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Quantum mechanics of inflation
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It is pointed out that the slow-roll equation of new-inflationary-universe models is not true in gen-

eral for interacting field theories. We determine a set of conditions under which it is relevant, but

argue that they are not likely to be satisfied by the early universe.

I. INTRODUCTION

It was first realized by Guth' that a period of exponen-
tial expansion in the early history of the universe (an "in-
flationary era") would go some way toward remedying
certain naturalness problems associated with the initial
conditions of the standard cosmological model. If, in the
standard model, initial conditions are defined when the
universe is a few Planck lengths in size, its maximum ra-
dius (assuming a closed universe) will be of the same order
of magnitude unless the initial expansion rate is carefully
balanced against the initial energy density. The fact that
the present universe is somewhat bigger than a Planck
length is known as the "flatness problem. " The homo-
geneity and isotropy of the cosmic microwave background
radiation is puzzling in the standard model since the
sources of this radiation from different parts of the sky
have no event common to their pasts. This "horizon
problem" is a consequence only of the initial spacelike
singularity of the standard model. One can easily imagine
that a quantum theory of gravity would eliminate this
spacelike singularity and hence solve the horizon problem,
but this would not obviously cure the flatness problem.

Inflation solves both problems. Blowing up spatial sec-
tions by an enormous factor ( & 10 ) reduces their curva-
ture by the same factor, which solves the flatness problem,
while points that are moderately separated after inflation
must have been extremely close before (close enough to
have points common to their pasts) resolving the horizon
problem. Other advantages of inflationary models include
a possible explanation for fluctuations that give rise to
galaxies, a dilution of magnetic monopoles, and a mecha-
nism for generating vast amounts of entropy. Inflation
places potentially useful constraints on models of particle
physics, and makes one unambiguous statement about
the present universe —it is spatially flat.

The most successful method for generating an adequate
period of inflation was proposed by Linde and by Al-
brecht and Steinhardt. The prototypical model involves a
first-order phase transition in which the Higgs field of
some unified model of particle physics acquires a nonzero
expectation value. If the Higgs potential is chosen to be
of the Coleman-Weinberg type (that is, the effective po-
tential is very flat over a large region near the origin, see
Fig. 1), the universe will supercool in the symmetric phase
to essentially zero temperature, and then the expectation
value of' the Higgs field will roll slowly to the symmetry-

breaking minimum. (Note that the Uacuum expectation
value does not roll. The universe is not in its. vacuum
state; if it were it would be a very boring place. ) During
the roll the roughly constant energy density (and pressure
p = —p) act as an effective cosmological constant and the
universe expands exponentially. It is thus crucial that the
expectation value of the Higgs field takes a sufficient time
to reach its symmetry-breaking minimum.

Linde and Albrecht and Steinhardt proposed that the
Higgs field be governed by the equation

aO+3H = —V'tt(p), (1)

where P= (s
~
P(x)

~

s) is the expectation value of the
Higgs field in the state

~

s ) (assumed translation invari-
ant) in which the universe finds itself, and H is the Hub-
ble "constant" R/R. We shall refer to (1) as the LAS
equation, and to its right-hand side as the "driving force."
If inflation depends on the smallness of the driving force,
it is important to understand contributions to it from
quantum effects. We shall therefore investigate the
quantum-mechanical validity of Eq. (1). For simplicity
we shall consider the flat-space case H =0.

In this paper we point out that the LAS equation is not
true, in general, for interacting field theories (it is always
true for free-field theory). We shall prove, however, that
the LAS equation gives a lower bound for the rollover
time (so that the usual picture goes through essentially
unaltered) if the rolling starts in a particular state —that
Gaussian which minimizes the expectation of the Hamil-
tonian subject to the constraint that the expectation of the
spatial average of the field is zero.

We shall further argue that the universe is unlikely ever
to be near this state if the usual picture of a hot primordi-
al universe is correct.

