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It is assumed that the Universe is in the quantum state defined, by a path integral over compact

four-metrics. This can be regarded as a boundary condition for the wave function of the Universe

on superspace, the space of all three-metrics and matter field configurations on a three-surface. We

extend previous work on finite-dimensional approximations to superspace to the full infinite-

dimensional space. We treat the two homogeneous and isotropic degrees of freedom exactly and the

others to second order. We justify this approximation by showing that the inhomogeneous or aniso-

tropic modes start off in their ground state. We derive time-dependent Schrodinger equations for

each mode. The modes remain in their ground state until their wavelength exceeds the horizon size

in the period of exponential expansion. The ground-state fluctuations are then amplified by the sub-

sequent expansion and the modes reenter the horizon in the matter- or radiation-dominated era in a

highly excited state. We obtain a scale-free spectrum of density perturbations which could account

for the origin of galaxies and all other structure in the Universe. The fluctuations would be compa-

tible with observations of the microwave background if the mass of the scalar field that drives the

inflation is 10' GeV or less.

I. INTRODUCTION

Observations of the microwave background indicate
that the Universe is very close to homogeneity and isotro-
py on a large scale. Yet we know that the early Universe
cannot have been completely homogeneous and isotropic
because in that case galaxies and stars would not have
formed. In the standard hot big-bang model the density
perturbations required to produce these structures have to
be assumed as initial conditions. However, in the infla-
tionary model of the Universe' it was possible to show
that the ground-state fluctuations of the scalar field that
causes the exponential expansion would lead to a spec-
trum of density perturbations that was almost scale
free. In the simplest grand-unified-theory (GUT) in-
flationary model the amplitude of the density perturba-
tions was too large but an amplitude that was consistent
with observation could be obtained in other models with a
different potential for the scalar field. Similarly,
ground-state fluctuations of the gravitational-wave modes
would lead to a spectrum of long-wavelength gravitational
waves that would be consistent with observation provided
that the Hubble constant 0 in the inflationary period was
not more than about 10 of the Planck mass.

One cannot regard these results as a completely satis-
factory explanation of the origin of structure in the

Universe because the inflationary model does not make
any assumption about the initial or boundary conditions
of the Universe. In particular, it does not guarantee that
there should be a period of exponential expansion in
which the scalar field and the gravitational-wave modes
would be in the ground state. In the absence of some as-

sumption about the boundary conditions of the Universe,
any present state would be possible: one could pick an ar-
bitrary state for the Universe at the present time and
evolve it backward in time to see what initial conditions it
arose from. It has recently been proposed' ' that the
boundary conditions of the Universe are that it has no
boundary. In other words, the quantum state of the
Universe is defined by a path integral over compact four-
metrics without boundary. The quantum state can be
described by a wave function 4 which is a function on the
infinite-dimensional space W called superspace which
consists of all three-metrics h,z and matter field configu-
rations C&o on a three-surface S. Because the wave func-
tion does not depend on time explicitly, it obeys a system
of zero-energy Schrodinger equations, one for each choice
of the shift Nt and the lapse N on S. The Schrodinger
equations can be decomposed into the momentum con-
straints, which imply that the wave function is the same
at all points of 8' that are related by coordinate transfor-
mations, and the %'heeler-De%"itt equations, which can be
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regarded as a system of second-order differential equa-
tions for %' on 8. The requirement that the wave func-
tion be given by a path integral over compact four-metrics
then becomes a set. of boundary conditions for the
Wheeler-DeWitt equations which determines a unique
solution for %.

It is difficult to solve differential equations on an
infinite-dimensional manifold. Attention has therefore
been concentrated on finite-dimensional approximations
to 8' called "minisuperspaces. " In other words, one re-
stricts the number of gravitational and matter degrees of
freedom to a finite number and then solves the Wheeler-
DeWitt equations on a finite-dimensional manifold with
boundary conditions that reflect the fact that the wave
function is given by a path. integral over compact four-
metrics. In particular, ' ' it has been shown that in the
case of a homogeneous isotropic closed universe of radius
a with a massive scalar field P the wave function corre-
sponds in the classical limit to a family of classical solu-
tions which have a long period of exponential or "infla-
tionary" expansion and then go over to a matter-
dominated expansion, reach a maximum radius, and then
collapse in a time-symmetric manner. This model would
be in agreement with observation but, because it is so re-
stricted, the only prediction it can make is that the ob-
served value of the density parameter 0 should be exactly
one. ' The aim of this paper is to extend this minisuper-
space model to the full number of degrees of freedom of
the gravitational and scalar fields. We treat the 2 degrees
of freedom of the minisuperspace model exactly and we
expand the other inhomogeneous and anisotropic degrees
of freedom to second order in the Hamiltonian. In the re-

gion of 8 in which 4 oscillates rapidly, one can use the
WKB approximation to relate the wave function to a fam-
ily of classical solutions and so introduce a concept of
time. As in the minisuperspace case, the family includes
solutions with a long period of exponential expansion. We
show that the gravitational-wave and density-perturbation
modes obey decoupled time-dependent Schrodinger equa-
tions with respect to the time parameter of the classical
solution. The boundary conditions imply that these
modes start off in the ground state. While they remain
within the horizon of the exponentially expanding phase,
they can relax adiabatically and so they remain in the
ground state. However, when they expand outside the
horizon of the inflationary period, they become "frozen"
until they reenter the horizon in the matter-dominated
era. They then give rise to gravitational waves and a
scale-free spectrum of density perturbations. These would
be consistent with the observations of the microwave
background and could be large enough to explain the ori-
gins of galaxies if the mass of the scalar field were about
10 of the Planck mass. Thus the proposal that the
quantum state of the Universe is defined by a path in-

tegral over compact four-metrics seems to be able to ac-
count for the origin of structure in the Universe: it arises,
not from arbitrary initial conditions, but from the
ground-state fluctuations that have to be present by the
Heisenberg uncertainty principle.

