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The sensitivity of physical amplitudes to the observed isospin-symmetry breaking in the fermion
mass matrix is analyzed in theories where the electroweak symmetry is dynamically broken. As a
first step toward discussing dynamical theories in a model-independent way, we consider a strongly
interacting Higgs theory. The nonlinear 0. model coupled to an SU(2) )& U(1) Yang-Mills. theory and
to fermions is used to generate the low-dimensional operators induced by the quantum theory. The
strengths of these operators, in particular those that break isospin symmetry, are estimated using the
Higgs-boson mass of the linear o. model as a regulator. Technicolor models are next considered as a
specific example of the strong-interaction physics which leads to electroweak symmetry breaking.
Emphasis is placed on the effective four-fermion interactions that are natural partners of those
which give mass to the ordinary fermions. New sources of isospin-symmetry breaking are found; in
particular there is one which contributes directly to the p parameter with strength that is linear in
the effective Yukawa coupling of the heaviest ordinary fermion. This effect is qualitatively dif-
ferent from the quadratic dependence found in Higgs theories.

I. INTRODUCTION

The experimental success' of the SU(2)I XU(1) elec-
troweak theory is both reassuring and challenging. It em-
phasizes the importance of understanding the mechanism
of electroweak symmetry breaking and the attendant mys-
tery of quark and lepton mass generation. The standard
device for incorporating these essential features into the
theory is the inclusion of a set of scalar Higgs fields with
a potential arranged to produce spontaneous symmetry
breakdown. Although renormalizable, the resultant
theory is widely regarded as being an effective theory
valid only at energies below a few TeV. To take it more
seriously, with the usual light, weakly coupled Higgs bo-
son, leads to a naturalness problem: the necessity of fine
tuning the Higgs-boson mass to remain light in the pres-
ence of renormalization corrections which depend qua-
dratically on the cutoff. On a more pragmatic level, the
elementary-scalar device offers very little hope for really
explaining anything. All the fermion masses, for exam-
ple, are simply put in by hand in the form of Yukawa
coupling constants.

An attractive alternative is that new matter, with strong
interactions at energies of a few TeV, dynamically breaks
the electroweak symmetry. This possibility has been stud-
ied extensively, both by inventing specific models of
dynamical symmetry breaking and by investigating the
low-energy consequences of a wide class of such
theories. While there is no compelling model, and no
unambiguous low-energy experimental signatures have
been suggested, the idea remains alive and provides the
focus of much theoretical work and experimental plan-
ning.

One of the most troubling features that must be built
into the electroweak theory is the large amount of weak
isospin breaking exhibited by the quark and lepton
masses. Apart from explaining the large mass differences
within the doublets, there is a potentially serious problem
of internal consistency. The experimental fact that the p

parameter (p—:M~ /Mz cos 8~) is unity to within a few
percent can be explained if the Higgs sector of the theory
has an SU(2)L X SU(2)z global symmetry. The spontane-
ous breakdown of this symmetry to SU(2)1 +~ then gives
p=1 to lowest order in the gauge coupling. Small devia-
tions from p= 1 will arise from higher-order gauge in-
teractions which respect only the (local) SU(2)L, XU(l)
subgroup of SU(2)1. XSU(2)g. Additional breaking of
SU(2)L X SU(2)z must be introduced in some way to give
the correct fermion masses. This might be expected to
produce large, and possibly unacceptable, deviations from
p= 1 once the mass splitting within a fermion doublet be-
comes as large as, say, the current lower bound on the I;-

quark mass.
This issue has been looked at extensively in the conven-

tional model with elementary scalars. The result of
several analyses ' is that, at one loop, p —1 goes roughly
as GF/Sv 2m(up to a col.or factor) times the square of
the intradoublet mass difference and therefore splittings
up to several hundred GeV can be tolerated. As long as
the t quark is not too heavy, there is no obvious problem
with internal consistency.

When the Higgs sector is dynamical, with strong in-
teractions at a mass scale of a few TeV, it is not so clear
how the large isospin breaking in the fermion masses will
feed back into the p parameter or other measurable quan-
tities. The loop expansion is of limited use in analyzing
this question. One must also appeal to naturalness argu-
ments and order-of-magnitude estimates. It is the purpose
of this paper to investigate this problem by using general
effective-Lagrangian techniques and by examining tech-
nicolor models.

In Sec. II we review the status of this problem in the
standard model with a light weakly coupled Higgs boson.
A general analysis of the isospin-breaking problem of a
strongly interacting Higgs sector is presented in Sec. III.
Using the nonlinear o. model as an effective low-energy
description of the full electroweak theory, estimates are
made of the expected isospin breaking in various ampli-
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tudes of interest. A list of low-dimension operators con-
sistent with SU(2)r XU(1) symmetry and incorporating
the observed SU(2)L, +~ splitting in the fermion masses is
generated. The natural size of each operator is then es-
timated and its physical consequences are described. The
differences between the dynamical case and the
elementary-scalar case are emphasized. Special attention
is paid to the p parameter.