FIG. 1. Coleman-Weinberg effective potential.
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It may be that theories with flat effective potentials do
generate substantial inflation: our point is that the usual
argument, based on Eq. (1), is inadequate.

We note that the question of the quantum mechanics of
the slow rollover is currently attracting the attention of
many physicists, some of whom are listed in Refs. 7 and
8.

We take the rather archaic point of view that a quan-

tum field theory is defined by specifying equations of
motion for a set of Hibert-space operators labeled by
points in space (more carefully, a set of operator-valued
distributions) and a set of equal-time commutation rela-
tions. For an interacting field theory the equations of
motion will involve composite operators, the renormaliza-
tion of which is generally considered arbitrary and ill de-

fined. We therefore take the view that the theory should
be regulated using a spatial lattice (i.e., continuous time).
This yields a quantum-mechanical system with no ultra-
violet divergences, so that composite operators, and hence
equations of motion, are well defined. Any divergences
that reappear after the theory has been renormalized and
the lattice spacing taken to zero are genuine pathologies of
the theory.

Specifying the Hamilontian determines the equations of
motion, and for definiteness we shall take it to be

H= f d xA = f d x[ , 9 + —,'(V—P) + V(P)],
(2)

[&(x,t ),(b(y, t ) ]= —i5'3'(x —y) .

&(x) is the momentum density conjugate to p(x) (note
that momentum here and throughout the paper does not
have its usual field-theoretic meaning). Our results will

depend only on the fact that A is quadratic in ~, and so
are more general than the specific choice of Eq. (2).

The equations of motion from (2) are

P(x) =i[H, P(x)] =&(x),

m(x)=i[H, S(x)]=V P(x) —V'(P(x)) .
Combining these two equations and taking the expectation
value in a translationally invariant state

I

s ) yields

(s IP Is) = —(s
I

V'(P) Is) . (4)

Comparing Eq. (4), known as Ehrenfest's theorem, with
the LAS equation (1) shows that the latter is true if and
only if

&s
I
V(0) Is &

= V'tt((s
I 0 I

s&) . (5)

For free-field theories Eq. (5) is always true, since
s&)=m (s I& Is). Howev-

er, for interacting field theories it is equally obvious that
Eq. (5) is not true in general. Take, for example,

V(P) = —,
' m2@+ —,

' AP" .

Then condition (5) is

(s Im P+AP s)=V'ff((s IP s)) . (5')

II. ON THE EFFECTIVE POTENTIAL

We remind the reader of some standard results concern-
ing the effective potential. ' The effective action is the
Legendre transform of 8'[J], the generating functional of
connected Green's functions. If we take J to be constant
in space and time and take the Legendre transform, we
obtain the effective potential multiplied by the volume of
space-time. Taking J constant, we have, in Euclidean
space,

The right-hand side is a function only of (s
I P s), but

states with equal values of (P ) may have different values

of (P ), depending on the shape of the wave functional.
In Sec. II we shall characterize a set of states for which

Eq. (5) holds. In Sec. III we shall show that the condi-

tions of Eq. (5) are not preserved under the equation of
motion, but that the LAS equation (1) nevertheless pro-
vides a lower bound on the rollover time if the universe

starts rolling in one of the states described in Sec. II.
Section IV addresses the validity of the one-loop ap-

proximation to the effective potential with particular
reference to the convexity problem. Finally, in Sec. V, we
muse on whether the LAS equation is indeed relevant to
cosmology.

f)
e ~~'= lim f Dg exp —f dt f d x[W(x) —JP(x)]

tp~ —oo

The right-hand side of (6) is the transition matrix ele-
HJ(, f

&

—tp )
ment (P~(x)

I

e ' '
I
$0(x)) which leads, in the limit

thai t, —t,~~, to

f dt(OJ
I
HJ

I
OJ )