In Sec. II we review the Hamiltonian formalism of clas-
sical general relativity, and in Sec. III we show how this

II. CANONICAL FORMULATION
OF GENERAL RELATIVITY

We consider a compact three-surface S which divides
the four-manifold M into two parts. In a neighborhood
of S one can introduce a coordinate t such that S is the
surface t=0 and coordinates x '

( i = 1,2,3). The metric
takes the form

ds = (N N;N—')dt +—2N;dx'dt+h;jdx'dxj . (2.1)

N is called the lapse function. It measure the proper-time
separation of surfaces of constant t. X; is called the shift
vector. It measures the deviation of the lines of constant
x' from the normal to the surface S. The action is

I = J (Lg+L )d xdt,
where

2

(2.2)

(2.3)

1
K,J. ——

2N
Bh;~ +2X(p

~
j)at

(2.4)

is the second fundamental form of S, and

Gijkl h 1/2(hikj jl+ j ilhjk 2j ijj kl)

In the case of a massive scalar field N

(2.5)

BNB@

a 'a

(2.6)

Ip the Hamiltonian treatment of general relativity one
regards the components h,j. of the three-metric and the
field N as the canonical coordinates. The canonically
conjugate momenta are

leads to the canonical treatment of the quantum theory.
In Sec. IV we summarize earlier work' on a homogene-
ous isotropic minisuperspace model with a massive scalar
field. We extend this to all the matter and gravitational
degrees of freedom in Sec. V, treating the inhomogeneous
modes to second order in the Hamiltonian. In Sec. VI we
decompose the wave function into a background term
which obeys an equation similar to that of the unper-
turbed minisuperspace model, and perturbation terms
which obey time-dependent Schrodinger equations. We
use the path-integral expression for the wave function in
Sec. VII to show that the perturbation wave functions
start out in their ground states. Their subsequent evolu-
tion is described in Sec. VIII. In Sec. IX we calculate the
anisotropy that these perturbations would produce in the
microwave background and compare with observation. In
Sec. X we summarize the paper and conclude that the
proposed quantum state could account not only for the
large-scale homogeneity and isotropy but also for the
structure on smaller scales.
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The Hamiltonian is

H= f (rr'jh, J+n@4& Lg —L~—)d x

(2.7)

(2.8) 6 5~'j(x)~ i— , ~~(x)~ i-
5h;J(x)

'
5$(x)

(3.3)

Because X and X; are regarded as independent Lagrange
multipliers, the Schrodinger equation can be decomposed
into two parts. There is the momentum constraint

(3.2)

The Hamiltonian operator H is the classical Hamiltonian
with the usual substitutions:

where

XHp+X;H' x, (2.9)
'p—= f NH'd x 4

2

Hp ——16am p G; I,le'J~ — h R—2 i' kl ~ 1/23
J

m
2

1

h 1/2 @ hjii)@~@ 2C 2+ —, „+, +m (2.10)

=fh'"N; 2
5h;j(x) . IJ

hJB@ 6
ax/ 5C(x)

(3.4)

H= —2~ ~+hi ij ij ~+
axj

(2.11)

and
—1/2

Gijki = —,h (h;khji+hiihjk hijhk—i) . (2.12)

The quantities X and X; are regarded as Lagrange mul-
tipliers. Thus the solution obeys the momentum con-
straint

H'=0 (2.13)

and the Hamiltonian constraint

Hp ——0. (2.14)

BH
7T@-

BKq)-

BH
BN

III. QUANTIZATION

The quantum state of the Universe can be described by
a wave function '0 which is a function on the infinite-
dimensional manifold 8 of all three-metrics h,J and
matter fields 4& on S. A tangent vector to W is a pair of
fields (y;j,p) on S where y;j can be regarded as a small
change of the metric h;j and p can be regarded as a small
change of @. For each choice of N & 0 on S there is a
natural metric I (N) on 8'

ds 2 f N —1 GiJ'kly y + &

h 1/2p2 d 3x (3.1)

l

The wave function 0' does not depend explicitly on the
time t because t is just a coordinate which can be given
arbitrary values by different choices of the undetermined
multipliers X and %;. This means that + obeys the zero-
energy Schrodinger equation:

For given fields N and N' on S the equations of motion
are

()H

Bhii
(2.15)

This implies that + is the same on three-metrics and
matter field configurations that are related by coordinate
transformations in S. The other part of the Schrodinger
equation, corresponding to H

I

4=0, where
H

~

= f NHod x is called the Wheeler-DeWitt equation.
There is one Wheeler-DeWitt equation for each choice of
N on S. One can regard them as a system of second-order
partial differential equations for 4 on 8'. There is some
ambiguity in the choice of operator ordering in these
equations but this will not affect the results of this paper.
We shall assume that H

~

has the form'

( ,' V'—+—pa+V) P=O, (3.5)

where V is the Laplacian in the metric I (N). R is the
curvature scalar of this metric and the potential Vis

(3.6)

where U = T ——,
'

~~, . The constant e can be regarded as
a renormalization of the cosmological constant A. We
shall assume that the renormalized A is zero. We shall
also assume that the coefficient g of the scalar curvature
R of 8'is zero.

Any wave function qi which satisfies the momentum
constraint and the Wheeler-DeWitt equation for each
choice of N and N; on S describes a possible quantum
state of the Universe. We shall be concerned with the par-
ticular solution which represents the quantum state de-
fined by a path integral over compact four-metrics
without boundary. In this case"

qi= f d [g„]d[C]exp[ I(g„„,@)], — (3.7)

where I is the Euclidean action obtained by setting % neg-
ative imaginary and the path integral is taken over all
compact four-metrics g& and rnatter fields N which are
bounded by S on which the three-metric is hiJ and the
matter field is @. One can regard (3.7) as a boundary con-
dition on the Wheeler-DeWitt equations. It implies that
%' tends to a constant, which can be normalized to one, as
h,J goes to zero.
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IV. UNPERTURBED FRIEDMANN MODEL

References 12—14 considered the minisuperspace model
which consisted of a Friedmann model with metric

where

BS BS
aa' (4.11)

ds =cr ( N—dt +a dQ3 ), (4 1) One can write (4.10) in the form

where dQ32 is the metric of the unit three-sphere. The
normalization factor o =2/3rtmp has been included for
convenience. The model contains a scalar field
(2' vcr) 'P with mass o 'm which is constant on sur-
faces of constant t. One can easily generalize this to the
case of a scalar field with a potential V(P). Such general-
izations include models with higher-derivative quantum
corrections. ' The action is

(f,t, BSBS
aq aq'

where f' is the inverse to the metric I (1):

(4.12)

f' =e diag( —1, 1) . (4.13)

The wave function (4.9) will then satisfy the Wheeler-
De~itt equation if

1 dP
dt

'2

+m P

The classical Hamiltonian is

where

'~. '+a 'm~' —a+a'm'y'),

ada a dP
Xdt' Ãdt

'

I= ——,
' JdtNa 2 z dt

(4.2)

(4.3)

(4.4)

V'C+&~f" . , +iCV'S =0,. ,b BCBS
(4.14)

Bg Bg

where V is the Laplacian in the metric f,b. One can ig-
nore the first term in Eq. (4.14) and can integrate the
equation along the trajectories of the vector field
X'=dq'/dt=f' BS/Bq and so determine the amplitude
C. These trajectories correspond to classical solutions of
the field equations. They are parametrized by the coordi-
nate time t of the classical solutions.