One model for dynamical symmetry breaking is that of
technicolor. Although there is no realistic technicolor
model and existing models generally predict either exces-
sive flavor-changing neutral currents or excessively light
pseudo-Cxoldstone bosons, the technicolor mechanism
serves as an explicit example which we explore in Sec. IV.
After a brief introduction, fermion mass generation in
these models will be described with special emphasis on
isospin violation. It will be shown how to obtain the low-
energy operators and physical effects discussed in Sec. III
by integrating out the technifermions. The major result is
that technicolor theories naturally contain more sources of
isospin-symmetry breaking than required for fermion
mass generation and that these produce qualitatively new
effects in the low-energy theory.

II. THE STANDARD MODEL

In this section we review how strong isospin violation
in the fermion mass matrix is compatible with the weak
isospin relation

Mwp= =1+0.03 .
z cos ~w

Relation (1) follows from charge conservation and the
existence of an SU(2) symmetry of both the Lagrangian
and the vacuum under which the generators of SU(2)L
transform as a triplet. ' These two conditions force the
gauge-boson mass matrix, in the SU(2)L XU( l)r basis, to
have the structure

is spontaneously broken to O(3) =SU(2). To consistently
couple the Higgs sector to the gauged weak-interaction
sector its global symmetry need only be SU(2)L XU(1).
The extra symmetry, which is hereafter identified with
isospin, inescapably leads to the mass relation p= l. It is
consequence of using a single Higgs doublet and is some-
times called, for this reason, the Higgs b,I = —,

' rule. It is
worth noting here that the O(4) symmetry of the Higgs
potential arises simply because, for a single doublet, the
only possible potential terms of any dimensionality that
are SU(2)L XU(1) symmetric are also SU(2)L XSU(2)~
symmetric. This does not necessarily hold for more than
one Higgs doublet.

We now discuss the higher-order corrections to p= j..
First there are O(u) corrections since the gauge symmetry
is only SU(2)~ XU(1). These corrections have been stud-
ied extensively. '" They include a term that grows hke
ln(MH) as MH~oo, ' where M& is the mass of the
Higgs boson. With M~ (1 TeV, however, this term is
not especially important experimentally.

The other source of isospin breaking is the fermion
mass matrix, which is parametrized by the Yukawa cou-
plings. At one loop, bp (—:p —1) receives contributions
from fermion loops inserted in the gauge-boson propaga-
tor (Fig. 1). The result is given by; '

cx 2m mg my
2 2 2

bp=g 2
.

2 2
ln

2 +m„+m~, (4)
Mw p?l u

—my mu

where m„and m& are the masses of the individual fer-
mions within a doublet and g is a color factor (which is 1

for leptons and 3 for quarks). Expanding in the mass
splitting, this becomes

2 2 2
w 2 2 1 mu mdbp=g (m„+m~ )

2+m~2

(5a)

while for m„&)mg, it reduces to
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82 —8 182
2—8]Ã2

(2)

2

b,p=g
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&6~ ~w' (5b)

The quadratic dependence on the fermion mass split-
ting is easily understood. The Yukawa interactions in the
standard model may be written in the form

where g2 [g&] is the SU(2)L [U(1)] gauge coupling con-
stant and (N)=250 CxeV is the Higgs-field vacuum ex-
pectation value. This gives 'a mixing angle tanOw ——g] /g2
and p= 1 at the tree level. The SU(2) symmetry is evident
in the diagonal g2 structure of the 8' sector of the ma-
trix. It can be traced to a symmetry of the scalar poten-
tial.

Writing the complex doublet W as

~Y 2 fLM[(y. +y~ ) + (y. y~ )r3]fR +H c. —
where f=(u, d). The matrix M is defined by

yO (Xp+ l F3

n) +ivr2— (3)

and noting that V(C&) is a function only of 4 4& we see
that V(@) has a global O(4)=SU(2)L X SU(2)z symme-
try corresponding to the preservation of the length of the
four-vector (oo, m. ). When (p ) = (oo) /V 2&0, this O(4)

FIG. 1. Fermion-loop correction to the gauge-boson self-
energy diagram.
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and transforms according to SU(2)I. X SU(2)g as

M—+ UL MUg, (8)

where the U matrices are SU(2) transformations. For
y„=yd ——y this is SU(2)1 XSU(2)z symmetric. When

y„&yd this symmetry is explicitly broken and the
strength of the breaking goes smoothly to zero as y„ap-
proaches yd. We thus expect the correction to p to be pro-
portional to y„—yd ~m„—md (=b,m) to some power.
The quadratic dependence follows simply because the
gauge couplings- in Fig. 1 conserve helicity and therefore
an even number of mass insertions is required.

The fermion loop contribution to bp [Eq. (4)] can be
combined with Eq. (1) to constrain the fermion mass split-
tings. It is known that the O(a) radiative corrections
reduce p by approximately 0.02 (Ref. 11) and therefore the
expression in Eq. (4) can be no larger than about 0.05.
For the case of a heavy lepton (L) with a massless neutri-
no partner, this implies mL &700 GeV. For a heavy
quark (m„&&md ), it implies m„(400 GeV.

One may also arrive at Eq. (4) by considering solely
Goldstone-boson dynamics. By current conservation the
gauge-boson two-point function has the transverse form
(g„„—qzq„/q )11(q ). The gauge-boson diagrams already
considered (Fig. 1) give the g&, part. The diagram shown
in Fig. 2, the two-point function for the Goldstone bo-
sons, gives the q&q„/q part.

