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We study a simple model for one-dimensional hadron matter with many of the essential features
needed for examining the transition from nuclear to quark matter and the limitations of models
based upon hadron rather than quark degrees of freedom. The dynamics are generated entirely by
the quark confining force and exchange symmetry. Using Monte Carlo techniques, the ground-state
energy, single-quark momentum distribution, and quark correlation function are calculated for uni-
form matter as a function of density. The quark confinement scale in the medium increases sub-
stantially with increasing density. This change is evident in the correlation function and momentum
distribution, in qualitative agreement with the changes observed in deep-inelastic lepton scattering.
Nevertheless, the ground-state energy is smooth throughout the transition to quark matter and is
described remarkably well by an effective hadron theory based on a phenomenological hadron-

hadron potential.

I. INTRODUCTION

The properties of nuclear matter are described remark-
ably well by theoretical calculations based upon the tradi-
tional framework of static nucleons interacting through
potentials constrained by nucleon-nucleon scattering
phase shifts and deuteron properties. This success is
somewhat surprising in view of the fact that nucleons are
composite structures with a size approximately equal to
the internucleon separation in nuclear matter. Clearly, a
major challenge in nuclear physics is that of understand-
ing how models based upon hadron degrees of freedom
and effective hadron-hadron interactions emerge from the
underlying theory of quarks and gluons. In doing so, one
hopes both to understand quantitatively the limits of the
potential theory and to identify specific signatures of the
quark substructure. . There have long been clear indica-
tions (e.g., thermal neutron capture by protons) that ha-
dronic degrees of freedom additional to the nucleon are
needed for quantitative description of nuclear structure
and low-energy hadron dynamics. However, apart from
the A dependence of quark structure functions measured
in deep-inelastic electron scattering [the European Muon
Collaboration (EMC) effect], explicit signatures of the
quark substructure in nuclei have proved elusive.

At sufficiently high density or temperature, quarks are
believed to become deconfined, rendering descriptions of
nuclear matter in terms of hadron degrees of freedom
inappropriate. However, the characteristics of the transi-
tion from nuclear to quark matter and the effect on ob-
servables are not understood. A minimum condition on
theoretical models used for investigations of the transition
region is a reasonable limit both in the low-density,
confined-quark regime and in the high-density, free-
quark-gas regime.

We shall investigate the questions outlined above in a
simplified model. We use a nonrelativistic quark model
similar to the flux-tube model and study the dynamics of
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one-dimensional matter. The model is a simple extension
of that introduced by Lenz et al.! in a study of two-
hadron dynamics, wherein it was found that low-energy
properties of the system could generally be reproduced by
effective hadron theory while still providing characteristic
signatures of quark substructure in selected observables.
In contrast, our results apply to the ground state of a
many-hadron system (uniform matter) and we study the
density dependence of the system from the low-density

" “nuclear” gas through the transition to a quark Fermi gas.

Qualitative insights into the transition and characteriza-
tion of modified hadron structure in the medium are pro-
vided by Hartree-Fock and variational approximations.
Exact results are obtained by a stochastic evaluation of
the imaginary-time evolution operator. We stress that our
model for the many-body system is based entirely upon
the quark confining potential, which is characterized by
the confinement scale, and quark-exchange symmetry.
No additional interactions or scales are introduced.

Correct treatment of the quark-exchange symmetry is
important. The variety of “package” models put forward
to discuss quark effects in nuclei deal with probabilities
rather than amplitudes and thus ignore interference terms.
To our knowledge the present work is the first calculation
of an explicitly antisymmetric quark wave function for
uniform hadron matter.

The nonrelativistic quantum-mechanical approach
which we follow obviously will not provide a fundamental
description of nuclear matter based upon quantum chro-
modynamics. Nevertheless, we recall that nonrelativistic
quark models have been remarkably effective phenomeno-
logies for correlating data on hadron spectroscopy and
hadron properties.” They further provide a basis for
understanding the phenomena observed in low-energy
hadron scattering, such as strong repulsion between nu-
cleons and scattering resonances associated with internal
excitation.! This is the spirit of our work, namely, to ex-
plore the phenomena which arise in the ground state of
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hadronic matter from hadron substructure and to shed
light on the limits of a phenomenology based on hadron
degrees of freedom. In this regard, it is important to
stress that our model contains only essential features
which must be present in any more sophisticated theory,
including confinement, exchange symmetry, and cluster
separability. Whereas the one-dimensional nature of our
calculations may. affect the details of the transition from
nuclear to quark matter, the model may be solved exactly
in one-dimension and the simplicity of the one-
dimensional system lends itself to qualitative insights.

In Sec. II, we describe the Hamiltonian for the system
of N quarks. Our model hadrons are composed of two
quarks bound by a confining potential. However, a satis-
factory many-body Hamiltonian cannot be obtained by
summing the two-body confining potential over all pairs
because it leads to long-range, strong van der Waals
forces. Such long-range forces, falling off only with a
power of the separation, have no experimental or theoreti-
cal basis and would likely have significant effects at high
density. Hence, we have employed the model of Lenz
et al.! and write the interaction as a sum of N/2 confin-
ing “links” between quark pairs such as to minimize the
potential energy. This can be thought of as an adiabatic
approximation to the energy of a system of heavy quarks
in field theory. For a fixed configuration of quarks, the
energy of the gluon degrees of freedom is essentially mini-
mized by optimally connecting pairs of quarks by flux
tubes. Consequently, our interaction corresponds to an
N-body potential. We also present in Sec. II Hartree-
Fock estimates of the ground-state energy for one-
dimensional quark matter. These provide insight into the
density which characterizes the transition from nuclear to
quark matter.