The solutions that correspond to the oscillating part of
the wave function of the minisuperspace model start out
at V=O,

~ P ~
~ 1 with da/dt =dP/dt =0. They expand

exponentially with

The classical Hamiltonian constraint is H=O. The classi-
cal field equations are

d 1 dp 3dadp N2 z~ 0 (4dt X dt a dt dt

S=——,'e m P~(1 —m e P )

(4.15)

d 1da
dt X dt

dd=N am P —2a
dt

(4.6) =m /P 3 Idt
(4.16)

The %'heeler-De%'itt equation is

where

a2 a2
, +2V %'(a, f)=0,

Ba BP
(4.7)

V= —'(e m P —e ~) (4.8)

and a=lna. One can regard Eq. (4.7) as a hyperbolic
equation for 0' in the fiat space with coordinates (a,p)
with n as the time coordinate. The boundary condition
that gives the quantum state defined by a path integral
over compact four-metrics is 4~1 as a~ —ao. If one
integrates Eq. (4.7) with this boundary condition, one
finds that the wave function starts oscillating in the re-
gion V&0,

~ P ~
& 1 (this has been confirmed numerical-

ly' ). One can interpret the oscillatory component of the
wave function by the %'KB approximation:

4=Re( C e 's), (4.9)

FI(m. , m.p, a,g) =0, (4.10)

where C is a slowly varying amplitude and S is a rapidly
varying phase. One chooses S to satisfy the classical
Hamilton- Jacobi equation:

V. THE PERTURBED FRIEDMANN MODEL

We assume that the metric is of the form (2.1) except
the right hand side has been multiplied by a normalization
factor a . The three-metric h;» has the form

h;~=a (0;J+e;J), (5.1)

where Q,» is the metric on the unit three-sphere and e,» is
a perturbation on this metric and may be expanded in har-
monics:

After a time of order 3m '(
~ P& ~

—1), where P, is the in-
itial value of P, the field P starts to oscillate with frequen-
cy m. The solution then becomes matter dominated and
expands with e proportional to t . If there were other
fields present, the massive scalar particles would decay
into light particles and then the solution would expand
with e proportional to t'~ . Eventually the solution
would reach a maximum radius of order exp(9$& /2) or
exp(9$& ) depending on whether it is radiation or matter
dominated for most of the expansion. The solution would
then recollapse in a similar manner.
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etJ. —g [6 an/tn 3 QjtQjpf+6' bn(tn(P&J)(~+2' c,&tn(S&J)(~+2' cn'Itn(S&J)I&n+2dttitn(GJ)(~+2dtt(tn(Gtj))~] .
n, l, m

(5.2)

The coefficients anim, bn~~, cni~, cn~~, dnrm, dn~m are func-
tions of the time coordinate t but not the three spatial
coordinates x'.

The Q(x') are the standard scalar harmonics on the
three-sphere. The P;J(x') are given by (suppressing all but
the ij, indices)

1Pv= Qiv+ ~vQ.
(n 1)—

They are traceless, I' =0. The S;J are defined by

(5.3)

SJ ——S; iJ+S (5.4)

where S; are the transverse vector harmonics, S; ~'=0.
The G,J are the transverse traceless tensor harmonics
6 G J

J——0. Further details about the harmonics and
their normalization can be found in Appendix A.

The lapse, shift, and the scalar field N(x', t) can be ex-
panded in terms of harmonics:

N =No 1+6 '" g gnimQIm (5.5)
n, l, m

One can define conjugate momenta in the usual
manner. They are

77 = —+p e Q, +quadratic terms

rr~ =No 'e tt&+ quadratic terms,

n; = —Np 'e [a„+a(a„—g„)+—,e k„],

orb Np ——e (b+4ab„——,e k),(~' —4)
(n 1)—

sr, =Np 'e (n —4)(c +n4ac n e j),

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

7rd =Np 'e (d„+4ad„) (5.14)

ref =Np 'e [f„+P(3a„—g„)] . (5.15)

The quadratic terms in Eqs. (5.9) and (5.10) are given in
Appendix B. The Hamiltonian can then be expressed in
terms of these momenta and the other quantities:

H =No H ~o+ gH ~2+ ggnH
~

i

N;=e g [6 ' 'knl~(P;)~~+2' 'j„~ (S;)I~], (5.6)
n, l, m

r + g (k„H" )+jn H"
i ) . (5.16)

4(t)+ g fnI~QF~
n, l, m

(5.7)

where Ip is the action of the unperturbed model (4.2) and
I„ is quadratic in the perturbations and is given in Appen-
dix B.

where P; =[1/(n —1)]Q ~;. Hereafter, the labels n, l, m,
0, and e will be denoted simply by n. One can then ex-
pand the action to all orders in terms of the "background"
quantities a, P,No but only to second order in the "pertur-
bations" an&bn&cn&dn&fn&gn&kn&j .:

I =Io(a, y No)+ gI.
i e —3a( Sr 2+Sr 2+e6am2y2 e4a) (5.17)

The second-order Hamiltonian is given by

H „=gH", = g('H"„+'H"„+'H"„),

where

The subscripts 0,1,2 on the H
~

and H denote the orders
of the quantities in the perturbations and S and V denote
the scalar and vector parts of the shift part of the Hamil-
tonian. H

~

p is the Hamiltonian of the unperturbed model
with %=1:

H" =—'e]2= 2
2 10(&'—4)

b 2 2 ts 2 6(n' —4)
2 n + 2 n sra + 2 an + 2 bn 17&t&

n —1) (n 1)—
(n —1)2

+ 2
n.b +ref +2anm, m +Sbnm6 ~ 6ansrf rr~—

n

2
s 2 (n —7) (n —4)2—e T(n ——,)a„+

3 (~2 1)
b +Tn(n —4)a b —(n —1)f

2 2

n —1
(5.18)

VH"
2

———,'e 3 (n2 —4)c„(10m +6sr~ )+ m, +Sc„sr, n+(n 4)c„(2.e" ——6e m p )
n

(5.19)

H ~2
———,e [dn (10na +6m~ )+md +Sdnsrd sra+dn [(n +1)e 6e m ttt—]] .