HJ H+J f d x P(x),——

I

as a Lagrange multiplier, we see that
I
OJ) minimizes H

subject to a constraint on the value of f d x(p(x)).
Taking the Legendre transform yields

f d'x V,tt($)= W(J) —J
dJ

i.e.,

where
I

OJ ) is the lowest eigenstate of HJ. Interpreting J (9)
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s & with &s
over is&

=(0~
l ml 0~) . (10)

Our first result is that Eq. (5) holds for the state 0~).
Proof:

(0, l
V (P) l 0, ) = i (—0, l

[HP(x)]
l 0, )

but
l 0~) =

l
Oq ) is an eigenstate of Hz [Eq. (7)], that is,

Hlo&)= —J f dye(y)lo~)+W(J)lo&) . (12)

Inserting Eq. (12) in Eq. (11) yields

(0&i V'(P) l0@)=—J f d'y(0~
i [@(y)P(~)]f0~)

(13)V,'tt(P) .

We have changed our notation for the state

l
0~) =

l
Oq) to indicate that it minimizes H for a given

value of P= (P), and have assumed that
l
0~) is transla-

tionally invariant.
Thus we take as our definition of the effective potential

(0~ l y l
o~) =(0~

l
&

l 0~) =o .

Proof:

(Oy
l
$(x)

l Op) =i (04, l
[H, (Y(x)]

l
Op)

(14)

iJ—f d'y & 0~ l [y(y), j(x)]
l
oq)

=0,

where use was made of Eq. (12).
We may generalize the above argument and character-

ize a set of states for which Eq. (5) holds, but for which
Eq. (14) does not.

Define the quantity

The last equality comes from differentiating Eq. (8).
We have therefore identified one state,

l 0~), for which
the LAS equation (1) holds at one point in time. It is,
however, insufficient for our purposes, since any state
which satisfies Eq. (12) at some time t must yield P(t ) =0,
and so cannot be rolling, i.e.,

I (P, rr) = min I (s
l

A
l
s ) with (s

l
qY s ) =P and (s

l
&

l
s ) =m I

is&
(15)

and denote the state
l
s ) that achieves that minimization by

l 0~ ). Again, we drop the labels on the field operators be-
cause we assume that

l 0~ ) is translationally invariant.
As before, f d x I (P, rt) is the Legendre transform of

W(J K)= f dt(ot, lH+J f d'x i'(x)+K f d'x ~(x) lo, .&,

f d x I (P,m)= W(J,K) J —K-
BJ BK

l 0~ ) is the lowest eigenstate of HJ r„
+J f d'x4'(x) lop, &+K f d'x~(x) log, &=Wioy, &.

It is also easy to prove from Eqs. (15)—(18) that

ar
a~

ar
BP

For the Hamiltonian of Eq. (2) it is also true that

I (P, ir)= ,'n + V,tt($) —.

Proof:

1(p,~)=(o~.
l ml0~. & =&0~. ,'&'+ ,'(vy)'+v—(y)

l
0~—.&

'+(0
l

—,'( — )'+ —,'(VP)'+ V(P) 0 ) .

Define

& '=&—ir, [&'(x),P(y)] = —i5' '(x —y),
then, from the definition of I [Eq. (15)],

(0~ „l —,'(&—~) + —,'(VP) + V(P)
l 0~ ) = min I (s

l
—,'&'+(VP)'+ V(P)

l
s ) I,

is&

(16)

(17)

(18)

(20)

(21)

(22)

(23)
(sibyls)=p, (sl~'ls&=0.

Now the right-hand side of Eq. (23) is determined by the commutation relation, Eq. (22), which is the same as that for &
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and P. Thus, if we were to relax the constraint on &s
~

~'
~

s &, the right-hand side would be V,tt(P), from the definition,
Eq. (10). However, we have shown [Eq. (14)] that the constraint on &s & '

~

s & is redundant, so that

&0,.~

—,'("— )'+ —,'(vy)'+v(y) ~o .&=v. (y)

and Eq. (20) is.proved. Note that the only property of II that we used was that it is quadratic in ~
The states

~ 0~ & satisfy Eq. (5).
Proof:

&0~.
~
v(j) [0~.&= —i&0~.