Ground-states properties of the model are discussed in
Sec. III. While the Brueckner and Fermi-hypernetted-
chain approaches appear to be intractable for an N-body
potential, no complication is introduced in the stochastic
evaluation of the evolution operator by the many-body na-
ture of the interaction and observables are therefore
evaluated using a path-integral Monte Carlo technique.
We also introduce a variational trial wave function which
is valuable for characterizing the modification of hadron
structure in the medium and for calculating the quark
correlation function and momentum distribution. The
numerical results are presented and the relation to the
modification of the quark momentum distribution ob-
served in the EMC effect is discussed.

In Sec. IV, we consider the system in terms of an ap-
proximation including only “nucleon” degrees of freedom.
The low-energy hadron-hadron scattering amplitude is
evaluated, both by the resonating-group method and by a
stochastic procedure. As in low-energy nuclear physics, a
phenomenological hadron-hadron local potential is then
parametrized so as to reproduce the scattering amplitude
and used to evaluate the ground-state energy of one-
dimensional hadron matter. These potential-theory re-
sults are compared with the exact quark-matter results
and are remarkably similar even at rather large densities.

Our main conclusions and future extensions of the
work are discussed in Sec. V.
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II. THE MODEL AND HARTREE-FOCK ESTIMATES

As noted above, nonrelativistic quark models have en-
joyed considerable success in hadron spectroscopy and can
form the basis for understanding low-energy hadron
dynamics. Such models clearly have advantages over oth-
er 'phenomenological models based upon QCD (such as
bag models) in allowing a consistent treatment of confine-
ment dynamics in the many-hadron system. Certain con-
ceptual questions concerning the role and behavior of had-
ron substructure may thereby be studied precisely and
unambiguously.

We study a model system of hadrons composed of two
quarks. This affords a certain technical simplicity while
retaining the essential features of composite hadrons. We
shall work in one space dimension, although extension of
the model to three dimensions will be straightforward.
The Hamiltonian for one hadron is

Hipp=—7(3y,>48x,)+0(x12) (1

where we take the quark mass m=1 and v is a confining
potential, v(x3)—>c as |xpp|=]|x;—x;|—>cw. For
our calculations, we take a harmonic-oscillator quark-
quark potential

1
v = Exnz . (2)

Since we shall assume that the quarks are fermions and,
for most of the calculations, without internal degrees of
freedom, the ground state will be the lowest odd-parity
state

%(x):%x exp[ —+V'1/2x?],

(3)
'/’/'—2:77.1/22—1/4 .

The density po(x)=;1;0(x)2 has been normalized to unity.
The relevant scale in the problem is given by the ground-
state energy

3
=—==2.12
€o ‘/-2' (4)
or by the average quark separation
x=((x?))12=322"1/4=1.46 . (5)

The average quark density in the ground state is
+
p=2 [ dxpo(x)*=37'"2"74=0.50 . (6)

The average quark density is useful for giving a rough
idea of the quark density in one-dimensional matter
analogous to that of nuclear matter. The average quark
density in a physical nucleon can be estimated in a uni-
form density model. Given the nucleon radius
R =($)V?R with the root-mean-square proton charge ra-
dius of R=0.81 fm, we have
—1

=0.63 fm > . @)

pnv=3 A7 g3

3

The nuclear-matter density

ﬁNMz =3 XO. 16 fm_3z0.5 fm_3
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yields the ratio
PN

LY 1y ®)

Pnm
A smoother nucleon density distribution would not
change the ratio appreciably. We express this ratio as a
cube in the spirit of a crude transformation between one
and three dimensions. Consequently, we take

Prum~ —lf’T ~0.45 9)

as the average quark density in our one-dimensional had-
ron matter which corresponds to nucleon overlap in nu-
clear matter.

In generalizing the two-quark Hamiltonian to a many-
body system, we cannot follow the standard approach
used for nonconfining potentials. Clearly, a simple two-
body interaction would confine the whole system, not
preserving cluster separability. In quark models, v is con-
ventionally taken as having a color-dependent factor
Aq°A,, where the A; are the SU(3) color matrices for the
ith particle. The lowest-order force then cancels between
color singlets, but strong long-range van der Waals forces
remain. These are not observed in nature and would lead
to undesirably strong effects in our treatment of hadron
matter. Instead, we use a generalization of the potential
used by Lenz et al.! in their study of two-hadron scatter-

. ing, giving the Hamiltonian
N/2

V=min ¥ v(|Xpan—1)—Xpam|)
[Pl n=1

(10)

H=T+V,
(11)
) A
T=—5303}.
i=1

The minimum in Eq. (10) is taken over all permutations P
of the quark labels which pair the N quarks into N/2
pairs, with the confining potential or link acting only be-
tween the two quarks in each of the N/2 pairs. For the
four-quark system, the potential is

V(x1,%2,%3,%4)=min{ ¥V, V3, V3],

Vi=v(xp)+vixs),
(12)
Vy=v(x3)+v(xy),

Vi=v(x14)+v(xy3) .