The first-order Hamiltonians are

(5.20)
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H
i

i
———,'e I a—„(2r +32r& )+2(2r&2rf v—r 2r, )+m e (2f„p+3a„p ) ,'—e—[(n 4—)b„+(n + —,

' )a„]j . (5.21)

The shift parts of the Hamiltonian are

S~n & —3ai= 3e
4(n —4)

2rII„+2rb„+ aII + b» 2rII+ 3f» 1rIb
(n 1—)

(5.22)

vH", =e [2r, +4(n 4—)c„2r ] . (5.23)

The classical field equations are given in Appendix B.
Because the Lagrange multipliers Xp,g„,k„,j„are independent, the zero energy Schrodinger equation

(5.24)

can be decomposed as before into momentum constraints and Wheeler-DeWitt equations. As the momentum constraints
are hnear in the momenta, there is no ambiguity in the operator ordering. One therefore has

'H" 4= ——
3 an+ 2 bn

4(n —4) 8

(n 1)—" Ba
(5.25)

~H" &%=e +4(n 4)c—» 4=0 .
Bc Bcx

(5.26)

The first-order Hamiltonians H
i
i give a series of finite dimensional second-order differential equations, one for each

n. In the order of approximation that we are using, the ambiguity in the operator ordering will consist of the possible
addition of terms linear in 8/Ba. The effect of such terms can be compensated for by multiplying the wave function by
powers of e~. This will not affect the relative probabilities of different observations at a given value of a. We shall
therefore ignore such ambiguities and terms:

2 Ik

a2

Ban Oct
+m e [2'»+3a„g ]—', e [(n —4)b„+—(n + —,

' )a„] 4=0 .

Finally, one has an infinite-dimensional second-order differential equation
r

Hio+ g( Hi2+ Hi2+ Hi2) 4=0,

(5.27)

(5.28)

where H
i
0 is the operator in the Wheeler-DeWitt equation of the unperturbed Friedmann minisuperspace model:

2

H =& —3aiP= 2e
Ba

82
+e 6am 2~2 —e 4a

Qp2
(5.29)

2 10(n —4)b 2 8 ~ 2 6(n —4)b 2 8
i2 2 2 II

(
2 1)

»
g 2 2 II

(
2 1)

II

8 (n 1) 8 —8 8 8 8+ — — —2a„—Sb„+6a„Ba„(n —4) Bb„2 Qf„2
" Ba„Ba " Bb„Ba "Bf„I3$

2 2 & 2 6(n —4) 2 (5.30)

8 1 0 (3H" = —'e (n 4)c —10 — +6 — —Sc„+(n2—4)c„(2e —6e m P )
Ba BP (n 4) Bc„—

(5.31)

Trrn & 3aH ~2
——2e

a' a'—d„10 +6
Ba 8/2

8 +d„[(n +1)e 6e m P ]— (5.32)
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We shall call Eq. (5.28) the master equation. It is not
hyperbolic because, as well as the positive second deriva-
tives 8 IBa in H

~

p, there are the positive second deriva-
tives 8 /Ba„ in each H"~2. However, one can use the
momentum constraint (5.25) to substitute for the partial
derivatives with respect to a„and then solve the resultant
differential equation on a„=0. Similarly, one can use the
momentum constraint (5.26) to substitute for the partial
derivatives with respect to c„and then solve on c„=O.
One thus obtains a modified equation which is hyperbolic
for small f„. If one knows the wave function on
an =0=en, one can use the momentum constraints to cal-
culate the wave function at other values of a„and c„.

VI. THE WAVE FUNCTION

)It=Re )Ito(a, t)tt) g tIt(")(a, y, a„,b„,c„,d„,f„)
n

=Re(Ce' ), (6.1)

where S is a rapidly varying function of a and P and C is
a slowly varying function of all the variables. If one sub-
stitutes (6.1) into the master equation and divides by qt,
one obtains

Because the perturbation modes are not coupled to each
other, the wave function can be expressed as a sum of
terms of the form

Vy()
qt(n)

n

In regions in which the phase S is a rapidly varying
function of a and P, one can neglect the second term in
(6.4) in comparison with the first term. One can also. re-

place the m. and n~ which appear in H "~2 by t)S/aa and
BS/Bp, respectively. The vector X'=f'"dS/dq~ obtained

by raising the covector V2S by the inverse minisuperspace
metric f' can be regarded as BIBt where t is the time pa-
rameter of the classical Friedmann metric that corre-
sponds to 4 by the WKB approximation. One then ob-
tains a time dependent Schrodinger equation for each
mode along a trajectory of the vector field X'.

(n)
=H" +(n)l

at I2

Equation (6.5) can be interpreted as the Wheeler-
DeWitt equation for a two-dimensional minisuperspace
model with an extra term —,J J arising from the perturba-
tions. In order to make J finite, one will have to make
subtractions. Subtracting out the ground-state energies of
the H

~

2 corresponds to a renormalization of the cosmo-
logical constant A. There is a second subtraction which
corresponds to a renormalization of the Planck mass mz
and a third one which corresponds to a curvature-squared
counterterm. The effect of such higher-derivative terms
in the action has been considered elsewhere. '

One can write 4{")as

V 2)It V 2'(n)

2%'p
n)~ m

(V )It(n)). ( V )It(m))

2'{n) gp(m )

( V2tIto)

+o

V @(n)

)It( n)
n

H"~2~
+e V(a, g) =0, (6.2)

where
Schrodinger equations
respectively.

(6.7)

and 4("' obey independent

VII. THE BOUNDARY CONDITIONS

+(n) s(It(n)(a P a b f ) v+(n)(a t)It c )TQ(n)(a P d )

(V,q("))
1

'

V,+'"' '
= —i(V2S) g („) +

2 g („) (6.3)

In order that the ansatz (6.1) be valid, the terms in (6.2)
that depend on a„,b„,c„,d„,f„have to cancel out. This
implies

where V2 is the Laplacian in the minisuperspace metric
f,b ——e diag( —1, 1) and the dot product is with respect to
this metric.

An individual perturbation mode does not contribute a
significant fraction of the sums in the third and fourth
terms in Eq. (6.2). Thus these terms can be replaced by

( V2(I') ( V2'P'"') 1 V2'P'"'

(It tIt(n) 2 qp(n)
n n

We want to find the solution of the master equation
that corresponds to

)It[ h;I, C&] = J d [g„,]d [tI)]exp( I), —(7.1)

ds2 (r2( ~2dt2+e2a(t)de 2) (7.2)

where the integral is taken over all compact four-metrics
and matter fields which are bounded by the three-surface
S. If one takes the scale parameter a to be very negative
but keeps the other parameters fixed, the Euclidean action
I tends to zero like e . Thus one would expect + to tend
to one as a tends to minus infinity.

One can estimate the form of the scalar, vector, and
ensor parts @("), ~@("), @(") of the perturbation

from the path integral (7.1) One takes the four-metric g„
and the scalar field N to be of the background form

( V2%')
(V @(n))+ t

V 2tIt(n) ~

2 )It(n)
H",%

qg
2 2

( ——,V22+e V+ 2 J'J)%'o=0 ~

where

(6.4)

(6.5)

and P(t), respectively, plus a small perturbation described
by the variables (a„,b„,f„), c„, and d„as functions of t
In order for the background four-metric to be compact, it
has to be Euclidean when a= —ao, i.e., % has to be pure-
ly negative imaginary at ca= —oo, which we shall take to
be t=O. In regions in which the metric is Lorentzian, X
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will be real and positive. In order to allow a smooth tran-
sition from Euclidean to Lorentzian, we shall take X to be
of the form —i e'" where p=0 at t=O. In order that the
four-metric and the scalar field be regular at
t =O,a„,b„,c„,d„,f„have to vanish there.