The fermion-mass-generation mechanism in the stan-
dard model thus allows for rather strong isospin violation
in the fermion mass matrix without upsetting the neces-
sary relation p= 1. It is only necessary that isospin
partners have mass splittings less than a few hundred
GeV.

We conclude this section with some important remarks
about the higher-order corrections to Ap. Here we consid-
er those contributions to Ap that are nonvanishing only if
there is isospin violation in the Yukawa couplings. Equa-
tion (4) is then the one-loop contribution to bp and is
quadratic in the Yukawa couplings. Two-loop corrections
could, a priori, be (1) quartic in the Yukawa couplings, (2)
quadratic in the Yukawa couplings X O(g /4m ), where g
is the SU(2)L or U(l) coupling constant, or (3) quadratic
in the Yukawa couplings XO(A, /4m ), where A, is the
Higgs-boson self-coupling. We will argue that the last of
these corrections is not present. This is important be-
cause, were this correction present, the one-loop result
[Eq. (4)] would be completely unreliable in the limit when
the Higgs sector becomes heavy and strongly interacting
(M~~2 TeV, A,/4' =M~ /8n (P) ~1).

Each of the above corrections must be ultraviolet finite
since there are no dimension four or lower operators that

contribute to Ap. This was of course true of the one-loop
computation. There, since mass insertions are necessary
to produce isospin-symmetry breaking, the result could
have been at most logarithmically divergent. Explicit cal-
culation showed that bp was in fact finite [Eq. (4)] in
agreement with the above general argument. At two loops
there are many diagrams that, without any mass inser-
tions, contain Yukawa couplings that break the isospin
symmetry (see, for example, Fig. 3). Thus it would seem
that mass insertions are not required to produce a contri-
bution to Ap. It therefore looks as though there could be
quadratically divergent contributions to Ap at two loops.
These divergences must of course cancel once all the
graphs are added since there are no renormalizable coun-
terterms to accommodate them.

What can the residual logarithmic divergences and fi-
nite pieces then look like? Any logarithmic divergence
must be absorbed into renormalizations of the various
masses or the gauge or Yukawa couplings. The question
then is whether, among the finite pieces, there can be a
contribution of type 3 above. Since there are no explicit
Higgs-boson self-couplings among the two-loop isospin-
violating graphs, it could only arise from a finite contri-
bution proportional to M~ ——2A, (P) from the graphs
with internal Higgs-boson propagators. Since the diver-
gent contributions of these graphs to Ap must cancel,
however, so too must the finite piece proportional to M~
and quadratic in the Yukawa couplings cancel. This is
because the isospin breaking is in the coupling constants;
the isospin structure of the divergent pieces and the finite
pieces is precisely the same. Only if fermion mass inser-
tions are included can the finite pieces of these graphs
have a different isospin structure. But mass insertions
here clearly lead to terms quartic in the Yukawa cou-
plings. (Since the self-energy diagrams considered always
have an ultraviolet quadratic divergence two mass inser-
tions will lead at most to a logarithmic infrared diver-
gence at zero external momentum. Infrared mass terms
thus cannot appear in the denominator to cancel explicit
mass insertions in the numerator. ) All possible contribu-
tions of type 3 above, therefore, must cancel among the
diagrams.

The remaining contributions to bp are of types 1 and 2.
These will presumably include terms which grow like
In(M~) as M~ is increased, indicating a sensitivity to a
strongly coupled Higgs sector at this level. This mixing
of strong Higgs-boson and heavy-fermion mass effects is,
however, screened from the leading effect [Eq. (4)] by ex-
tra powers of the gauge or Yukawa couplings. To study
in more detail the interplay of isospin-symmetry breaking
associated with fermion masses and strong Higgs-boson
effects, we next make use of the nonlinear o. model.

FIG. 2. Fermion-loop contribution to the Goldstone-boson
propagator.

FIG. 3. Two-loop contribution to the gauge-boson self-
energy. Dashed lines represent the Higgs fields.
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III. ISOSPIN-SYMMETRY BREAKING
WITH A DYNAMICAL HIGGS SECTOR

The interaction of the Goldstone fields with the gauge
fields is described by the operator

Tr(D~U) (D"U),fz
(11)

where

D~U=BqU+ig2v WpU/2 .ig)B„Ur3/—2 . (12)

If U is replaced by its vacuum value I, corresponding to
the spontaneous breakdown of SU(2)1 X SU(2)R to
SU(2)1+R, the gauge-boson mass matrix [Eq. (3)] is ob-
tained. For further details of the gauge field dynamics
the interested reader can consult Ref. 5.