1 L L
M=y Sy dxi [ dxyVixg s xy)

N/2
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Thus, while the potential is an N-body interaction (i.e., it
depends upon the configuration of all N quarks), it is ba-
sically quite simple. The confining forces operate only be-
tween pairs of quarks. At any instant, the N/2 links ar-
range themselves in a way that minimizes the potential
energy; this idea is familiar in adiabatic approximations to
field theories. The only hadron interactions come from
the exchange of quarks between clusters. The model ex-
plicitly has no van der Waals forces; the forces between
well-separated clusters fall off with the overlap of wave
functions. Exchange symmetry is respected. All quarks
are confined into hadrons, while allowing the system to
separate into free hadron scattering states.

This simple model also incorporates the expected low-
and high-density limits. At low density, the system will
obviously reduce to a free hadron gas. At sufficiently
high density, each quark will be separated from its partner
by a distance small compared to the confinement scale.
Therefore, the potentials will become irrelevant and the
system should behave as a free quark gas. A major aim of
our work is examination of the hadron matter observables
through the transition region between the two limits.

The matching problem posed by Eq. (10) is trivial in
one dimension. (An efficient method for higher dimen-
sions is presented in Ref. 3.) For periodic boundary con-
ditions in one-dimension, corresponding to particles con-
strained to a ring, there are only two possible matchings
to evaluate for any configuration since it is clear that any
given quark must be paired with its left or right neighbor
in order to minimize the energy. This simplification is
important not only for the numerical evaluations
described in the next section, but also for estimates which
provide qualitative insight. We conclude this section with
these estimates.

We start with a Hartree evaluation of the potential en-
ergy for a uniform density in a box of length L. Ignoring
the periodic boundary conditions in the potential for the
Hartree calculation (this has no effect in the N— « lim-
it), we have

, N2
1 2
V=5 E(xZi—l_x:li) »

i=1

(13)

where the quark coordinates x; have been ordered from
smallest to largest. We take N quarks confined within a
distance L, i.e., density p=N /L. The Hartree potential
energy is then

1 XN X3
:LZN' f() de fO de—l ctt fO dx, 2 [';’(Xz,'_lz—i—xb'z)—Xz,'__IX2,-]
i=1

L3N N/2 1 *3
=T—L2N!2 fo dx - fo dx 1 X2; 1%
i=1
LN 1

2 (N+1(N+2)°
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Therefore the energy per quark in the N — oo, constant-p
limit is
< V) H _1_
N 2p2 ’

Note that the potential decreases with increasing density.
Since the Hartree potential per particle for a two-body po-
tential is proportional to p, this is a signature of the
many-body nature of our interaction.

Fermi anticorrelations will reduce the potential energy.
The Hartree-Fock result is obtained by evaluating the ex-
pectation value of V¥ with a Slater determinant for the N-
quark system. A Monte Carlo evaluation of the expecta-
tion value gives, to within a few percent,

( V>HF 1
N 4p

(15)

(16)

The value 1/4p? is the classical energy for fixed equally
spaced quarks; since the average distance between quarks
is p —1 giving a potential energy per lmk of 2p ~2 and
thus a potential energy per quark of +p~ 2 Thus, the
Pauli correlations reduce the energy by substantially
reducing the variance in the quark separations at high
density.

The kinetic energy of the Slater determinant is the
Fermi-gas result

T) 2
< NFG—6kF =l7'6_p2’ )

giving a total Hartree-Fock energy

2
LQ}E ~ Ty 1 (18)
N 6 4p?

The vanishing of the potential at high density has already
been discussed. Its divergence at low density reflects the
lack of confinement (or clustering) in the Slater deter-
minant. The minimum in {E )gp occurs at
1/4

~0.62~1.3Tpym~1.24p . (19)

Pmin=

2m?

The potential and kinetic terms dominate below and above
Pmins Tespectively, and we expect ppin to provide a reason-
able first estimate of the density at which the wave func-
tion loses the clustering property associated with low-
density hadronic matter. As will be confirmed by the ex-
act results presented in the next section, a Fermi gas is a
good approximation to the wave function above pp;, and
thus p.;, characterizes the transition from hadron to
quark matter. At this density, the increase in energy per
quark above that of free hadrons is

(E)ur (E) T 3
— =— ———==0.22
N Jown N oo V6 2V2
€0
=0. — (20)
0.21 >

Thus, the Hartree-Fock approximation gives a “critical”
quark density about 24% greater than that in a free had-
ron (37% greater than pyy) with an increase in energy
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about 20% above that supplied by zero-point motion in
isolated clusters. These are modest increases above the
isolated-cluster values.

III. THE STOCHASTIC METHOD
AND QUARK-MATTER RESULTS

We use the path-integral Monte Carlo method* to cal-
culate the ground-state energy of our many- fermion sys-
tem. The imaginary-time evolution operator e TNy )
where ey is any constant, is used to project the ground
state from an initial variational wave function,

|‘I’O)Eﬁlime_ﬁm—e”)|<l>) . 21)
For large 3, the excited-state components of the variation-
al wave function |®) decay exponentially, leaving only
the unnormalized ground-state wave function |¥,) in the
B— o limit. Consequently, the ground-state energy is
given by

Eo=Jim E(B) ,
(22)
<¢|He”"‘””eN |®)

(<I>|e— ]d))

This method is closely related to the Green’s function
Monte Carlo method® in which the Green’s function
(E —H)™!is used instead of e "PH# =% a5 a filter to pro-
ject the exact ground-state wave function.