I„=—,
' f dt d„Dd„+boundary term,

where

(7.3)

The tensor perturbations d„have the Euclidean action

3cx

+iNDe (n 1) —+4iNDe + —,'e ——,'m P2-
dt i&pdt

3P 2

2(iNo)

1d ci

2(iND ) iN0dt iN()
(7.4)

The last term in (7.4) vanishes if the background metric
satisfies the background field equations. The action is ex-
tremized when d„satisfies the equation

T

0""'=8exp — , n e —coth(vr)+ . ae3~ d„2a 3cx 2

i&0

Dd„=O . (7.5)
(7.10)

T cl

2tXp
(7 6)

For a d„ that satisfies (7.5), the action is just the boundary
term

In the Euclidean region, ~ will be real and positive. For
large values of n, coth(vr) =1. In the Lorentzian region
where the WKB approximation applies, ~ will be complex
but it will still have a positive real part and coth(vr) will
still be approximately 1 for large n. Thus

The path integral over d„will be
( ) Bexp 2& d ne2ad 2. as

aux
(7.11)

g (e VY e
—V7') (7.8)

f d [d„]exp( —I„)=(det D) '~ exp( —I „") . (7.7)

One now has to integrate (7.7) over different background
metrics to obtain the wave function %""'. One expects
the dominant contribution to come from background
metrics that are near a solution of the classical back-
ground field equations. For such metrics one can employ
the adiabatic approximation in which one regards e to be
a slowly varying function of t. Then the solution of (7.5)
which obeys the boundary condition d„=O at t=O is

e +4(n —4)c„4=0.a 2 aac„"aa
(7.12)

The normalization constant B can be chosen to be 1.
Thus, apart from a phase factor, the gravitational-wave
modes enter the WKB region in their ground state.

We now consider the vector part 0""' of the wave
function. This is pure gauge as the quantities c„can be
given any value by gauge transformations parametrized by
the j„. The freedom to make gauge transformations is re-
flected quantum mechanically in the constraint

where v=e (n 1)'~ —and r= f iNDdt. This approxi-
mation will be valid for background fields which are near
a solution of the background field equations and for
which

One can integrate (7.12) to give

%'(a, Ic„I)=4 a —2g (n 4)c„,—0 (7.13)

CX —a&&n e
0

(7.9)

where the dependence on the other variables has been
suppressed. One can also replace B%'/Ba by i(BS/Ba)%'.
One can then solve for

For a regular Euclidean metric,
~

a/ND
~

=e near t=0.
If the metric is a Euclidean solution of the background
field equations, then

~
a/N0

~
& e . Thus the adiabatic

approximation should hold for large values of n into the
region in which the solution of the background field equa-
tions becomes Lorentzian and the WKB approximation
can be used. The wave function 4'"' will then be

~e'"'=exp 2i(n' —4)c„', as
acx

(7.14)

The scalar perturbation modes a„, b„, and f„ involve a
combination of the behavior of the tensor and vector per-
turbations. The scalar part of the action is given in Ap-
pendix B. The action is extremized by solutions of the
classical equations

Qn
N0 e + —, (n —4)ND e (a„+b„)+3e (p f„N0 m pf„)—

0

k„=ND [3e m p —'(n2+2)e ]—g +e3~ag ——'N—
0

(7.15)



31 ORIGIN OF STRUCTURE IN THE UNIVERSE 1785

d
dt Xo

k„
,
'

—(n —1)Np e (a„+b„)= —,
'

(n —1)Np e g„+—,'Np e
dt No

(7.16)

Np e +3e Pa„+Np [m e +(n 1—)e ]f„=e ( —2Np m Pg„+Pg„—e Pk„) .
dt Xo

(7.17)

There is a three-parameter family of solutions to (7.15)—(7.17) which obey the boundary condition a„=b„=f„=O at
t= 0. There are ho~ever, two constraint equations:

n —4 e
—a

(n 1) — (n 1)— (7.18)

3a„(—a +P )+2(Pf„—a a„)+Np m (2f„g+3a„g ) —, Np e—[(n 4)b„—+(n + —,
' )a„]

= —,ae k„+2g„(—a +P ) . (7.19)

These correspond to the two gauge degr'ees of freedom parametrized by k„and g„, respectively. The Euclidean action
for a solution to Eqs. (7.15)—(7.19) is

r

—a„a„+ z b„b„+f„f„+a —a„+ z b„+3)a„f„+g„(aa„Pf„)—(n 2 —4) . . p 4(n —4)
(n~ —1) (n —1)

——,e k„a + b„
(n 4)—
(n —1)

(7.20)

where the background field equations have been used.
In many ways the simplest gauge to work in is that with g„=k„=O. However, this gauge does not allow one to find a

compact four-metric which is bounded by a three-surface with arbitrary values of a„, b„, and f„and which is a solution
of the Eqs. (7.15)—(7.17) and the constraint equations. Instead, we shall use the gauge a„=b„=O and shall solve the
constraint Eqs. (7.18) and (7.19) to find g„and k„:

(n 1)agf—„+Pf„+Np m Pf„
(n —4)a +3/

(7.21)

aP f„+Np'm2gf„a 3f„g( a+—P )—
k„=3(n —1)e

(n —4)a +3/
(7.22)

With these substituted, (7.17) becomes a second-order equation for f„,

e +Np [m e +(n 1)e ]f„=—e ( —2Np m Pg„+Pg„—e ~Pk„) .
dt Xo

(7.23)

For large n we can again use the adiabatic approxima-
tion to estimate the solution of (7.23) when

~ P ~
& 1:

f„=Asinh(vr),

where v =e (n —1). Thus for these modes

(7.24)

4'"'(a, P, O, O,f„)=exp —,' n e f„—,i g„f„——
(7.25)

This is of the ground-state form apart from a small phase
factor. The value of 4'"' at nonzero values of a„and b„
can be found by integrating the constraint equations (5.25)
and (5.27).