~
[H,&(x)] [0~.&

=iJ f d3y&0~
~
[P(y),&(x)] 0~ & [from Eq. (18)]

= —J= [from Eq. (19)]ar
a

—V ff(P ) [from Eq. ( 20) ]

III. EVOLUTION OF THE LAS CONDITIONS

We are using the Heisenberg picture, so that although
the states do not evolve in time, P and S. do. Thus a
state that satisfies the LAS condition at one time need not
satisfy it at a later time. We shall show that in general it
does not.

Suppose that the LAS condition is satisfied at time t,
then, from Eq. (18)

[A +J(t)P(t)+K(t)&(t)]
~

ql & =E
~

qi & . (24)

Denoting operators at time t+ 5t with a prime and opera-
tors at time t without, we have

&'5t, &=& '+ —V'(P ')5t . (25)

Substituting Eqs. (25) into Eq. (24) yields

IA +[JP'+Kv'(P')ck]+(K Jdt)&'I ~% &=E ~%—
& .

1.e.,

&Op
~

V ((5) Op & —V ff(&0~
~ y ~

Op &)

Thus we have characterized a set of states which satisfy
Eq. (5), and hence the LAS equation (1), at some particu-
lar moment, and also permit the field to roll. They are
those states which minimize the expectation value of the
Hamiltonian subject to constraints on the spatially aver-
aged expectation value of the field and its conjugate
momentum.

We shall refer to these conditions as the LAS condi-
tions, and the states

~
0& & as LAS states. That

~

s & is an
LAS state is, of course, sufficient for Eq. (5) to hold but
not obviously necessary.

We note that in fact (27) is satisfied, and the LAS con-
dition preserved, in free-field theory. This is even less in-
teresting than statements about free-field theory usually
are, since, as we have remarked, the LAS condition is
redundant; the LAS equation is always obeyed. For an in-
teracting field theory, however, Eq. (27) holds only if

~

4 &

is an eigenstate of P ', which is not possible for an LAS
state.

Thus the LAS condition is not preserved, and even
though one may prepare a system such that Eq. (5) is true,
there is no reason to believe that it remains true. In the
Appendix we show that indeed Eq. (5) is not preserved,
through an explicit one-loop calculation in the simplest
model we know —the quantum-mechanicaI anharmonic
oscillator. [Note that the fact that the LAS condition is
not preserved is a necessary, but not sufficient, condition
for Eq. (5) to be violated. ]

Even though the LAS equation (1) is not true, it does
provide a rigorous lower bound on the rollover time, pro-
vided the rolling commences in an LAS state. The argu-
ment is based on nothing more than conservation of ener-
gy. From the LAS equation (1) one may prove that

F

QLAs(t) =W2[ Veff(fp) —Veff($)] (28)
(the initial conditions are P=gp, sr=0). The true version
of Eq. (28) is [Eq. (21)]

P(t) =v'2[M(0) —M(t)]'r', (29)

M(t) = &s
~

—,
' [&(t)—~(t)]'+ —,

' [VP(t)]'+ V(P(t))
~

s & .

(30)
By assumption,

~

s & is an LAS state at time t =0 so that
[Eq. (20)]

(26)
M(0) = V,tt(gp) . (31)

Equation (26) is compatible with the LAS condition at
time t+6t only if there exist A and B such that

[Jy '+KV'(y ')]
~

e & =(~ +ay )
~

~ & (27)

[since K(t) = —&S(t) & and J(t)= &
—V'(P) &, K(t)

J(t)Ck =K(t+6t)]. —

M(t) & V.th(P(t)) .