The Monte Carlo method for evaluating Eq. (22) in-
volves three steps. First, an ensemble of sets of coordi-
nates distributed according to the trial function | ®) are
generated using the Metropolis algorithm.® Next the dis-
tribution of coordinates is refined stochastically by
evaluating the effect of the operator e~V ) This is
done by breaking the interval 8 into N small steps of size

=[3/N and evaluating

E(B)=

—AfV—ey] _
(xyp---xye Me ATy - )

for each step. The action of the kinetic energy is given by
Gaussian diffusion of the coordinates from their initial
values (y; - - * yy) to new values (x; - - - xy) and the ac-
tion of the potential term is given by replicating or delet-
m§ coordmate sets according to the value of
X xy)—ey) ot

. The normalization energy ey can be
ad]usted to keep the population approximately constant,
thereby providing an independent estimate of the energy.
The outcome of this stochastic evolution is sets of coordi-
nates distributed according to the exact ground-state wave
function |W,) rather than the trial function | ®). Final-
ly, the energy is then evaluated by letting H act to the left
in Eq. (22):

2 {xi|H|®)
REACIN
where the x; are distributed according to | ¥,). Full de-

tails of this procedure are in Ref. 4.
The Monte Carlo results contain errors from three prin-
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cipal sources: statistics, use of a finite time A7, and
finite-L effects. Statistical errors are shown with the
Monte Carlo results. Typically, these can be reduced to
1% for our problem by using 10°—10° independent sam-
ples of W, which require less than an hour of VAX 11-780
time. Reasonably high accuracy is required since the full
energy E, is being calculated directly, while the quantity
of physical interest is the energy difference relative to a
system of isolated clusters. The errors due to the finite
size of At are also small for the value Ar=0.1 used for
our calculations. This accuracy is confirmed both by the
analytic result for a single harmonic oscillator that the er-
ror in the size parameter and ground-state energy are pro-
portional to (1++€?w?)~1-+0.0006 and (1— o €’w?)
~1—0.0002, respectively, and by the fact that many-body
calculations for Ar=0.1, 0.05, and 0.025 agreed within
statistics for a test case. The total interval B=NAr for N
of the order of several hundred was sufficiently large to
cause negligible error. The errors due to the finite length
for a box length L large compared to the quark correla-
tion length A~!/2 [see Eq. (25)] may be qualitatively un-
derstood in terms of the N dependence (1—1/N?) of a
noninteracting Fermi gas, and Monte Carlo calculations
with the full interaction displayed roughly the same
dependence. In the limit of high density, in which A~!/2
approaches infinity and necessarily exceeds L, although
the evaluation of the potential energy becomes inaccurate,
its contribution to the total energy becomes negligible.

We have used two different trial functions | ®) in the
Monte Carlo procedure. The first is a free-Fermi-gas
wave function. For convenience, we choose antiperiodic
boundary conditions for an even number N of quarks in a
box of length L. This allows the Slater determinant to be
rewritten as

Iq))FG: Hsini(xi—xj) . (24)
i<j L
This wave function becomes exact at high density but
does not have the clustering needed to provide a good
starting point at low density. The second trial function is
written as

|®=e | ®)ps, (25)

where V is the full many-body potential and A is a varia-
tional parameter. At each value of the density we mini-
mize the expectation value of the Hamiltonian in the trial
function | ®), by using the Metropolis method to evalu-
ate E and dE/dA for a range of values of A. At high
density, A,j,—0 so that the Fermi-gas result is recovered.
At very low density, A—1/V2 reproduces the exact

Gaussian wave function of isolated clusters, Eq. (3).:

Thus, Eq. (25) will become the exact wave function in
both the high- and low-density limits, with the variational
parameter A~ !/? playing the role of a clustering length for
quarks in a hadron.

A first orientation is provided by Fig. 1(a) which shows
the total energy per quark of hadronic matter compared
with the Fermi-gas, Hartree-Fock, and isolated-hadron
zero-point energies. In Fig. 1(b), we show the excitation
energy per quark for N=16 quarks corresponding. to

(a) e
Energy per Quark /
’
8 Quarks , Y
1.5 /,/ //
s .
-1 /
4 7

7
/
—— Variational e
7
0.5 [ I M.C. .7 Fermi Gas
— HF -
1 I
0.5 1.0
P
B (b)
$ 16 Quarks (Exact)
% 8 Nucleons (Static Pot)
% 16 Quarks (Variational)
03—
i HF
0.2— N
~N
- \\
G -
t
[FES G %f
O.l—
OZ/A/I | L | 1
R 0.4 0.6
P

FIG. 1. (a) Energy per quark vs density for eight quarks in a
periodic box. The low-density limit Eq/4 =3/2V2 is Eq. 4)
divided by A=2. The error bars are the exact path-integral
Monte Carlo result, Eq. (23). Also shown is the energy for the
variational wave function Eq. (25) (dashed), Hartree-Fock, Eq.
(24) (solid), and free Fermi gas, E/A =7%/6p*(1—1/42) (dot-
dashed). (b) Excitation energy per quark (=total energy minus
the zero-point energy, Eo/A =3/2V'2) vs density for either 16
quarks or eight clusters. The solid curve guides the eye through
the cluster results calculated using the hadron-hadron potential
in Eq. (45). The circles are path-integral Monte Carlo calcula-
tions using Eq. (23) while the squares use the variational wave
function Eq. (25).