The tensor and scalar modes start off in their ground

t

states, apart possibly from the modes at low n. The vec-
tor modes are pure gauge and can be neglected. Thus the
total energy

n

of the perturbations will be small when the ground-state
energies are subtracted. But F. =i ( V2S) J where
J= Q„V2%""'/O'"'. Thus J is small. This means that
the wave function 4'p will obey the Wheeler-DeWitt equa-
tion of the unperturbed minisuperspace model and the
phase factor S will be approximately —iln%'p. However
the homogeneous scalar field mode P will not start out in
its ground state. There are two reasons for this: first,
regularity at t=O requires a„=b„=c„=d„=f„=O,but
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VIII. GROWTH OF PERTURBATIONS

The tensor modes will obey the Schrodinger equation
T (n)

~ a + ' T~n Tqp(n)
at ~2

as
'

= —,e +d 10 +6
Ba BP

2

(8.1)

. as a
aA adn

does not require /=0. Second, the classical field equation
for P is of the form of a damped harmonic oscillator with
a constant frequency m rather than a decreasing frequen-
cy e n. This means that the adiabatic approximation is
not valid at small t and that the solution of the classical
field equation is P approximately constant. The action of
such solutions is small, so large values of

i P ~

are not
damped as they are for the other variables. Thus the
WKB trajectories which start out from large values of

~ P i
have high probability. They will correspond to clas-

sical solutions which have a long inflationary period and
then go over to a rnatter-dominated expansion. In a real-
istic model which included other fields of low rest mass,
the matter energy in the oscillations of the massive scalar
field would decay into light particles with a thermal spec-
trum. The model would then expand as a radiation-
dominated universe.

4'"'(a, g, a», 0,0)=Bexp[iCa» ] 4'0"'(a, P,a„) . (8.7)

The normalization and phase factors B and C depend on
a and P but not a„:

2

C=- as ——,(n —4)e2 4a
2 aux

as
0!

(8.8)

where a~ is the value of 0.'at which the mode goes outside
the horizon. The wave function %0"' will remain of the
form (8.6) until the mode reenters the horizon in the
matter- or radiation-dominated era at the much greater
value a, of a. One can then apply the adiabatic approxi-
mation again to (8.4) but %0"' will no longer be in the
ground state; it will be a superposition of a number of
highly excited states. This is the phenomenon of the am-
plification of the ground-state fluctuations in the
gravitational-wave modes that was discussed in Refs. 9,
17, and 18.

The behavior of the scalar modes is rather similar but
their description is more complicated because of the gauge
degrees of freedom. In the previous section we evaluated
the wave function 1II'"' on a„=b„=0by the path-integral
prescription. The ground-state form'(in f„)that we found
will be valid until the adiabatic approximation breaks
down, i.e., until the wavelength of the mode exceeds the
horizon distance during the inflationary period. In order
to discuss the subsequent behavior of the wave function.
It is convenient to use the first-order Hamiltonian con-
straint (5.27) to evaluate 4'"' on a„&0,b» =f„=0. One
finds that

One can write

+d„ [(n + 1)e —6 e m P ] .. (8.2) At the time the wavelength of the mode equals the hor-
izon distance during the inflationary period, the wave
function %'0" has the form

4'"'=exp( —2a)exp 2i d„—aS 2 T (n)

aux
(8.3)

then

0a Tg(n)

at
= —,e

—3a a2
+d 2(n 2 1)e4a TQ(»)

dn

(8 4)

The WKB approximation to the background Wheeler-
DeWitt equation has been used in deriving (8.4). Then
(8.4) has the form of the Schrodinger equation for an os-
cillator with a time-dependent frequency v= (n
—1)' e . Initially the wave function %0"' will be in
the ground state (apart from a normalization factor) and
the frequency v will be large compared to a. In this case
one can use the adiabatic approximation to show that

4'0"' remains in the ground state

r+» =exp( —inc d ) (8.5)

(8.6)

The adiabatic approximation will break down when
v=ci, i.e., the wave length of the gravitational mode be-
comes equal to the horizon scale in the inflationary
period. The wave function %0"' will then freeze

(8.9)

r

1 i 4

—2

2 Spy(n)an 0

(8.10)

where terms of order 1/n have been neglected. The term
e [BS/Ba] will be small compared to 1/y except
near the time of maximum radius of the background solu-
tion. The Schrodinger equation for %0"'(a„) is very simi-
lar to the equation for 4z"'(d»), (8.4), except that the ki-
netic term is multiplied by a factor y and the potential
term is divided by a factor y . One would therefore ex-

where y„ is the value of y =(aS/aa)[aS/ay]-' when the
mode leaves the horizon, y, =3/, . More generally, in the
case of a scalar field with a potential V(P),
y =6v(a v/ay)

One can obtain a Schrodinger equation for 0'0"' by put-
ting b„=f„=0in the scalar Hamiltonian H"i2 and sub-
stituting for 3/Bb„and r)/df„ from the momentum con-
straint (5.25) and the first-order Hamiltonian constraint
(5.27), respectively. This gives

Sgp(n)

at aa„'
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pect that for wavelengths within the horizon. %0"' would
have the ground-state form exp( ——,

'
ny e a„) and this

is borne out by (8.9). On the other hand, when the wave-
length becomes larger than the horizon, the Schrodinger
equation (8.10) indicates that %0"' will freeze in the form
(8.9) until the mode reenters the horizon in the matter-
dominated era. Even if the equation of state of the
Universe changes to radiation dominated during the
period that the wavelength of the mode is greater than the
horizon size, it will still be true that %0"' is frozen in the
form (8.9). The ground-state fluctuations in the scalar
modes will therefore be amplified in a similar manner to
the tensor modes. At the time of reentry of the horizon
the rms fluctuation in the scalar modes, in the gauge in
which b„=f„=O, will be greater by the factor y, than
the rms fluctuation in the tensor modes of the same wave-
length.

These are given by

1+z = I"n (9.2)

where A, is the affine parameter on the null geodesic. The
only nonzero components of n& are.

n; ~
=e uQ,J+ g(a„+cia„)—,

'
0;JQ

evaluated at the surface of last scattering where n& is the
unit normal to the surfaces of constant t in the gauge
g„=k„=j„=O and b„=f„=O on the surface of last
scattering and 1& is the parallel propagated tangent vector
to the null geodesic from the observer normalized by
l&n& ——1 at the present time. One can calculate the evolu-
tion of I"n„down the past light cone of the observer:

[l"n„j=n„,l"1",.
d

(9.3)

TsTp- 1+z (9.1)

where z is the red-shift of the surface of last scattering.
Variations in the observed temperature will arise from
variations in z in different directions of observation.

IX. COMPARISON WITH OBSERVATION

From a knowledge of 'PD"' and %0("' one can calculate
the relative probabilities of observing different values of
d„and a„at a given point on a trajectory of the vector
field X', i.e., at a given value of a and P in a background
metric which is a solution of the classical field equations.
In fact, the dependence on P will be unimportant and we
shall neglect it. One can then calculate the probabilities
of observing different amounts of anisotropy in the mi-
crowave background and can compare these predictions
with the upper limits set by observation.