In the gauged nonlinear o model, fermion masses must
be introduced by the same Yukawa couplings used in the
linear (light, elementary-scalar) theory. For a single gen-
eration of quarks (u, d), the appropriate operator is

~Y ffL, [ U(y +y 3&3)]fR—+H'c. (13)

where fI R ——(u, d)I R and y and y3 are the Yukawa cou-
pling constants, related to those of the previous section by
y =

2 (y„+yd) and y3 ———,
' (y„—yd ). The relative strength

of y and y3 determines the strength of explicit isospin-
symmetry breaking. The mass of each member of the
doublet is given by

(14)
~d =f (y »)=fyd-

The above notation is easily generalized to include mul-

If electroweak-symmetry breaking arises from some
strong dynamics at a mass scale of a few TeV, the theory
at E & 1 TeV is conveniently described by the gauged non-
linear 0. model. ' Corrections to the leading low-energy
theory can then be summarized in the form of higher-
dimension operators that exhibit the SU(2)L XSU(2)R
symmetry [reduced to SU(2)1 XU(1) by gauge and Yu-
kawa couplings]. These operators will equivalently be
generated as counterterms in the loop expansion of the
nonrenormalizable theory. This technique —listing and
then estimating the size of higher-dimension operators-
has been used, neglecting fermion masses, to describe the
sensitivity of the current generation of experiments to a
TeV Higgs-boson sector.

It is the purpose of this section to extend this sort of
analysis to the full theory, including the Yukawa cou-
plings needed to describe the fermion masses. The non-
linear theory, which emerges as the Higgs-boson mass of
the linear theory is pushed up, can be described by the M
matrix [Eq. (7)] subject to the nonlinear constraint

MMt =MtM =f (9)

where f/V 2 can be identified with (4) introduced in Eq.
(3). It will be convenient to express the theory in terms of
the unitary matrix field

(10)

tiple generations and leptons. The parameters y and y3
become matrices which can be diagonalized. For the case
of three generations, 'this leads to a flavor-diagonal quark
mass matrix together with the Kobayashi-Maskawa an-
gles in the charge-changing interactions of the quarks.

The operators WNz and W~, together with the stan-
dard interactions between the gauge bosons and the fer-
mions and among the gauge bosons themselves, are those
that emerge from taking the infinite-Higgs-boson-mass
limit of the usual renormalizable theory. They do not
constitute, however, a complete list of low-dimension
operators consistent with the SU(2)L XU(1) symmetry of
the theory. By extending the list, we shall be able to
enumerate the low-energy (E & 1 TeV) amplitudes allowed
by the theory and estimate their likely strength. This will
be done with special attention paid to those amplitudes
that respect SU(2)l XU(l), but not SU(2)L XSU(2)R,
symmetry.

In the absence of fermions this task has been taken far
enough for our purposes by Longhitano. To summarize
his results it is convenient to classify operators by dimen-
sion, using the dimensionless U matrix. Because of the
nonlinear constraint [Eq. (9)] it is best not to attach
dimensionality to the Goldstone-boson matrix field. The
operator WNL then has dimension two. It turns out that
there is one additional, independent, dimension-two opera-
tor and then a rather large number of dimension-four
operators. If the nonlinear theory is analyzed in the loop
expansion, the dimension-two and dimension-four opera-
tors are the counterterms necessary to absorb all the infi-
nities through one loop. Two loops then require
dimension-six operators and so on.

The additional dimension-two operator is

Q

4
(Tr~3U DpU)

where a is a dimensionless parameter. The dimension-
four operators not involving fermion fields, to which we
shall return, are listed in Ref. 6. The operator W2 has
two important features: (1) It is SU(2)l XU(1), but not
SU(2)L XSU(2)R, symmetric. (2) It is the only operator,
in addition to WNL, that contributes to the gauge-boson
two-point function at zero momentum. The operators
WNL and W2 therefore determine, up to finite radiative
corrections, the W and Z "masses, " and the correspond-
ing p parameter, as measured in low-momentum-transfer
(q «M&, Mz) neutrino scattering experiments. A simple
computation reveals that

p=1 —2a+ corrections finite in the

nonlinear limit (MH~ ~ ) .

The operator Wz is induced at the one-loop level by ra-
diative corrections involving the U(1) gauge field. The
logarithmically divergent one-loop computation can be
sensibly cut off at a few TeV and the order of magnitude
is (g~ /4' )ln(MH), where g& is the U(1) gauge coupling
constant and MH serves as the cutoff. A further analysis
of higher-order effects shows that the coefficient of
g &

/4m. cannot be reliably computed with a heavy,
strongly interacting Higgs sector but that it is naturally of
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order unity. ' Qne concludes therefore that

g
2

+gauge-induced
4m

-2

tan'Oii && 0( 1 ),
4m

(17)

fg8f =fg(&„+——g B„Y/2)y f
where 7 is the weak-hypercharge operator with eigen-

1 4 2
values y„=yd ——

3 y 3 and yd
——

3 .

At the dimension-four level additional nonlinear opera-
tors can be constructed, essentially by inserting the dimen-
sionless U and U matrix into the expressions WL and

Because of the constraint UU =1, however, there
is a quickly saturated limit to this procedure. The possi-
ble operators are

W„'=i5,f [U(gU)"]f (20a)

~~ =& 5zf~ [ U (&»]fr
W4 i53fL [(@U)~3U —j—fL +H.c. , (20e)

i54fL [U&3—U—(gU)r3U jfL,
W4 i 55' [73U (S U) jf~+H——.c. , (20e)

~4 i56fg[~3U (B——U)~3]fg, (20f)

W4 i57fL[Ur3U ]nfl +H. c.——.

