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Center-of-mass corrections and fermions consisting of confined quarks
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This is a continuation of our paper [Phys. Rev. D 29, 981 (1984)] on magnetic moments. The
center-of-mass corrections for the static-model values for the mass and for the charge radius depend
strongly on the radius of confinement Ro. If MRO «1, then M=m, (electron mass) can be ob-
tained with model parameters only about 30%%uo smaller than those needed to fit M=M~ (proton
mass) for MRO & 1. A composite fermion with M=m, ("mock electron" ) can have (r ) -Ro only
if its magnetic moment is 1 Bohr magneton. The center-of-mass corrections for M~ are in qualita-
tive agreement with usual estimates. For the proton charge radius they are small.

I. INTRODUCTION

In a previous paper, ' we have shown that the center-of-
mass corrections (CMC) can significantly improve the re-
sults obtained by using static models for the confine-
ment of quarks. We have also assumed that the confined
fermions can be viewed as constituents of a "mock elec-
tron" as conjectured by Halprin and Kerman. Every-
thing discussed in Ref. 1 and in the following text holds
qualitatively also for a model in which constituents are a
fermion and a boson. '

The model in which the recoil corrections (RC) and
CMC factorize was based on an approximation"
which considers a moving bag as a wave packet with a
nonzero momentum p, i.e.,

~p), = f d'k w-'"(k)w-'"(k —I)y(k —p) ~k). (1.1)

Here P is the wave packet and W is the normalization fac-
tor. Our notation and formalism follow those of Ref. 1.
In order to Inake this text to some extent self-contained,
some details are repeated in the Appendix.

We do not intend to discuss here a justification'" ' of
the ansatz (1.1). We intend to take it as a definition of a
model and then to see whether such a model can be made
self-consistent and how it agrees with experiment. De-
pending on the confinement radius Ro and the mass of
the composite object (i.e., proton, mock electron) M, there
are two regions of interest.

(i) The region MRo & 1 corresponds to a proton (or an
octet baryon). It has been shown' that in that region
CMC improve the theoretical values for the magnetic mo-
ment p and the axial-vector coupling constant gz. In this
paper we will discuss corrections to the baryon mass and
to the charge radius.

(ii) The region MRo «1 might serve as a model for a
mock electron. We have shown' that the model leads to a
value for the magnetic moment of about 1 Bohr magne-
ton. In Ref. 1 we have supposed that the mass of a mock
electron can be obtained somehow by adjusting the model

parameters. Here we will demonstrate that due to CMC
the mass of a composite object is decreasing with Ro. Fi-
nally, we will show that the charge radius stays roughly
proportional to Ro for MRO «1 if there is no anomalous
magnetic moment. (This means p=e/2M, i.e., 1 Bohr
magneton when M =m, . ) As this is the result found in
Ref. 1, the model seems to show an overall consistency.
However, one must be aware that when MRO «1 the
model is pushed to its extreme relativistic limit for which
the ansatz (1.1) might be too naive. Nevertheless, we feel
that satisfactory results obtained in this simple model are
encouraging.

II. THEORETICAL MASS

In order to calculate the mass one starts with the
energy-momentum tensor T (Refs. 3 and 4). The diago-
nal matrix element of the momentum

Po f d3 TOO

between bag-model states

~(0 i

I'
i
0)~ =E(bag) =trRo

(2. 1)

(2.2)

is the bag-model energy E(bag). It is well known that
E(bag) behaves as Ro ' (Refs. 2—4) even when all possi-
ble corrections are included. Thus, the simple parametri-
zation indicated in (2.2) is sufficient for the present pur-
poses. By using formula (1.1), one finds

g(0i I'
i 0)g ——f d3kd k'8' '(k)W '(k')P(k)P(k')

X (k' II"
i k)

= f d kI(k)E(k) . (2.3)

The function I(k) is defined in the Appendix. The last
result follows from

I'ik) =E(k) ik) .
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Since E2(k) =k2+M, one can write

MIE(bag)=Z '(Ro M»
(2A)

In the mock-electron case MRp &(1 and one has to use
the full formula (2A), or try an expression for the case
when &k ) &)M . One finds

Z(Ro, M)= f d k(1+k IM )' I(k) .

The expression (2.4) is the required nonlinear equation for
the mass M, as both E(bag) and I(k) are entirely deter-
mined by the model parameters. Vhthout CMC

I(k)=6 (k), Z=l,
while for any other model wave-function normalization of
I(k) guarantees that Z) 1. The model does not contain
any intrinsic mass scales. The only quantity with the di-
mension of energy is the inverse bag radius Rp '. One
can parametrize mass M by the dimensionless constant g,
which is always smaller than the constant ~ which sym-
bolizes the bag-model parameters. One finds

M =2[E(bag) —Wi]W2

Wi ——f d kI(k)k,

Wq ——f d kI(k)k

(2.10)

2 K~=2
0.618Rp

x, =2.0586 .