The tensor and scalar perturbation modes will be in
highly excited states at large values of n. This means that
we can treat their development as an ensemble evolving
according to the classical equations of motion with initial
distributions in d„and a„proportional to

~

'PD"'
~

and
'PD"' ~, respectively. The initial distributions in d„and

a„will be proportional to
~

"%0"'m ~ %0"'
~

and
%0"' ~, respectively. In fact, at the time that the

modes reenter the horizon, the distributions will be con-
centrated at d„=a„=0.

The surfaces with b„=f„=O will be surfaces of con-
stant energy density in the classical solution during the in-
flationary period. By local conservation of energy, they
will remain surfaces of constant energy density in the era
after the inflationary period when the energy is dominated
by the coherent oscillations of the homogeneous back-
ground scalar field P. If the scalar particles decay into
light particles and heat up the Universe, the surfaces with
b„=f„=Owill be surfaces of constant temperature. The
surface of last scattering of the microwave background
will be such a surface with temperature T, . The mi-
crowave radiation can be considered to have propagated
freely to us from this surface. Thus the observed tem-
perature will be

+ g(b„+rib„)PJ+ g (d„+ad„)GJ.

(d„') =n 'e (9.7)

The dominant contribution comes from the scalar modes
which give

((AT/T) ) =y„n e (9.8)

But n e *=a„,the value of the Hubble constant at the
time that the present horizon size left the horizon during
the inflationary period. The observational upper limit of
about 10 on ((AT/T) ) restricts this Hubble constant
to be less than about 5&(10 mz (Ref. 8) which in turn
restricts the mass of the scalar field to be less than 10'
GeV.

X. CONCLUSION AND SUMMARY

%'e started from the proposal that the quantum state of
the Universe is defined, by a path integral over compact
four-metrics. This can be regarded as a boundary condi-
tion for the Wheeler-DeWitt equation for the wave func-
tion of the Universe on the infinite-dimensional manifold,
superspace, the space of all three-metrics and matter field
configurations on a three-surface S. Previous papers had
considered finite-dimensional approximations to super-
space and had shown that the boundary condition led to a
wave function which could be interpreted as correspond-

(9.4)

In the gauge that we are using, the dominant anisotro-
pic terms in (9.4) on the scale of the horizon, will be those
involving cia„and ud„. These will give temperature an-
isotropies of the form

(9.5)

The number of modes that contribute to anisotropies on
the scale of the horizon is of the order of n . From the
results of the last section

(a„')=y, 'n 'e (9.6)
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ing to a family of classical solutions which were homo-
geneous and isotropic and which had a period of exponen-
tial or inflationary expansion. In the present paper we ex-
tended this work to the full superspace without restric-
tions. We treated the two basic homogeneous and isotro-
pic degrees of freedom exactly and the other degrees of
freedom to second order. We justified this approximation
by showing that the inhomogeneous or anisotropic modes
started out in their ground states.

We derived time-dependent Schrodinger equations for
each mode. We showed that they remained in the ground
state until their wavelength exceeded the horizon size dur-

ing the inflationary period. In the subsequent expansion
the ground-state fluctuations got frozen until the wave-

length reentered the horizon during the radiation- or
matter-dominated era. This part of the calculation is
similar to earlier work on the development of gravitation-
al waves and density perturbations ' in the inflationary
Universe but it has the advantage that the assumptions of
a period of exponential expansion and of an initial ground
state for the perturbations are justified. The perturbations
would be compatible with the upper limits set by observa-
tions of the microwave background if the scalar field that
drives the inflation has a mass of 10' GeV or less.

In Sec. VIII we calculated the scalar perturbations in a
gauge in which the surfaces of constant time are surfaces
of constant density. There are thus no density fluctua-
tions in this gauge. However, one can make a transforma-
tion to a gauge in which a„=b„=0. In this gauge the
density fluctuation at the time that the wavelength comes
within the horizon is

they satisfy the eigenvalue equation

Q'"'
~
k

"=—(n —1)Q'"', n = 1,2, 3, . . . . (A2)

Q'"'(X,8,$)= g g &I" Qi" (X,8,$),
1=0 rn =—E

(A3)

where A~" are a set of arbitrary constants. The QI" are
given explicitly by

Q(" (X,8,$)= III (X)Yj (8,$), (A4)

where YI (8,$) are the usual harmonics on the two-
sphere, S, and III(X) are the Fock harmonics. ' ' The
spherical harmonics QI" constitute a complete orthogonal
set for the expansion of any scalar field on S .

Vector harmonics

The transverse vector harmonics (S;)I (X,8,$) are vec-
tor eigenfunctions of the Laplacian operator on S which
are transverse. That is, they satisfy the eigenvalue equa-
tion

S"
~k

"=—(n —2)S "', n =2,3,4, . . .

and the transverse condition

(A5)

(A6)

The most general solution to (A5) and (A6) is a sum of
solutions

The most general solution to (A2), for given n, is a sum of
solutions

n —1 E

2

((&pip)') =y'
Cle Pe

(10.1)

n —1 E

S "'(X,8,$)= g ' g Bi" (S;)i (X,8,$),
E=l m= —E

(A7)

Because y and ci, depend only logarithmically on the
wavelength of the perturbations, this gives an almost
scale-free spectrum of density fluctuations. These fluc-
tuations can evolve according to the classical field equa-
tions to give rise to the formation of galaxies and all the
other structure that we observe in the Universe. Thus all
the complexities of the present state of the Universe have
their origin in the ground-state fluctuations in the inho-
mogeneous modes and so arise from the Heisenberg un-
certainty principle.

APPENDIX A: HARMONICS ON THE THREE-SPHERE

In this appendix we describe the properties of the sca-
lar, vector, and tensor harmonics on the three-sphere S .
The metric on S is Q,J and so the line element is

dl'= Q;,dx'dx'

=dX +sin X(d8 +sin 8dg ) . (A1)

A vertical bar will denote covariant differentiation with
respect to the metric A,z. Indices i,j,k are raised and
lowered using 0;J.

Scalar harmonics

1
P; =

2 Q
I

' n =2,3,4, . . . .
(n 1)—

It may be shown to satisfy,

P; k~ = —(n —3)P; andP ~'= —Q.

(A8)

(A9)

The three vector harmonics S, S, and I'; constitute a
complete orthogonal set for the expansion of any vector
field on S .

Tensor harmonics

The transverse traceless tensor harmonics
( Gz )I (X,8,$) are tensor eigenfunctions of the Laplacian
operator on S which are transverse and traceless. That
is, they satisfy the eigenvalue equation

where BI" are a set of arbitrary constants. Explicit ex-
pressions for the (S;)i are given in Ref. 20 where it is
also explained how they are classified as odd (o) or even
(e) using a parity transformation. We thus have two
linearly independent transverse vector harmonics S and
S (n, l, m suppressed).