(20b)

(20d)

(20g)

All the 5; coefficients are real. The reality of 5&, 52, 54,
and 56 is ensured by hermiticity. The coefficients 53 and

55 can only be nonreal if CI' violation is incorporated.

a value comfortably within the experimental bound.
We now bring the fermions back into the discussion.

The operator of lowest dimension involving the fermion
fields is the Yukawa interaction W», which has dimen-
sion three. The isospin breaking in this interaction will be
transmitted to the p parameter most directly by the one-
loop process described in the previous section. The fer-
mion masses arising from W» enter the fermion-loop
correction to ~& and give the result Eq. (4). This contri-
bution to b,p is finite even in the nonlinear limit; it is in-
dependent of whether or not the Higgs sector is strongly
interacting. Since it is insensitive to TeV physics, unless
the fermion mass splitting becomes of this order, we do
not regard it as generating the new local operator W2. As
noted in the previous section, the splitting is constrained
by experiment to be no larger than a few hundred CxeV.

The next operators involving the fermion fields are of
dimension four. We will list these and then discuss their
order of magnitude and the way in which they feed into
Wz and the p parameter. We will then conclude this sec-
tion with a brief discussion of the remaining dimension-
four operators (those not involving the fermion fields) list-
ed in Ref. 6. The first fermion operators of dimension
four are the standard gauge-fermion interactions,

~L =&fr.&fL,

=ifl (r)q+ig2r W„/2+igi Bq Y/2)y'"fl,

Since we are neglecting CI' violation in this paper, these
too must be real.

Two questions must now be addressed:
(1) What is the natural size of each of these operators

and is this size compatible with experiment?
(2) How do these operators feed back, through higher-

order corrections, to lower-dimensional operators such as
Wz [Eq. (15)] and to measurable quantities such as bp?

Each of the operators in Eqs. (20), except Wq, is gen-
erated at the one-loop level with a logarithmically diver-
gent coefficient. These are simplest to compute using the
fermion-fermion-m vertex generated by the graphs shown
in Fig. 4. Each coefficient 5; is quadratic in the Yukawa
couplings y and y3, and with the linear theory used as a
cutoff, each is proportional to In(MH). The one-loop
value of the cutoff-dependent part of each coefficient is

» = —0 '+~3')c,
62= —y C,
&3=yy3C

64——0,
&s = —yy3C

66= —y3 C,2

(21)

l

I]

I

I

r I

FIG. 4. One-loop divergent diagrams used to evaluate W4.
Here the dashed lines are the m fields of the nonlinear o. model.

~7=yy3C ~

where C=(l/64~ )ln(MH/Mii ). This was obtained us-
ing dimensional regularization and identifying the pole
1/e as in(MH /M~), where M~ is the subtraction point.

If fI and fz represent one of the known fermion dou-
blets, then these operators will give MH-dependent correc-
tions to the measured weak interactions. Since y and y3
are very small for the known fermions, however, only very
tiny deviations from the standard model are predicted.
These corrections are just those parts of the standard
one-loop radiative corrections that grow (logarithmically)
with MII.

It is worth emphasizing here that in a purely
phenomenological application of the nonlinear o model,
we would not be trying to estimate the coefficients in
front of the operators Wz and W4. They would be free
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stanclard gauge
interactIon

~ interaction

FICi. 5. Fermion-loop correction to the gauge-boson self-
energy diagram, Utilizing an effective Wq interaction.

parameters, necessary to absorb quantum divergences, and
finally fit to experiment. The exercise of this section, es-
timating their natural size by using the linear model to cut
the integrals off at E= 1 TeV, implicitly assumes that this
is a reasonable way to describe at low energies whatever
new physics lurks around 1 TeV. In using this approach,
for example, to estimate the relative strength of isospin-
breaking and isospin-conserving operators, one is assum-
ing that there is no new source of isospin breaking at these
high energies. In the next section we will in fact argue
that technicolor theories do contain new sources of isospin
breaking, to which the present analysis is insensitive.

%'ith that proviso we now address the second question
above. If f is a doublet containing a fermion as heavy as
the top quark, then the most direct effect of these opera-
tors is through a heavy-fermion loop (see Fig. 5) formed
using one of these operators together with one standard
interaction [Eqs. (18) and (19)]. These corrections to the
gauge-boson propagator could contnbute to W2 and
therefore to bp. Since each 5; is quadratic in the Yukawa
couplings, one might worry that there are corrections to
W2 and bp of the same order as that of Eq. (4). It is easy
to see, however, that to get nonvanishing contributions to
W2 from any of these loops, it is necessary to make at
least two mass insertions on the fermion propagators. If
W4, W4, W4, W4, , or W4, is being used, then the inser-
tions are necessary to produce sufficient isospin violation
to generate W2. In the case of W&, the insertions are
necessary to fiip helicity to connect to an ordinary left-
handed gauge coupling. The one operator that could
cause trouble, Wz, is simply not generated at the one-loop
level, either with a logarithmically divergent or finite
coefficient [its absence is due to a special feature of the
W4 operator —it has four Goldstone-boson ( U) matrices].
Thus these contributions to W2 must be at least quartic in
the Yukawa couplings.