Combining Eqs. (28), (29), (31), and (32) yields

4(4') & NL~s(4)

(32)

(33)

Furthermore, from the definition of the effective potential
[Eq. (10)],
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IV. ON THE ONE-LOOP APPROXIMATION,
AND CONVEXITY

The results that we have derived so far all relate to the
exact effective potential, and, as such, are somewhat
academic. Nobody can calculate an effective potential ex-
actly for an interacting field theory and so a one-loop ap-
proximation is universally substituted. Unfortunately, the
one-loop approximation is not convex, in violation of a by
now well-known theorem. ' This might not seem so dis-
turbing until one realizes that convexity, the symmetry
P(x)~ —P(x) (present in many models of inflation) and
the LAS equation are together inconsistent with inAation.
It is indeed fortunate that the LAS equation is not gen-
erally true. We are thus led to modify the question ad-
dressed by this paper. Under what circumstances is the
one-loop LAS equation approximately true, and the exact
LAS equation (i.e., with the exact effective potential on
the right-hand side) completely wrong?

For our purposes, the statement that the effective po-
tential is convex is simply that its second derivative is
never negative. The one-loop approximation displayed in
Fig. 1 clearly violates this condition in the neighborhood
of /=0, and we assert that the exact result looks some-
thing like Fig. 2, with the potential exactly flat near the
origin. It is easy to understand why this should be from
our definition of the effective potential, Eq. (10). Since
the symmetry P~ —P is spontaneously broken we can
choose either of two vacuum states. 0+) has its wave
functional peaked around P =go while

I

0 ) peaks
around P= —Po. The fact that the symmetry is broken
implies that

&0 IOIO )=0
for any observable 8. Consider now the state

s&=a fo+&+b lo &, la

(34)

(35)

~ Vefg(4)

FIG. 2. Exact {convex) effective potential.

and we see that the LAS equation does indeed give a
lower bound on the rollover time. This is all that is re-
quired for most cosmological purposes. The physics of
this result is not hard to understand. "Kinetic energy" of
the rolling spatially averaged field is transferred else-
where. In part it excites other Fourier modes of the field,
a phenomenon more commonly known as particle produc-
tion. This is usually taken into account by adding a "fric-
tion term" to the LAS equation. " However, even when
there are no other Fourier modes coupled in, as in the case
of the anharmonic oscillator in quantum mechanics, ki-
netic energy is still converted into "heat" or "internal en-
ergy" associated with the spatial average itself, because
the state ceases to satisfy the minimizing. LAS condition.

Then, from Eq. (34)

& s
I 0 s & = a

I
'6—

I
b

I

'6
&s lais&=&o+IHlo+&=&0 IHlo &.

Thus there are states in which &P ) can take any value be-

tween —Po and $0 and in which &H ) takes its vacuum
value. From its definition, then, the effective potential
takes its minimum value everywhere from —$0 to Po.

Note that although the vacuum expectation value of P
is, strictly speaking, somewhat arbitrary, this has no effect
on the outcome of experiments. The Hilbert space is the
sum of two separate spaces, one built on the vacuum

I
0+ ) and the other on

I
0 ). The outcome of any exper-

iment is the same in either space, and there are no transi-
tions from one space to the other. If we build our Hilbert
space on the vacuum of Eq. (35), each state is a linear
combination of corresponding states in the spaces built on

I
0+ ) and 0 ), There are no interference effects arising

from this superposition because of Eq. (34), so that the
outcome of an experiment is the same as in the spaces
built on

I 0+) and
I

0 ).
Where does the one-loop approximation go wrong? In

calculating V,ff(P) to one loop, the bare potential is ex-
panded about P to second order, and the constrained
ground state found in that quadratic potential. This state
is inevitably a Gaussian centered on P, and cannot be any-
thing like the bimodal state, peaked about Po and —Po,
described above.

Thus the one-loop effective potential V,ff(P) is (approx-
imately) the minimum expectation value of the Hamil-
tonian density among all Gaussian states centered on P.