Using the scalar harmonics Q~" we may construct a
third vector harmonics (P; )I . defined by ( n, l, m

suppressed)

The scalar spherical harmonics Qi" (X,8,$) are scalar
eigenfunctions of the Laplacian operator on S . Thus,

(n)
)
k 2 (n)

G~j~k —(n —3)GJ, n= 3,4, 5, (A 10)
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and the transverse and traceless conditions

G'"'i'=0 G'"'=0 .lJ&. l (A 1 1)

the integration measure on S by dp. Thus

diM =d x (detQ, j )
' =sin X sin8 dX d 0 dp . (A22)

l=2 m= —I
(A12)

The most general solution to (All) and (A12) is a sum of
solutions

This implies

(A23)

S,J
——S; ~j+SJ i; (A13)

and thus S =0 since S; is transverse. In addition, the S,J
may be shown to satisfy

where CI" are a set of arbitrary constants. As in the vec-
tor case they may be classified as odd or eve. Explicit
expressions for ( G,j )i and ( Gj )i are given in Ref. 20.

Using the transverse vector harmonics ( S ) i and
(S )i, we may construct traceless tensor harmonics
(Sfj)i~ and (Sij)i~ defined, both for odd and even, by
(n, l, m suppressed)

dP(Pi )Im (P )I'm' 2
5 5ti'5~fpg'

(n 1)— (A24)

f djj, (Pj)i (P'j)i =, 5""5ti5ij n' 2(" —4) nn'

3(n —1)
(A25)

(A26)

This implies

The (S;)i, both odd and even, are normalized so that

f dp(S; )i (S')i =5""5tt 5

Sij i j= —(n —4)S;, (A14) f dpi(Sij)i~(S'j)i =2(n 4)5"—"5ti5 (A27)
SfJ 0

S;j ik
"= (n 6—)Sij .—2

(A15)

(A16)
Finally, the (G,j )i~, both odd and even, are normalized so
that

Using the scalar harmonics Qi~, we may construct two
tensors (Q;j)i~ and (Pij)i~ defined by (n, l, m suppressed)

Q;j= —,QijQ, n =1,2, 3 (A17)

and

f P( Gij )lm (G )I'm' =5 5/I'5mm (A28)

The information given in this appendix about the spher-
ical harmonics is all that is needed to perform the deriva-
tions presented in the main text. Further details may be
found in Refs. 19 and 20.

P,i —— Qi,j+Tfl;jQ, n =2,3,4 .
(n 1)— (A18)

The P J' are traceless, P =0, and in addition, may be
sho~n to satisfy

APPENDIX 8: ACTION AND FIELD EQUATIONS

The action (5.8) is

p; i j= ——,(n —4)p;, (A19) I =Ip(a, P,Xp)+ g I„, (81)

P;j ik
"= (n 7)P;j, — —

p&
i'j ———,(n —4)Q .

(A20)

(A21)

The six tensor harmonics Q;j, Pj, S,'j, S,"j, G, and G
constitute a complete orthogonal set for the expansion of
any symmetric second-rank tensor field on S .

where Ip is the action of the unperturbed model (4.2):
'2 2

Ip ———
2 dt Ape —e — +m
1 3a —2cx 2 2

(82)

Orthogonality and normalization

The normalization of the scalar, vector, and tensor har-
monics is fixed by the orthogonality relations. We denote

I

(83)

where

I„ is quadratic in the perturbations and may be written

I„=f dt(l.g+I." ),

n 1—
+g„[—', (n —4)b„+—', (n + —,

' )a„]+ 2 k„+(n 4)j„—
3(n —1)

b„+(n —4)c„+d„
1 e . 2 (n —4)
2 Np (n2 —1)
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2 4+a —2a„a„+8 b„b„+8(n —4)c„c„+8d„d„
(n —1)

+a2 ——,a„2+6 b„+6(n —4)c„+6d„+g„[2aa„+a(3a„—g„)]
(n —1)

2 4
(n —1)

(84)

and

I"= —,'N, e'
2 (f„+6a„f„p) m(f„—+6a„f„p) e—(n 1)f„—
2

r

+— —m P a„— b„—4(n —4)c„—4d„+ g„2 2 2 4(n 4) 2 2 2 2 0 2

2 N 2 (n 1) — No

2 Q

—g„2m f„/+3m a„P +2 +3 —2 k„f„PX
(85)

The full expressions for ~~ and ~~ are

3a

C
—a++ —a„a„+ 2 b„b„+4(n —4)c„c„+4d„d„

4(n —4) 2

(n 1)—
+ ag ——,'a„+ b„+6(n 4)c„—+6d„+gg„[a„+a(3a„—g„)+—,'e k„]

(n ' 1)— (86)

r

~ p+ g 3a„f„+p —,a„—
2

b„—4(n —4)c„4d„—e 2 4(n' —4) 2 2 2 2

0 n —1

+ g [0g„' g„(f'„+3a„k)—e k„f„l . . —- (87)

The classical field equations may be obtained from the action (81) by varying with respect to each of the fields in turn.
Variation with respect to a and P gives two field equations, similar to those obtained in Sec. IV, but modified by terms
quadratic in the perturbations:

Np
d 1 dP da dP+3 +No m /=quadratic terms,
dt Np dt dt dt

No +3) —No e ——', ( a+)— No e +No m—P )=quadratic terms .
dt Np

Variation with respect to the perturbations a„, b„, c„, d„, and f„ leads to five field equations:

(89)

No e + —,(n 4)ND e (a„+b„)—+3e (Pf„—No m Pf„)=NO [3e3~m P ,'(n +2)e ]—g„—
0

3a ' ) d 2a nk
+e ~g. ——,Np„dt Np

(810)

d k„——,(n —l)ND e (a„+b„)=, (n 1)N—O e g—„+,'No e—
NG

(811)

d 3a n d 2a Jn
e = e

dt Np i
dt Np

(812)
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dn
No e +(n —1)NO e d„=0,

dt Xo
(813)

No e3~ +3e ~pa„+No [m e +(n —1)e ]f„=e ( 2N—
O m pg„+pg„—e pk„) .d, f.

0
(814)

In obtaining (810)—(814), the field equations (88) and (89) have been used and terms cubic in the perturbations have
been dropped.

Variation with respect to the Lagrange multipliers k„, j„, g„, and No leads to a set of constraints. Variation with
respect to k„and j„ leads to the momentUm constraints:

2 4 —a
(815)

(n 1) — (n 1)—
&n =& jn

Variation with respect to g„gives the linear Hamiltonian constraint:

3a„( ri +P —)+2(gf„—aa„)+No m (2f„g+3a„g ) —3Nc e ~[(n 4)b„+—(n + —, )a„]
= —,ae k„+2g„( ri +P ) .—

Finally, variation with respect to No yields the Hamiltonian constraint, which we write as

'2 2
CL

—,e — + —e +m P =quadratic terms .

(816)

(817)

(818)
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