3 331
28p

(2.11)

In order for the model to be convincing a very small
(mock-) electron mass has to be reproduced with v„
which is of the same order of magnitude as I~ found in
(2.7). Indeed, by using Table I, one finds

gZ =~, Z) 1,M =rI/Ro .

For example, when M =M~ one finds without CMC

(2.5) This is also consistent with the complex formula (2.4),
which gives

M~ =E(bag) =, Ro ——0.65 fm, a =3.088 .
Ro

(2.6)
K, m, Rp

2.0586Rp
(2.12)

Using the full formula (2.4) and Table I, one obtains

M~ =E(bag)Z '(Ro, M~), Ro=0.65 fm,

K =3.778, g =3.088 .
(2.7)

&k )«M
&k') = f d'ki(k)k'.

(2.8)

By expanding the square root in (2.4), one finds the well-
known ' approximate formula [by replacing M~E(bag)
in the denominator]

&k')M =E(bag)—
2E bag

(2.9)

This increase in the value of ~ is in concert with usual ex-
pectations. '

In the general case one can solve (2.4) numerically in
order to adjust model parameters in such a way as to ob-
tain the desired M. Two limits are of the particular in-
terest. The sector MRp ~ 1 corresponds to the nonrela-
tivistic limit in which

If one feels optimistic, one can even speculate that the
value x., [Eq. (2.11)],by being of the same order of magni-
tude as (2.7), supports the conjecture that the composite
electron model can be built from the constituents bonded
by some QCD-type interactions.

III. CHARGE RADIUS

In order for the model to be acceptable, the CMC has
to lead to the charge radius which is proportional to Rp
for any MRp. This is essential if the mock electron is to
be comparable with the real-world electron. Interestingly
enough, it turns out that when MRp (~ 1 one has

& r') -Ro'

only if there is no anomalous magnetic moment.
The approach is completely analogous to the one em-

ployed by Ref. 1. One introduces the time component Jp
of the current in the equation

Ro
(fm)

TABLE I. Center-of-mass correction and energy.

~R,Z(R„~)
RO

' 8'2

0.001
0.1

0.2
0.4
0.65
1.0

2.0586
2.1246
2.3005
2.8627
3.7780
5.2557

2.0586
2.0586
2.0586
2.0586
2.0585
2.0586

2.0586
2.0586
2.0587
2.0587
2.0510
2.0576

0.61799
0.61799
0.617 98
0.61796
0.618 66
0.61800
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f d'xe'q'*~(q JD(x) —— =)2m)' f d'k ))')k)))'(k+q)))' k+—
2 B

—1/2

P (k+q)(k+q
f
J (0)

f
k) (3.2)

This corresponds to formula (2.5) in Ref. 1. The right-hand-side (RHS) of (3.2) is of the form

. &Oa&RHS= f d kI(k+q)u(k+q) 1'0F&(q 2)+i F (q ) u(k) . (3.3)

Here we have introduced free-particle spinors u and nu-
cleon form factors F;(q ). Expanding to the leading order
in q the left-hand side (LHS) of (3.2) is

LHS=—1 ——,'q (r )b,z . (3.4)

Here we have replaced
f
q/2) s by

f
0)z, thus omitting

RC. In order to use the definition

az&")=-6 ', G.(q') f, „
Bg

q2=0 '

M
2(E+M)E+M PlI =—

E2 1 E+-
(E+M)' 2 E+M
3 M 1 M
4 E+M 8 (E+M)'

1 E M
2 E+M' 4(E+M) '

(3.7b)

GE(q )=F, (q ) g'F (q —)/4M
(3.5) E =E(k)=(k'+M')'" .

The function R is
one has also to expand the RHS of (3.2). The end result is
of the form

(r')„„=(r')+(—6) F, (0)(P+Q)
R = d kI(k)3 1 + 1

6ME(k) 12E (k)

+ F,(0) —R1

4M
(3 6) The integral Q is of a somewhat different type:

kP= f d kI(k) (n~d~ +n 2+d2)
3E4

1 (n3+d3)E2

Here

k+ 3 (n)+d)) . (3.7a)
6E'(E+M)

The term F2(0)(4M )
' can become unacceptably large

for small M. It appeared because the term q I'2/4M
had to be added (and subtracted) in order to use the ex-
pression (3.S). Thus, when MRO «1, the model requires
that F2(0)~0, as has been already discussed. The func-
tion I' is defined by

k
Q =(—) f dk I)(k),

I&(k) =(—) f dr rj', (kr)I, (r) .1

3&

(3.9)

Here j& is the spherical Bessel function and I3 is defined
in the Appendix.

As can be seen in Table II, the integrals P and Q are
both proportional to Rp . The integral R which is pro-
portional to RoM is eliminated for MRO &~ 1 if
Fz(0)~0. Only this condition leads to the satisfactory
mock-electron model.