A=28 hadrons as a function of density. The energy rises
smoothly with density from the energy of isolated clus-
ters, €y/2, to the free Fermi-gas energy. Hadron matter is
not bound in our model. As will be seen in the next sec-
tion, the phase shift for hadron-hadron scattering is
characteristic of a repulsive hadron-hadron interaction, as
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might be associated with the strong central repulsion in
the NN potential. An intermediate-range (nonconfining)
attractive force could be added to our model. Such long-
range behavior may or may not be important at densities
relevant for the nuclear to quark-matter transition. In
any case, the main features of the two-nucleon correlation
function in nuclear matter arise from the repulsive core
and from exchange symmetry. We choose therefore to re-
strict our simple model such that only the confining force
and quark exchange dictate the dynamics.

Also shown in Fig. 1 are the results with the variational
wave functions, Egs. (24) and (25). The former is the
Hartree-Fock energy, displaying the features discussed
qualitatively in the last section. The result with the more
realistic trial wave function, Eq. (25), is seen to agree ex-
tremely well with the full Monte Carlo results at all densi-
ties. The clustering parameter A has been chosen to mini-
mize the energy at each density; the resulting A (p) is
shown in Fig. 2, displaying the expected drop from 1/V2
to zero. Clearly, A, drops fairly rapidly implying that a
free quark gas provides a very good description of the sys-
tem for densities p > 1.5p. It is interesting that the energy
shows no dramatic behavior despite the disappearance of
clustering. Note also that, while the clustering parameter
A2<1.405"% at p=p (e, a 40% increase in the
quark correlation length at a hadron matter density equal
to the hadron internal average quark density), the energy
per quark is only ~5% greater than the isolated-hadron
zero-point energy.

The Monte Carlo results shown in Fig. 1 are for N=16.
We verified that the finite-size errors are within the sta-
tistical error bars shown in Fig. 1 by explicitly calculating
with N=32 and 64.

We have also evaluated the quark-quark correlation
function and the single-quark momentum distribution for
our model, in both cases using the fact that the variational
wave function |®);min=|®P,) provides a very good
description of the ground state. The quark-quark correla-
tion function or two-body density is defined by

1

pz(xl—x2)=mgj8(xi—x1)8(xj—x2)
1
= (N_I)L tgj&( ]xl—le —_ Ix,-—xj l ) .

(26)

L2 gy . L2
n(p)= f aY oy f_L/de, < dxy D) minlx 1%, . -

—L/2 2

We expect the variational wave function ®, to yield an
adequate approximation for n(p) both because of its
correct p—0 and p— oo limits and because of its accuracy
for the correlation function. For a free hadron, the
ground-state momentum distribution is

== L — T
%\\ Variational
06 N v -
AN V=€ dpg
~
N
N
\
\%\\
o4 N —
N\
N,
%\\
~< \
\\ J
02 é‘\
\
A\
3
1 1 1 L
02 0.4 0.6 0.8 [Ke]

FIG. 2. Variational clustering parameter A of Eq. (25) which
minimizes the energy at each density for a 16-quark system. At
low density A—27!/2 while at high density A is expected to go
to zero as p~2.

The second line in Eq. (26) follows for an infinite system.
We evaluated p,(x) only to first order in the difference be-
tween | ¥,) and | @),

CITAL IR CAT ALY
(P | V) (| D)

Since | @) incorporates the correct high- and low-density
limits, we expect this approximation should be good and
indeed we find that {p,(x)) is close to that calculated
with the variational wave function itself (i.e., <20%
difference at p=0.27 and much less at p=0.5). Statistical
errors (not shown) are less than 5%, and finite-size errors
are small for x <<L. The results are shown in Fig. 3, to-
gether with those for a free hadron and for the quark Fer-
mi gas, at two values of the density. At a low density,
p=0.27, the quark-quark correlation is dominated by the
peak at small x, which represents the second quark bound
in a hadron, with depletion at larger distances arising
from the hadron-hadron repulsion. However, at moderate
density p=p=A0.5, the correlation function displays little
of the free hadron clustering and instead resembles closely
that for a free quark gas. Note, however, as seen in Fig.
1(a) that the energy per quark at this density is much
greater than the Fermi-gas energy, but only slightly
greater than the energy for free hadrons.

The quark momentum distribution n (p) was calculated
for the variational wave function | ®),

(27)

(pz(x))zZ

. ,xN)¢kmin(x, +P, X2, ... ,XN) . (28)
[
7/4
n(p)= 3/7—7_p2e“/51’2 ,
(29)

S dpnipy=1.
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FIG. 3. Quark-quark correlation function p, at low and
moderate densities for an eight-quark system (normalized to one
at large distances). Also shown are results for a free Fermi gas
and an isolated hadron with the wave function of Eq. (3).