Furthermore, our foregoing exact discussion of the
LAS equation holds at the one-loop level. In particular,
the one-loop LAS equation provides a lower bound on the
rollover time provided rolling commences in a Gaussian
state that minimizes & H ).

V. THE LAS EQUATION AND COSMOLOGY

We wish to emphasize that we believe that the LAS
equation, as an equation for the expectation value &P) is
valid only if rolling commences in a Gaussian LAS state,
and, correspondingly, is only approximately valid if this
condition is approximately met.

For example, by shrinking the width of the LAS Gauss-
ian to zero, the potential whose derivative is the driving
force interpolates smoothly between the effective and bare
potentials. The latter, with its parameters taking their
singular bare values, is, in general, very different from the
former. (We do not suggest that a wave functional of zero
width is a physically plausible state —it has infinite energy
density —we are merely pointing out that a different ini-
tial state leads to a different driving force, and conse-
quently some physical principle has to be invoked to
determine it.) Furthermore, in contradistinction to sug-
gestions by other authors, slowness of roll (i.e., sr=0) does
not, in our analysis, seem to be related to the validity of
the LAS equation; what matters is the shape of the wave
functional. As we have seen, there are LAS states with
arbitrary values of momentum, and one may imagine (one
may certainly do this in quantum mechanics) constructing
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states with m=O, but with a wave functional very dif-
ferent from that for the corresponding LAS state, which
will consequently strongly violate Eq. (5).

Other authors have not, to the best of our knowledge,
found the particular state of the system to play such a
crucial role, and appear to ascribe to the LAS equation an
approximate validity more general than that found here; it
is therefore important to understand how the various ap-
proaches differ. A detailed examination of this question
is beyond the scope of this paper, but we shall nevertheless
make a few tentative comments, which, in all probability,
will fail to do justice to the work of others.

Previous analyses have generally fallen into two classes:
(i) those based on Euclidean path integrals and (ii) those
based on the classical equation of motion derived from
variation of the full effective action. We have used nei-
ther approach and this makes comparison difficult, al-
though all approaches are presumably equivalent (we do
not believe our results are incompatible with these other
calculations, for the reasons given below).

The canonical formalism that we have used is, of
course, not directly equivalent to the calculus of Euclide-
an functional integrals. The initial state should, rather, by
evolved using the Minkowski-space functional integral
which has, as its time translation operator, e' '. The Eu-
clidean integral, on the other hand, is equivalent to the use
of e ' as the evolution operator. While the Euclidean
path integral is an excellent tool for the calculation of Uac-

uum expectation values (since, for large times, it projects
out the ground state), we feel that it should be used cau-
tiously in the determination of the properties of other
states. As we have remarked, the Universe is not in its
vacuum state.

Arguments based on the full effective action go roughly
as follows. The exact equation of motion for P is,

(36)

where

I = V,ff( P ) +derivative terms (37)

is the full effective action. It is then argued that if P
changes only slowly (and field renormalization is chosen
appropriately), the leading derivative term will be the clas-
sical (B„P) /2. Equation (36) is then the LAS equation.

However, the derivative terms in Eq. (37) are not just
higher powers of (B„P),but include all higher derivatives
of P as well. Thus to argue that the classical term is dom-
inant one needs to assume that all derivatives of P are
small, which is equivalent to saying that P moves slowly
not just initially, but for all time. That, of course, is what
we are trying to show. To summarize, if P moves slowly
for all time, then it satisfies the LAS equation, but it need
not move slowly for all time even if it starts off doing so.

Let us make two further remarks concerning the
effective-action approach. Since I contains all higher
derivatives of P, we must specify as initial conditions for
Eq. (36) all derivatives of P. As this is equivalent to
specifying the complete trajectory for p, Eq. (36) contains
(essentially) no information. We conjecture that specify-

ing these derivatives is equivalent to specifying the quan-
tum state.