This is of course the conclusion reached in Sec. II in the
context of the standard Glashow-Weinberg-Salam model,
i.e., the gauged linear o model. To summarize, the
gauge-induced contribution to Ap is (g2 /4m )tan 8~
times a coefficient that we cannot compute when there is
a strongly interacting heavy-Higgs-boson sector, but
which is expected to be O(1) [Eq. (17)]. The Yukawa-
coupling-induced contribution at one loop is given by Eq.
(4) and is insensitive to the Higgs sector. The two-loop
corrections to this result are either quartic in the Yukawa
couplings or quadratic in the Yukawa couplings times
O(g /4~ ). In either case the correction is multiplied by
a coefficient expected to be of O(1), with a heavy-Higgs-
boson sector, since a logarithmic sensitivity to the Higgs-
boson mass appears at this level.

The dimension-four operators not involving fermion
fields have been discussed in Ref. 6. Many of them are
generated at the one-loop level with logarithmically diver-
gent coefficients, and they have direct physical conse-
quences describing the sensitivity of various processes to
the heavy-Higgs-boson sector. It would be useful to
recompute these operators and effects in the presence of
Yukawa couplings, especially large ones associated with
new, heavy fermions. ' They would describe, for example,
effects analogous to Eq. (4) in gauge-boson production
amplitudes.

IV. TECHNICOLOR

If one envisages the low-energy theory discussed above
as arising from strong dynamics, then one simple possibil-
ity is that the' Goldstone bosons are in fact bound states of
fermions. These fermions, known as technifermions, are
assumed to interact via an asymptotically free gauge
force, analogous to QCD, and known as technicolor. It
is expected that at energies above the characteristic scale
ATC, the appropriate description is one of strongly in-
teracting technifermions, while the low-energy spectrum
is that of scalar bound states having the nonlinear interac-
tions described previously.

If the technifermions U and D form a weak doublet
and condense at energy ATC with ( UU) = (DD) =ATC,
then the global SU(2)1 XSU(2)z symmetry is broken to
the diagonal subgroup SU(2)L+~ and the local elec-
troweak symmetry SU(2)I &U(1)z is broken to U(l)EM.
The technimeson condensates now play the role of the
Goldstone bosons in the standard mode1.

For ordinary fermions to acquire mass in technicolor
theories there must be introduced yet another interaction
to feed the chiral-symmetry breaking in the technifermion
sector to the ordinary fermion sector. This interaction
must therefore link ordinary fermions and technifermions
and give rise, at energies of order ATC, to effective four-
fermion interactions between the technifermions and the
ordinary quarks and leptons. At higher energies, these
nonrenormalizable interactions must of course evolve into
something else with an acceptable high-energy behavior.
Various ideas have been proposed for this very-high-
energy dynamics, from that of extended technicolor
(ETC), in which there are further gauge interactions be-
tween the technifermions and the ordinary fermions, to
those of composite models, ' in which the usual fermions
as well as the technifermions are taken to be composite.

The attitude toward fermion mass generation adopted
here is that, whatever the underlying dynamics, the non-
renormalizable four-fermion interactions between the
technifermions and the ordinary fermions serve as an ef-
fective description at energies of order ATc. Since the pri-
mary concern of this paper is the breaking of isospin sym-
metry, we will consider only one isodoublet of technifer-
mions T=(U,D) The expression. s we write can easily be
generalized to include several generations of technifer-
mion doublets and, of course, several generations of ordi-
nary fermions. The simplest mass-generating interaction
is then
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+m 2 GfL [TT+iT (T1Y5TT)]fR

+ ,
' 6'f—L[TT+iv" ( Ti Y5TT)]T3fR +H. c. (22)

We naturally assume here that the technicolor interactions
themselves respect the isospin symmetry; if that were not
the case, there would be strong [O(aTc)] isospin violation,
in contradiction with observation.

A simple, one-loop estimate of the mass-generating
graph (Fig. 6) gives

G'
Am =m —pgd 2 ATc

8~
(23)

The following four-fermion interactions may be gen-
erated:

~ff =61(fLY"fL )(fL Y1J'L»

~ff (fL) fL )[fRY„(62+62T3)fR ]

(24a)

(24b)

It can be helpful to view this mass generation in two
steps. First the technicolor dynamics is integrated out to
yield the effective Yukawa coupling W3 [Eq. (13)] along
with the nonlinear Goldstone Lagrangian WNL of Eq.
(11). The vacuum value of U=I then leads to Eq. (23)
above, with the identification y„—yd =2y3 6'ATc——/8'
and f=ATC.

In addition to W there may be other four-fermion in-
teractions (fermion is being used generically in this section
to denote both ordinary fermions and technifermions)
with typical coupling strengths of the same order as 6
and O'. From these we will identify new sources of
isospin-symmetry breaking that contribute to low-energy
physics.