Note that, because of the antiperiodic boundary condi-
tions, n(p) is calculated only at odd multiples of m/L.
The results are shown in Fig. 4. Statistical errors in the
evaluation of Eq. (28) are about 2%. Evaluation for both
N=8 and N=16 shows that finite-size effects are also
very small. As with the correlation function, the quark
momentum distribution displays a rapid transition as a
function of density from the free cluster result (p=0) to
the Fermi-gas result (our p=0.8 result cannot be dis-
tinguished from the Fermi-gas momentum distribution).
Our results have an interesting connection with the
EMC effect. In nonrelativistic quantum mechanics, the
response function measures the momentum distribution,
n(p). In relativistic field theory, the structure function
measures the momentum distribution in the infinite
momentum frame, which corresponds to the distribution
of p*=po+p) in the rest frame (where p|| denotes the

T T T T T T

Momentum

05—

n (p)

FIG. 4. Single-quark momentum distribution for an eight-
quark system. This is a variational calculation using Egs. (25)
and (28). The zero-density curve is Eq. (29).
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component of p parallel to q). In our nonrelativistic
model, we find that the momentum distribution of quarks

“within a hadron is modified when that hadron is im-

mersed in hadronic matter in the same way as the distri-
bution of p* in a physical nucleon is observed to be modi-
fied when that nucleon is immersed in a nucleus.

Qualitatively, the distribution of p in a nonrelativistic
system may be compared with the distribution of p* in a
relativistic system. For spinless particles, the structure
function measured in deep-inelastic scattering may be
written

f= [dpn(pdp*—xM), (30

,where x =Q?/2Muv is the Bjorken variable and M is the

hadron mass. The scaling variable x thus specifies the
fraction of p* borne by the constituent with which the
electron interacts. If one assumes that p <<m, where m is
the quark mass, po~m so that p*™ —xM ~p +m —xM
and

f(x)zn

M . (31)

x_m
M

Hence, the same variable x which describes the fraction of
p T borne by a single constituent in a relativistic theory is
related to the distribution of the ordinary momentum p in
our nonrelativistic theory. The same result may also be
derived straightforwardly using the impulse approxima-
tion.

The quark momentum distribution is enhanced at low
and high momenta and depleted (as required by normali-
zation) at “average” momenta when compared to the free
cluster n(p). Consequently, the structure function in had-
ron matter is enhanced around xo =M, /M, =1/n, where
ng is the number of quarks in a hadron. The structure
function is enhanced at very large x because of “Fermi
motion.” In between, the structure function must be
suppressed in hadron matter because of the normalization
constraint. The symmetry of f(x) about x, is a result of
the nonrelativistic quark model; clearly the physics at
small x in the real world is much more complicated than
could be discussed within a valence quark picture.
Nevertheless, the qualitative features of the EMC effect
for x >0.3 emerge very simply from the general features
of confinement and exchange symmetry. The same -
behavior was found by Lenz et al.! in their study of the
q°g % system.

We have generated an explicitly antisymmetric many-
quark wave function. One would like to relate this to the
many-hadron wave functions commonly discussed. There
have been a number of package models put forth to
describe deep-inelastic lepton-scattering data. Here one
assumes quarks are bound into individual hadrons (nu-
cleons, pions, A’s, six-quark bags, etc.) and then totally
neglects the antisymmetry among quarks assigned to dif-
ferent packages. We emphasize that there is no unique
way to project from our exact quark wave function an ex-
cited hadron (A) or multibaryon (“six-quark bag”) proba-
bility. Such probabilities must necessarily be model
dependent.

Instead we have calculated the quark correlation func-
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tion. Here one sees the peak at small separation, which
represents the structure of a single hadron, change with
density. It may be useful in the future to ask questions
about quarks in nuclei in terms of the correlation func-
tion. Finally, Ref. 7 has analyzed deep-inelastic scattering
data in terms of the change of a simple parameter specify-
ing the confinement scale in the ground-state wave func-
tion. In our model the “length scale for quark confine-
ment” is given by the variational clustering parameter
A~12 of Eq. (25). To our knowledge, this is the first
dynamical calculation of how this scale depends on densi-
ty.

We find a suppression of the peak height of n(p)
roughly linear with density for densities <p. This linear
dependence is consistent with the observed 4 dependence
of the EMC effect. The fact that the same dependence
arises in simple overlap models suggests that this A
dependence is not very discriminating.

Before going on to a discussion of an effective hadron
model for our system, we note that results have also been
obtained for spin-+ and spin-+ quarks with spin-
independent forces. The internal degrees of freedom re-
sult in the ground states of isolated clusters now being
symmetric under space exchange. In the spin--i— case, four
quarks actually bind. However, there are no qualitative
differences in either case when compared with the model
results already discussed. The many-hadron system re-
laxes towards a free quark gas as the density increases
with no unusual structure. produced in the ground-state
energy.

IV. APPROXIMATION BY HADRONIC DEGREES
OF FREEDOM

We have seen that the quark-matter energy is very
smooth even as the clustering parameter changes rapidly.
It remains to understand the same system in terms of an
effective “nuclear physics” Hamiltonian containing only
hadronic degrees of freedom. That is, we introduce an ef-
fective hadron-hadron potential chosen to reproduce the
scattering phase shifts and then evaluate the ground-state
energy of hadron matter.