Even if the higher-derivative terms have small coeffi-
cients, they may profoundly alter the trajectory, since
higher-derivative theories are generally afflicted with ex-
ponentially growing solutions. ' A conventional theory,
such as one defined by the Lagrangian

L =(B,x) /2 —V(x) (38)

L =@(B,x) +(B,x) /2 —V(x) .

The Noether procedure yields a conserved energy

H=p(B, x) +(B,x) /2 —.2pB,xB, x+ V(x) .

(40)

(41)

No matter what form the potential takes, all values of x
are accessible by making the kinetic energy arbitrarily
negative. Indeed, for quadratic V(x) and small positive p,
there exist solutions that grow like e'

Having argued that the LAS equation is valid only if
the universe starts rolling in an LAS state, we now turn to
the question of whether this state, or something close to
it, is likely to arise from a hot primordial universe. Our
thoughts on this matter have benefited from a remark by
Brandenberger. '

The standard model starts with matter in thermo-
dynamic equilibrium at a temperature T & TGU~, and as
long as it remains in equilibrium its equation of state is
tolerably approximated by that for a perfect gas: p =p/3.
Under these circumstances the radius of the universe
grows only as v t, and there is no inflation.

For that (which requires an equation of state p= —p)
and for the irreversible processes which generate entropy
(the need for inflation can be formulated as a need for en-
tropy generation'), we need the matter to be out of ther-
modynamic equilibrium. This clearly happens in all
models of inflation, where a substantial energy density is
associated with the spatial average of the Higgs field, but
all other modes are in their ground states —a distribution
of energy that is certainly not that of equilibrium ther-
modynamics.

Departures from equilibrium occur when the time for
transitions between states is not small compared to the
time it takes for the equilibrium temperature to change
significantly. For a perfect gas the equilibrium tempera-
ture scales with the radius of the Universe such that
RT=const, so that the time for a significant change is
~=R/R. It is the fact that the spatial average takes
much longer than this time to roll to its equilibrium value
that leads to departures from equilibrium and to inflation.
Thus the rolling does not take place in thermal equilibri-
um, and it is incorrect to use the formalism of finite-
temperature field theory to describe it.

is protected from such diseases because the conserved en-

ergy

H = (B,x ) /2+ V(x) (39)
has a positive-definite kinetic piece. Thus a suitable
choice of the potential confines x to a finite interv'al. For
a higher-derivative theory this argument fails, because the
kinetic piece is not in general positive definite. Consider
the system defined by
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Having made these preliminary remarks let us attempt
a qualitative, simple-minded description of what happens
as the universe cools. Any discussion of the details of
departure from equilibrium during a phase transition in
curved space at such early times is a hazardous enterprise,
and should be regarded with corresponding skepticism.
We assume that the universe starts in equilibrium at a
temperature T & TzUz. At around some critical tempera-
ture T, (on the order of ToU&), the matter goes out of
equilibrium and inflation begins. By the assumption of
inflation, and so departure from equilibrium, the long-
wavelength modes are changing very slowly (in particular
we are assuming that the spatial average is rolling slowly).
Short-wavelength degrees of freedom are rapidly red-
shifted to their ground state by the inflation, but longer-
wavelength modes ( &MoUr ') are not so affected (in
particular, the spatial average is not red-shifted at all).
These long-wavelength modes thus have an energy excess,
over and above the minimum for a given value of P, on
the order of T, throughout the inflationary era. This, of
course, is just the statement that the universe enters the
inflationary era in something other than an LAS state.

We may arrive at the same conclusion by another route.
The minimal Gaussian that is the required LAS state can
be expressed as a superposition of energy eigenstates. To
obtain the desired state, the coefficients of the individual
eigenstates must have not only the correct magnitude but
also the correct relative phases; change the phases and the
state looks completely different (for example, temporal
evolution is simply a change in the relative phases). A
thermal state, by contrast, specifies the magnitudes of the
weights for the different eigenstates, but gives no informa-
tion on the relative phases, which are completely random.
It is therefore very hard to imagine how a hot primordial
universe can yield the necessary phase information for the
construction, even approximately, of an LAS state (Figs. 3
and 4). If N eigenstates contribute significantly, the prob-
ability of getting the phases roughly right is on the order
of (2~)-~.