To begin, notice that by iterating the interaction in
, as shown in Fig. 7, new four-fermion interactions

are induced. If the loop integrations are not cut off at en-
ergies below the unitarity bound, =6 ', 6' ', then these
new interactions will naturally be of the same strength as

It might be, of course, that the integrations are
damped below the unitarity bound. In ETC models, for
example, W could be the result of an ETC-boson ex-
change with a small dimensionless coupling constant.
The higher-order interactions will then be small. It is
natural in such models, however, that the tree-level ex-
change of an ETC boson contributes to these additional
four-fermion interactions. Unless there is some suppres-
sion, this contribution will be of comparable strength to

(24c)+ff (fRY fR )[fR Yp(63+63 &3)fR ]

~ff 64(fR Y T3fR )[fR V1JT3fR ]

fT =65 (fL 3 TL )( TL YpfL ) ~

WfT =(fL) TL )[TRY&(66+66%3)fR ]+H.c. , (24 )

~fT (fR Y TR )[TR3 1M(67+ 67T3)fR]+H.c. , (24g)

~fT =68 (fR 'Y r3 TR )( TR 'Yp&3fR )

WfT (fLY——"fL)[TRY„(69+69T3)TR], (24i)

~fT [fR1 p(610+ 610T3)fR ](TLY TL ) i (24j)

~TT 611(TL Y TL )( TL YpTL ) (24k)

~'TT =(TLY"TL )[TRY„(612+6'12 3»R]
~TT ( TR Y TR )[TR Yp( 6 13 +6 13T3 )TR ], (24m)

~TT 6 14( ~R Y T3 TR ) ( TR YA+3 TR )

(24e)

(24h)

(241)

(24n)

Additional interactions having a Lorentz-tensor structure
are typically not generated in technicolor models and for
simplicity have not been included. Furthermore, for each
of the above isoscalar current interactions involving pure-
ly left-handed or purely right-handed fields, there could
be a corresponding isovector current term. In the follow-
ing, such interactions lead to results similar to those of
the isoscalar case and are not explicitly examined.

The interactions Wff describe direct couplings among
the ordinary fermions. They are unusual interactions, in-
cluding terms with both right-handed fermions and
isospin-symmetry violation, but if the coupling constants
6 1 62 63 64 are on the order of or smaller than 6 and
G' there will probably be no conflict with experiment ex-
cept in the neutral sector where, once multiple families are
included, there can be flavor-changing neutral currents.
In order for technicolor theories to be viable, a Glashow-
Iliopoulos-Maiani (GIM) mechanism' must be operative
in these interactions. Whether the fundamental origin of
these interactions is ETC exchange, composite structure,
or something else, it is not yet clear if a GIM mechanism
can be incorporated. For the purposes of this paper we
will assume that this problem can be solved and disregard
it, in effect by disregarding family labels.

At the one-loop level it is possible to use an interaction
in Wff together with a standard gauge interaction and in-
tegrate over the ordinary fermion loop. This will, first of
all, renormalize the basic gauge interactions [Eqs. (18) and
(19)]. After spontaneous symmetry breaking the operators
in W4 will also be generated. In order to obtain a contri-
bution to W4 from Wff additional interactions coupling
the fermions to the technifermions are required. This is
most easily seen by considering the fermion-
fermion —Cioldstone-boson vertex for which an WfT must

FIG. 6. Mass-generating diagram for ordinary fermions (sin-
gle lines) using the four-fermion interaction W . The techni-
fermion (double line) condensate is marked with a cross.

FIG. 7. Four-fermion interactions induced by iterations of
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also be used. If the 6; are of the same order as 6 and 6'
in W~ then the W4 operators will be generated with
strength suppressed by two powers of a Yukawa coupling.

We turn next to the operators W/T. Upon Fierz rear-
rangement, they produce W [Eq. (22)] along with other
interactions. Since these couplings involve technifer-
mions, they contribute to ordinary-particle physics only
when the technifermions are integrated out. An example
of this, of course, is the mass formula [Eq. (23)]. There
are, however, many other possibilities. The basic gauge
interactions [Eqs. (18) and (19)] will be renormalized by a
technifermion loop (see Fig. 8), and many of the
dimension-four operators W4 [Eqs. (20)] will be similarly
generated. Mass insertions on the technifermion lines will
cut off the loop integrals at momentum k =Are.

The low-energy Wz operators were listed and their
dependence on the Yukawa couplings was estimated, in
Sec. III, using the nonlinear o. model. The result was the
quadratic dependence on Yukawa couplings of Eqs. (21).
Now, however, the technicolor dynamics determines a dif-
ferent strength for these couplings —it leads to a qualita-
tively new result. Contributions of the sort shown in Fig.
8 can be estimated and clearly give a linear connection be-
tween the various 5 s in Eq. (20) and the constants
Gq —6~2. One finds 5;=GATC /4n [for example, both
WfT and W/r contribute to 5

& giving
5~ =(GO+69)ATc /4m ]. If 6; are of order G and 6' in

then the corresponding 5's are of the same order as
the Yukawa couplings (y and y3) of the appropriate fer-
mion. For the known fermions the strength of these new
operators is therefore small.

To summarize up to this point, the W// interactions
have a (mild) tree-level effect on the low-energy physics
while the W/T interactions affect the low-energy physics
only after integrating out the technifermions. Radiative
contributions from the W&T interactions dominate over
those of W/I interactions since the latter are suppressed
by powers of ordinary Yukawa couplings.

The further integration over ordinary fermion loops
will yield the operator Wz and consequently a contribu-
tion to the p parameter. Figure 9, for example, shows
how Wq can be generated at the two loops from the WfT
interactions. The operator W2 is also generated at this
two-loop level from the W'TT interactions, as shown in
Fig. 10. The interactions which give the largest contribu-
tion to bp are WfT and WTT.