The Hamiltonian for the four-quark system is given by
Egs. (11) and (12). Following Ref. 1, we introduce new
coordinates,

X1+X, X3+X4

X =

2 2 ’
X1+x3  X3+X4
_ _ , (32)
Y 2 2
_ X1t+Xg Xp+X3
=7 2

These coordinates play the role of channel coordinates for
the relative motion of two hadrons given any of the three
possible quark pairings. Dropping the center-of-mass
motion the Hamiltonian becomes

H ="‘%(ax2+ay2+az2)+V ’

where

2
V:xz—{—yz—{—zz—x>

and (33)
x% =max(x2,y%2?) .

We see that only one of the coordinates can become large,
corresponding to the scattering channel coordinate, while
the other two coordinates describe the two confined free-
hadron wave functions. We have calculated the low-
energy scattering amplitude for ground-state clusters in
one dimension in two ways, a resonating-group expansion
and a path-integral Monte Carlo method. The
resonating-group approach starts from an ansatz for the
full wave function,

\P(x,y,z)EdE.(f’i(x,y)fi(z) ’ (34)

where &7 is the antisymmetrization operator, f;(z) is a
channel scattering wave function, and ¢;(x,y) is the prod-
uct of cluster wave functions for the two hadrons. The
index i labels the internal states for both hadrons. An ef-
fective coupled-channel theory is defined by projection on
the Schrodinger equation with hadron bound-state wave
functions,

[ dx dy 8 (x,y)(H — E)¥(x,y,2)=0 . (35)

The effective channel potentials defined by Eq. (35) are
nonlocal. We truncate the equations by including only the
state in which both clusters are in their ground states,
do(x,y)=1o(x —y)o(x +y). This was seen to give very
accurate results for low-energy scattering in the work of
Lenz et al.! and will be checked below for our specific
model. With this truncation, we have the Schrodinger
equation, ’

[— 13,24+ Vi@ —elfold= [ dy Vap(zp:elfoy) ,

(36)
ile)= [ dxdy(@®—x%)gdxp) , (37)
VnL(z,p :€)
=2 [ dx(—33,2 427 —x} —eMgb(x,p)bo(x,2) ,
(38)
where € is the scattering energy,
e=E—6/V2 (39)
and
Polx,y)= 3;:—: (x2—pP)e—THIV2 (40)

The local potential ¥ results from the direct term in Eq.
(35), i.e., projection of ¢4(x,y) onto do(x,y) in W. It is
given by

VL(z)=—1/1—§—(zz——§—)[l—erf2(z)]

— —‘/—_g—(z3+32)e —Zzerf(z) — —‘/—i(z2+2)e —22?
Vi T

(41)
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This is strongly attractive at the origin: V1 (0)=—1.96 is
almost half the zero-point energy of the isolated clusters.
It drops to half its value at z ~1 and falls off as a Gauss-
ian at large separation. The nonlocal potential arises from
exchange terms in Eqs. (35) and (34). The nonlocality
range must be the range of the ground-state cluster wave
function. Since this term accounts for the Pauli exclusion
principle, it is clearly repulsive.

The nonlocal Schrodinger equation was solved numeri-
cally in a momentum representation. Although our two
quark clusters are bosons (with reduced mass one for the
two hadrons), note that by virtue of the repulsive “core,”
the scattering would not be drastically different for fer-
mions. The scattering amplitude satisfies the Lippmann-
Schwinger equation, :

dt %(g,1)
> tz—kzF(t’k) s

where P denotes the principal value and the phase shift is
given by

tand(k)= —F(k,k)/2k . (43)

Flg,k)=2(g,k)—2P [~ (42)

The Fourier transformed potentials in Eq. (42) are defined
by

% (q,k)=V(g,k)+V(g,—k),
V(q,k)= VL(q —k)+ VNL(q;k) s

- (44)
Vilg—k)= f_w dx cos[(g —k)x]Vi(x) ,

V(g k)= — f_: dx cos(gx) f_ww dy cos(ky)VnL(x,y ;e.)

The singularity in Eq. (42) is removed by the usual
Kowalski-Noyes method® and the resulting finite equation
is solved by matrix inversion. The phase shift is shown in
Fig. 5. We note that for the bosons in one dimension, the
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FIG. 5. The phase shift for the scattering of two hadrons.
The solid curve is a resonating-group calculation, Egs. (42)—(44)
while the error bars are from a path-integral Monte Carlo calcu-
lation. This phase shift can be fit with the local hadron-hadron
potential Eq. (45) (crosses).

phase shift goes to /2 at k=0 for any repulsive potential
because by symmetry the unscattered wave function is
cos( kr), whereas the exact zero-energy wave function joins
onto an asymptotic wave function having a node near the
origin. The phase shift is characteristic of a repulsive po-
tential and yields a scattering length of 1.7. This is close
to the size of a free cluster.