The foregoing arguments lead us to believe that it is un-
likely that the LAS equation correctly describes the evolu-
tion of the expectation value (P), even approximately.
However, this does not mean that said equation is not
relevant for a physical description of the roll. For exam-
ple, it may be possible to argue that while the universe is
never in an LAS state, it may commence rolling in a su-
perposition of such states (a superposition of LAS states is
not, in general, an LAS state). Since the time evolution
operator acts linearly on the Hilbert space, each of these
LAS states would evolve independent of the others, essen-

FIG. 4. Typical initial state from a hot early universe.

tially according to the LAS equation. Thus although (P)
would not obey the LAS equation, the roll time would be
derived from an average over an ensemble of LAS trajec-
tories. (This argument clearly owes much to the work of
Guth and Pi. ) However, the LAS states do not form a
complete set, and so this possibility requires a physical ar-
gument to justify it.

In this paper we have drawn attention to the impor-
tance, as we see it, of the quantum state of the universe at
the beginning of the inflationary era. ' We hope that fu-
ture work will illuminate its properties and clarify the role
of quantum effects in the early universe.
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APPENDIX

To demonstrate that Eq. (5) is not preserved under evo-
lution we consider the anharmonic oscillator in ordinary
quantum mechanics (m = 1)

H = , P '+ V(X) = , P '+——,co'X'—+A,X' . (A 1 )

We first compute Oxp), the one-loop approximation to
the state

l
0») which minimizes (p l

H
l g) subject to

the constraints

(y y)=I, (qlX q)=X,

Clearly the state 0» ) satisfies

os&=(H+~x+&P)
l
o»& =E

l
o»&, (

where J and K are to be determined by applying the con-
straints. From the discussion in Sec. III we know that
H '", the appropriate Hamiltonian for the one-loop varia-

tional problem, is HJz expanded to second order around
X and P with J and K chosen to eliminate the linear
terms. Up to irrelevant c-number constants, we have

H'"=-,' (P —P)'+ —,'~'(X —X)',
where

FIG. 3. Initial state required for the one-loop LAS equation
to be valid. Of course the ground state of this Hamiltonian is

(A3)
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()) ~
—(co/2A)(x X)—+ip{x O~p ) =Roe

where

1/4

5%= 5''[co +12k, (O~p
~

X(0)
~ O~p)] .

Here X is obtained from the equation of motion

(A7)

P(0) = dX
dt t o

[X(0),H]

The reader may very simply verify that, to first order in

V(~1)(X) (0(1)
~

H
~

0(&) )

V,",,' (X)= (0"'
i
V'(X)

i

0(') ) .

Here the one-loop effective potential is easily calculated,
as, for example, in Coleman's notes, ' to be

by taking the matrix element between
~
Ozp) and using

(A2) again to get

(AS)

Substituting the one-loop approximation
~
Ozp) the ma-

trix element in (A7) is a simple integration, and with (A8)
we obtain

V"'(X)=—co X +~ + —(co +12AX )'r
2

(A5)
6A,

(co +12' )'r2

Suppose now that the system has been prepared in the
state ~0&p) at t=O, and denote (in the Heisenberg pic-
ture)

If the LAS is preserved under evolution to O(A') and
O(5t), we must have

5+—5V ff —V ff(X)P5t

N(t): (O~p
~

V (X(t))
~

0 ) (A6) But

Then after an infinitesimal time 6t, we have, to first order
in 5t,

5%= 5t(O~p
~
[V'(X(0)),H]

~
Oxp) .

6V,'gg ——P6t m +12' +4 6k
(co'+12'') '~'

72k X
(co +12~ )

Making use of Eqs. (Al) and (A2) we write this as differing in the last term.
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