parti-
cle of mass m (5.15) is thus a mapping N:M ~ C such that

C(x)= f e ' @(p)dp(p),
I

(5.10)
Let us explicitly work out the local expression of the
Laplace-Beltrami operator in an adapted coordinate sys-
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tern (Sec. III). We have

5 N=g'JV;0 4
=g ~V~Bp@+g (V Bs@+V5B 4&)+g VgBg4'

=? i'[V a~@ r—'~(im/r)C ]+(2im/e)V a C

—(2m /A )P@

in view of (3.12)—(3.14), and (3.24) and Bz@=(im/A')4
[(5.15) and (5.16)].

Using (3.6) and (3.25) together with (3.20) and (3.21) we
find that Eq. (5.17) takes the form

[A /(2m)]V a.e+ie(U —y ~a~)a.e
+[(i'/2)V~(U —y ~A~)+m (A U~ —A /2)]4 =0

(5.18)

which turns out to exactly correspond to the Schrodinger
equation on a curved Newtonian space-time derived from
quite different arguments in Refs. 21 and 7.

Let us stress that the group of Bargmann automor-
phisms (2.37) maps the space of solutions (5.16) of the
Schrodinger equation (5.17) into itself,

and to formulate the following variational problem,

(6.2)

on a given (I, + ) principal bundle (M, g) as though we
were actually dealing with vacuum field equations. We
are deliberately ignoring matter field Lagrangians in (6.1)
and (6.2).

Since the bundle structure is given from the outset, we

simply must take into account the fact that g be
null —(2.8), (3.2). Introducing this constraint via a
Lagrange multiplier A, , (6.1) and (6.2) now read

5 f [R+Ag(g, g)]vol=0 . (6.3)
M

An elementary calculation then yields

f [R 'i ,
' (R +A—g„,g"g')g'J+ Xg'p]5g;J vol =0

for all variation 5g with compact support (remember that
5/=0), hence

(6.4)

R 'J —, Rg'~+—AgP=0 . (6.5)

Taking the trace of this expression we end up with [see
(3.2) and (3.29)]

@~ (a ')*@ [a EBarg(M, g, g)], (5.19) R=O (=R) (6.6)

since the Laplace operator is invariant under isornetries
and the mass (R, + ) character (5.16) preserved by bundle
automorphisms. In the flat case, the action (5.19) turns
out to reduce to the well-known Bargmann representation
on the solutions of the free Schrodinger equation. '

The. larger "chronoprojective" invariance of Eq. (5.18)
has been elucidated in Ref. 44 and will be reformulated in
terms of conformal Bargmann invariance in a forthcom-
ing paper.

and

R 'J= —A,g'P (6.7)

Vg (R '~ ——,Rg'J) =0, (6.8)

we get

where 1,. is a priori a (real) function of M. Using the iden-

tity

VI. NEWTON'S FIELD EQUATIONS g(A, ) =0 . (6.9)

I.=Rvol (6.1)

Strangely enough, Newton's field equations (1.15) and
(1.17) cannot be easily derived from a specific space-time
Lagrangian density. It just seems that there might exist
some puzzling geometric obstruction to the existence of a
well-defined variational problem in the four-dimensional
picture. Also the fact that only matter density enters the
source term of Newton's field equations has not been
quite understood so far in a covariant formalism. The
role of the mass flow and stress-energy tensor of matter
distributions still remains to be clarified. Moreover,
since Newton's theory can be given a geometric descrip-
tion that borrows some aspects from general relativity,
why does the "natural" Lagrangian L —=R vol fail to yield
the correct field equations? See Ref. 8 for a group-
theoretical approach and Ref. 45 for a survey of the prob-
lem.

We will show here that the introduction of Bargmann
structures improves this situation over the four-
dimensional Newtonian formulation. Replacing the
space-time arena by a Lorentzian five-dimensional exten-
sion (M,g, g) already prompts us to try the Einstein La-
grangian,

in order to rewrite (6.7) as

(6.10)

R;q 4mGpg;QJ (i,j——=1, . . . , 5) (6.11)

with g;
—=g;Jp (3.4).

Taking advantage of the previous results (3.12)—(3.14),
(3.28), and (3.29), we find that Eq. (6.11) is strictly
equivalent to

R ~~ 4m Gpg~gp (a,P=——1, . . . , 4) (6.12)

which is nothing but Newton's (inhomogeneous) field
equation (1.17). Note that (1.15) is automatically satisfied
in our formalism [see (2.35)]. The source of the Newtoni-
an gravitational field can thus be viewed as the Lagrange
multiplier associated with the null Bargmann fibration
over space-time. This somewhat special appearance of
mass density is indeed characteristic of our formalism.

The Lagrange multiplier A, is actually a function of
space-time M. A quick dimensional inspection of formu-
la (6.7) shows that [A,]=G && mass density (G denotes
Newton's gravitational constant); we thus would like to
set
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Let us finish with some well-known solutions of
Newton's field equations expressed in terms of Bargmann
structures. The spherically symmetric static Newtonian
field is clearly described by the triple ((R —IOI
XR X R,g, t)/Bx ) with [cf. (3.14)]

H= pl/3 . (6.16)

If we then perform the following coordinate transforma-
tion,

g =6~~dx dx +dx (3)dx +dx dx

+26M/rdx dx (6.13)
y4=—f P 'dx-4

y'= x'+—ar'/2,
(6.17)

+dx 'e dx" ar'/P'dx 4—e dx 4, (6.14)

where /3 is a function of T (the absolute time axis) that
satisfies

where r =(x~x )'~ &0, and M denotes the total mass of
the source.

As for the classical model of Newtonian cosmology
(e.g., Ref. 46) it turns out to correspond to the Bargmann
structure (R"',g, i)/Bx') with

g =5&zdx sdx +dx sdx

the metric (6.14) turns out to be conformally flat

g=p'(&~sdy dy +dy sdy'+dy'edy') . (6.18)

This result of our theory helps to relate even more closely
Friedmann's and Newton's cosmological models on the
grounds of maximal conformal invariance. See Refs. 23,
27, and 28 for an alternative proof of the so-called chro-
noprojective (or nonrelativistic conformal) flatness of clas-
sical cosmological space-time.

p p= B=const &—0 (expansion) (6.15) ACKNOW-LED GMENTS
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