To check the resonating-group truncation, the phase
shift can also be calculated exactly with the Monte Carlo
method.” The basic idea is to impose the boundary condi-
tion that the relative wave function vanish at a specified
cluster separation. This defines the energy at which the
scattering wave function has the specified node, and as
long as the interactions are negligible, the phase shift at
that energy is thus defined. These results are shown on
Fig. 5 as error bars (representing the statistical accuracy
of the Monte Carlo calculation). The two methods are in
excellent agreement for energies below inelastic threshold
(GIN=2‘/§)-

The phase shift can be fit easily with a repulsive
phenomenological local potential V(x). Since the cluster
wave functions are Gaussian, we assumed such a form for
V. The parametrization

produced an excellent fit to the phase shifts, as shown in
Fig. 5. We will use this potential as our nuclear interac-
tion.

For comparison with our quark-matter calculations, we
performed Monte Carlo calculations for a Bose system of
mass-two hadrons interacting through the phenomenolog-
ical hadron-hadron interaction V. Because of finite-
volume effects in the energy, small differences between
the nucleon and quark-energy calculations are sensitive to
finite-volume effects even for large systems. These effects
have been controlled in this work by directly comparing
A-nucleon systems with (N =24)-quark systems. No
many-hadron forces are included, although they must in
principle be there for our quark model. The energy per
quark (i.e., half the energy per hadron) is compared in
Fig. 1(b) with the full quark-matter energy minus the
zero-point energy. Surprisingly, the agreement is very
good even for densities well beyond p, i.e., at densities
where the quark-matter wave function is essentially that
of a free quark gas.

(45)

V. CONCLUSIONS

We have studied a simple model of the ground state of
hadron matter with many of the essential features for ex-
amining the nuclear-to-quark-matter transition and the
validity of effective models based upon hadron degrees of
freedom. Our hadrons are composite, with quarks con-
fined by static potentials. The potential, reminiscent of
flux-tube models, guarantees cluster separability and elim-
inates strong van der Waals forces as would be present in
conventional Hamiltonians based upon confining forces.
The many-body nature of the interaction leads to a free-
quark Fermi gas as the large-density limit of the theory,
thereby allowing us to study the “transition” from the
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clustered low-density hadron matter.

The model has no parameters introduced to enforce any
special dynamics. Indeed, there is only one overall scale
parameter, the confinement scale, with all dynamics gen-
erated solely by compositeness and exchange symmetry.
For technical simplicity, we considered in this paper only
two-quark hadrons in one dimension. This allowed some
insight into the transition dynamics, particularly through
the Hartree-Fock results.

The energy of the system showed no remarkable
features as the density increased from the clustered to the
free-quark configuration. Further, the effective “nuclear
theory,” defined through a phenomenological local
hadron-hadron potential fit to the low-energy scattering
amplitude, provided remarkably good agreement over this
same range of densities. We repeat that the description in
terms of hadron degrees of freedom was accurate even
when the quark-quark correlation function showed no evi-
dence of clustering. Moreover, deconfinement of clusters
occurs at rather low densities, p > p where p is the average
quark density inside a free hadron.

We found that a variational wave function with a varia-
tional parameter characterizing hadron size in the medi-
um produced excellent agreement with the full results.
With this as a measure, the quark correlation scale or ef-
fective hadron size was increased over that of a free had-
ron by ~40% at p=p. Such ideas about increased con-
finement scales in nuclei have been discussed in many
contexts recently. As far as we know, ours is the first
dynamically consistent model within which the quark
correlation function is calculated.

Despite the success of the hadron phenomenology in
reproducing the quark-matter energy, we did find signifi-
cant changes in the quark momentum distribution.
Within a nonrelativistic model, this is measurable in the
quark structure function measured by deep-inelastic lep-
ton scattering. We found behavior qualitatively similar to
that observed in the EMC effect. The quark low-
momentum components are enhanced.

The variational parameter, A, is observed to decrease in-
dicating a “partial deconfinement” of quarks with in-
creasing density. Again, this change is accompanied by a

remarkably small increase in the energy per quark.

Work is underway to extend the results presented here
to three space dimensions. These calculations are using
the variational wave function of Eq. (25) and an efficient
algorithm? to determine the optimal quark pairing. How-
ever, it is expected that the quark antisymmetrization is
the most important feature of this model so the changes
in the nucleon substructure will persist in three dimen-
sions.

In summary, we have consistently studied the ground-
state dynamics of a system of hadrons composed of con-
fined quarks, demonstrating the compatibility of a nuclear
description of bulk properties (energy per quark) with sig-
natures of quark substructure in selected observables
(quark momentum distribution). This compatibility is
particularly surprising in its persistence into density re-
gimes where the hadrons are strongly modified in the
medium. This may be especially significant since the
transition to the free-quark gas is well advanced at rather
modest densities, p~p. Clearly, more quantitative com-
parisons with the properties of nuclear matter require ela-
boration of the model. A more realistic description of the
nucleon is needed, including both three quarks per hadron
and quark internal degrees of freedom; the calculations
must be extended to three dimensions; and nonconfining
interactions must also be included to generate the strong
channel dependence of the nuclear force. Ultimately, the
nonrelativistic approach may be too limiting for quantita-
tively correlating hadron properties with nuclear observ-
ables. Nevertheless, our results indicate the importance of
consistently treating the quark-confining dynamics and
exchange symmetry and offer some hope for a compara-
tively simple characterization of quark effects in nuclei.
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