To estimate the contribution of W/T and WTT to bp
imagine turning off the U(1) gauge coupling g~. In this
limit 8~ ——0 and p is M~ /Mz . Restoring g~ will give
higher-order gauge corrections to the dominant contribu-
tions.

FIG. 9. Two-loop contribution to the gauge-boson self-energy
diagram from interaction W~T.

2'/T contributes to the gauge-boson two-point function
through the graph shown in Fig. 9. To conserve helicity
(with g& ——0 there are only left-handed gauge interactions)
there must be two mass insertions on the ordinary-
fermion line. The two r3 matrices explicit in WfT allow
the generation of the structure Wz. The contribution to
Ap may be estimated by a two-step procedure. First, in-
tegrate out the technifermion fields —this gives an
isospin-breaking effective coupling (W4) of the gauge
fields to right-handed fermions with strength
56 —Gs A rc /4n. . The final integration over the
ordinary-fermion loop (with the mass insertions) will yield
a bp of order 56m /4mf. Sinc.e 5 is expected to be simi-
lar in magnitude to y =m /f this contribution to b p is
smaller than the standard model result of Eq. (4).

Consider now W"TT. It is a product of two isospin-
violating currents and directly yields W2 and consequent-
ly a contribution to hp. For WTT, as opposed to W/T,
there are only technifermions in the loops. Technifer-
mions develop a dynamical mass at the scale ATc where
the technicolor interactions become strong. The necessary
mass insertions on the technifermion lines thus cut off the
loop integrals at momenta of order ATC. An estimate
analogog. s to that above gives

3'z T
Ap ~

2 7

4m

where yTT G&4ATc /4~——. A color factor of 3 should be
included for the techniquark contribution. Rewritten in
terms of mass splittings this gives

Ap=
614 ANz

(26)

For 6&& of order 6' this gives

Note that this is linear, as compared to quadratic, in the
mass splitting. Although the numerical factors in the ex-
pression Eq. (27) are only rough estimates, it is interesting
to compare the size of bp with the result of Eq. (5b). The
two results are comparable when b, m is of order f, giving
a b,p of a few percent. This is barely less than the current

FIG. 8. An example of a technicolor contribution to W4.
FIG. 10. Gauge-boson self-energy diagram from interaction



1684 APPELQUIST, BOWICK, COHLER, AND HAUSER

experimental bound. If this bound can be reduced, the
linear expression [Eq. (27)] will provide the strongest con-
straint on the mass splitting b,m (Ref. 17).

V. CONCLUSION

The consequences of strong isospin breaking, inherent
in the mass matrix of the known fermions, have been ex-
plored in strongly interacting Higgs theories and, in par-
ticular, in dynamical (technicolorlike) theories. The iso-
spin breaking, both in the fermion mass matrix and in the
U(1) gauge coupling, makes its most important impact on
the gauge-boson mass matrix, shifting the p parameter
from its tree-level value of unity. The one-loop effect of
the 'U(1) coupling is an O(a/m) correction to b,p—=p —1.
In the limit of a heavy, strongly interacting Higgs-boson
sector, this correction grows like 1n(M~). An analysis of
corrections of higher order in the Higgs-boson self-
coupling shows that, in this limit, the coefficient of the
O(a/w) term is nonperturbative but probably of order
unity, a value consistent with the experimental upper limit
on Ap. This result is known as Veltman's screening
theorem.

The one-loop correction to bp arising from the fermion
mass matrix, that is, the Yukawa couplings in the stan-
dard model, had previously been computed by several au-
thors. The result [Eq. (4)], that bp grows quadratically
with the intradoublet mass splittings, was summarized in
Sec. II. The computation at this level is completely in-
sensitive to the Higgs-boson mass. However, higher-order

corrections can depend on M~.
To study this dependence in the case of a strongly in-

teracting Higgs sector and to set the stage for the analysis
of technicolor theories, the nonlinear cr model coupled to
fermions was next analyzed.

A generalized screening theorem was found. Ampli-
tudes quadratically dependent on fermion mass splitting
are never simultaneously quadratically dependent on the
Higgs-boson mass. Such a quadratic sensitivity to the
Higgs-boson mass is always screened by further powers of
the Yukawa or gauge couplings. This is shown to be a
consequence of the structure of isospin-symmetry break-
ing and the underlying renormalizability of the linear
model. This means that the one-loop result [Eq. (4)] can
be reliably used even in the presence of a strongly interact-
ing Higgs sector.

Finally a specific dynamical model for electroweak-
symmetry breaking was discussed. Here technicolor
gauge interactions determine the strength of the ampli-
tudes induced. New sources of isospin-symmetry break-
ing are found associated with four (techni)fermion in-
teractions which are natural partners of the effective
mass-generating interactions. For fermion mass splitting
less than the electroweak-symmetry-breaking scale these
are the most sensitive manifestations of isospin-symmetry
breaking in the theory. The improved measurements of
gauge-boson masses expected in the next decade should
thus yield constraints on the mechanism of electroweak-
symmetry breaking. These will be of paramount impor-
tance if a light Higgs boson is not directly observed.
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