In Ref. 1 we have found p, =0.97pz. This can be easi-

ly adjusted to Ipz by a very small, and thus quite accept-
able, change in the model parameters. For example, by
using Duck's" quark wave functions, employed in the cal-
culation of I, (RO) (Ref. 1), one finds

TABLE II. Center-of-mass correction and charge radius.

Rp
(fm)

0.001
0.01
0.2
0.4
0.65
1.0

M =M~

0.9909X 10-'
0.8111x 10
0.2440 x 10-'
0.6192x 10-'
0.9734x 10-'
1.256 x 10-'

0.9969x 10-'
0.8442 x 10-'
0.3832x 10-'
1.592 x 10-'
4.183x 10-'
8.961 x 10-'

0.2173X 10-4
0.2064 x 10-'
0.4298 x 10-'
0.6977 X 10
0.8712x 10-'
0.9803X 10 '

0.3977x 10-'
0.3717
7.955

15.92
25.87
39.81

0.4995 X 10—'
0.4238 x 10
0.1521x 10-'
0.3994X 10-'
0.6374x 10-'
0.8309x 10

0.4995 x 10-'
0.4242 x 10-'
0.1998X 10-'
0.7990x 10-'
2.110X 10
4.990x 10-'

0.4995 x10-'
0 4249X 10
0.1998x 10-'
0.7992x 10-'
2.112x10 '
4.996x 10
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s 2M@ e

1+—'P2 2M+2
(3.10)

IV. CONCLUSION

The model'" ' allows relatively simple estimates of
the CMC's connected with mass and charge radius of the
proton. The function Z appearing in (2.4) can be easily
calculated for a given set of model parameters (P,RO) and
for the proton mass (M =M~). Other model parameters
(symbolized by ~) can then be adjusted so as to satisfy
(2.4). In that way one can determine sets of the model pa-
rameters which lead to the correct proton mass. The
same holds for any octet or decouplet baryon. The correc-
tion for (r ) is given by (3.6) in a closed form. It differs
from other estimates' ' which started from the same
physical assumptions, but did not use algorithm (3.2).

All corrections have also been evaluated for systems
with small mass and confinement radius (MRO « 1). The
model seems to lead to acceptable descriptions of the mass
and charge radius of the mock electron. In an analogous
way it did justify the conjecture about the magnetic mo-
ment. We hope that such an outcome might stimulate
further investigations based on more exact methods.

With P=0.36, Ro ——10 fm, and M =m, we had
pH(corr) =p'HI, '=0.97@~. By changing to P=0.374 we
obtained pH (corr) = 1.004pz. With P=0.374 and
M=M& we find for Ro ——10 fm, ROI, '=0.3418 and
for Ro ——0.65 fm, ROI, '=0.7839. For Ro ——10 fm
and M =m„ROI, ' =6.27 X 10 . (Compare with Table I
of Ref. 1.)

In the case of the proton (Ro ——0.65, M =M&), one ob-
tains a very small positive correction

(~')~ =(r')b.s+0.53X 10 '.
There were numerous cancellations among terms in (3.6).
The major contribution came from the term proportional
to F2(0). Without it the correction would be negative
(-2.02X10 ). This has to be kept in mind if any com-
parison with Refs. 12 and 15, which lack the F2(0) term,
is attempted. It seems that Ref. 12 included RC also.

APPENDIX

The function P(k) is spherically symmetric. It is given
11,13

P (k)=(2m) 8'(k)I(k),

W(k) =E(k)/M,
i( k ) = (2m') f d r e '"'I3 (r),

(Al)

I3(r) = e
(T /4RO ) P

Ap
(A2)

Ic(RD)= f d'k I(k) . (A4)

The functions Z(RO, M), W&, W2, P, and R, which are
defined in the main text are closely related. In those in-
tegrals the factor ME ' from (A4) is replaced by factors
of similar type. However, care has to be exercised in nu-
merical integration, especially for the integral P, where
there are many terms with alternating signs. There is also
a check for the integral Q which operates in the region
MRO « 1. In that region E(k)-k. By using the relation
for the spherical Bessel functions

a
rj&(kr) = jo(kr),

and by partial integration, one finds

C=
4+613'

The value of the parameter @=0.36 is such that the
harmonic-oscillator wave functions approximate a ls
massless quark wave function in a bag of radius
R =1.5RD (Ro ——0.65 fm means that R=4.97 GeV ').
The identity

1= f d'k S(k), (A3)

which corresponds to the formula (2.8) from Ref. I can be
used as a useful check for numerical accuracy.

The CMC for the magnetic moment is determined by
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The numerical values of Qz are given in Table II. In the
same region (i.e., MR0 « 1) one can find

Ic~MR'2, Z ~M ' 8'i,

P~( —2)Qg, R ~(6M) 'W2 .
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