Consequences of the improved Kobayashi-Maskawa matrix for mixing and *CP* nonconservation in $K^0-\overline{K}{}^0$ and $B^0-\overline{B}{}^0$ systems

Tim Brown and Sandip Pakvasa

Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822

(Received 30 March 1984)

In light of the new experimental results on B decays the parameters of the Kobayashi-Maskawa (KM) matrix are reanalyzed. The correlated constraints on the *t*-quark mass, the K^0 - \overline{K}^0 matrix element, and cos δ are presented. All uncertainties and ambiguities are fully exhibited. The consequences of the new knowledge of the KM matrix for mixing and *CP* nonconservation in B^0 - \overline{B}^0 and B_s^0 - \overline{B}^0_s systems are deduced.

I. INTRODUCTION

The recent experimental measurements¹ of B lifetime and the tightened bounds² on $\Gamma(b \rightarrow u)/\Gamma(b \rightarrow c)$ have improved our knowledge of the Kobayashi-Maskawa³ (KM) matrix considerably. Initially one used unitarity constraints⁴ to place limits on the new elements of the mixing matrix. Then the demand that parameters of the $K^0 \cdot \overline{K}^0$ system be reproduced correctly was used⁵ to provide much stronger constraints. However, this approach has been plagued with uncertainty about the hadronic-matrixelement evaluation.⁶ As more data on the production and decays of heavy quarks become available, more direct and reliable information on the KM matrix elements could be extracted.⁷ This program is now almost complete with the new data on B decays.

In this paper we summarize the knowledge of the KM matrix and its implications in light of these new data. The current knowledge of the quark mixing matrix is summarized, in general and then for three generations, and the bounds on the KM angles presented in the next section.

In Sec. III we calculate the parameters of the $K^0 \cdot \overline{K}^0$ mass matrix with the new KM matrix. We show, following the recent suggestion, bounds on m_t (for a given δ) to reproduce the observed value of ϵ . The uncertainty due to the unknown value of the matrix element, as well as the dependence on the precise value of the quark mass used, is spelled out clearly. We exhibit the values of the matrix elements needed to reproduce ϵ and $\delta m_{K_t-K_s}$ correctly.

In Sec. IV mixing and *CP* violation in $B^0-\overline{B}^0$ and $B_s^0-\overline{B}_s^0$ systems are calculated allowing the unknown matrix element to vary over a wide range. The resulting same-sign-dilepton rate and asymmetry in e^+-e^- production are exhibited.

In brief, our findings can be summarized as follows. In the KM matrix, $0.01 \le s_2 \le 0.14$ and $s_3 \le 0.06$ for any value of δ . To reproduce ϵ , allowing for the uncertainty in B_{ϵ} (the matrix-element factor), m_t as low as 25 GeV is allowed for $c_{\delta} < 0$. To reproduce δm_{L-S} correctly, the (corresponding matrix-element factor) B_m has to be about 1.5. For $m_t < 50$ GeV, mixing in $B^0 - \overline{B}^0$ is very small, r < 0.1 at $c_{\delta} \sim -1$ to $r < 10^{-4}$ at $c_{\delta} \sim +1$. The mixing in $B_s^0 - \overline{B}_s^0$ can be large, e.g., for $m_t \sim 30$ GeV, r can be 0.6. The charge asymmetries in both $B^0-\overline{B}{}^0$ and $B_s^0-\overline{B}{}_s^0$ can be as large as 10^{-2} but the observable effect ($\sim ar$) remains near 10^{-5} (B^0) and 10^{-4} (B_s^0).

II. KOBAYASHI-MASKAWA PARAMETERS

The parameters on which new experimental information has become available recently are $|U_{us}|$, $|U_{cb}|$, and $|U_{ub}|$. The recent analysis⁸ by the CERN WA2 collaboration of hyperon semileptonic decays yields a new value for $|U_{us}|$ from their two-angle (θ_V and θ_A) fit: $|U_{us}| = 0.231 \pm 0.003$. The lifetime of *B* mesons has been measured in two recent experiments. From the results,

$$\tau_B = (1.2^{+0.45}_{-0.436} \pm 0.3) \times 10^{-12} \text{ s}$$

and

$$\tau_B = (1.8 \pm 0.6 \pm 0.4) \times 10^{-12} \text{ s}$$

we take τ_B to lie in the range $0.6 \le \tau_B \le 1.8$ (in units of 10^{-12} s). Assuming a spectator model for *B* decays, and the phase-space and QCD factors as calculated, e.g., by Cortez, Pham, and Tounsi,⁹ we find

$$0.04 \le |U_{cb}| \le 0.08 . \tag{2.1}$$

These bounds include the uncertainty from the quark mass being taken to be current or constituent, although the experience¹⁰ with semileptonic D decays as well as the phase-space requirement supports the constituent mass for the heavy quarks. In deriving this bound on $|U_{cb}|$ we already ignored $|U_{ub}|$ in comparison to $|U_{cb}|$. This is supported by the recent bound on $\Gamma(b \rightarrow u)/\Gamma(b \rightarrow c) \leq 0.05$. With the phase-space correction this yields

$$|U_{ub}| / |U_{cb}| < 0.14$$
 (2.2)

With the bound on $|U_{cb}|$ this yields for $|U_{ub}|$,

$$|U_{\mu b}| < 0.0115$$
 (2.3)

Inserting this new information our current knowledge of the KM matrix can be summarized by

31

1661

©1985 The American Physical Society

$$U_{\rm KM} = \begin{vmatrix} |U_{ud}| = 0.9734 \pm 0.024 & |U_{us}| = 0.231 \pm 0.003 & 0 \le |U_{ub}| \le 0.0115 \\ 0.2 \le |U_{cd}| \le 0.24 & 0.8 \le |U_{cs}| \le 0.98 & 0.04 \le |U_{cb}| \le 0.08 \\ 0 \le |U_{td}| \le 0.13 & 0 \le |U_{ts}| \le 0.56 & 0.82 \le |U_{tb}| \le 0.99 \end{vmatrix},$$
(2.4)

where we have used unitarity to bound the t couplings. These values are quite general and are valid even if the number of generations is larger than 3.

In the case of only three generations, the KM matrix can be parametrized,

$$U_{\rm KM} = \begin{bmatrix} c_1 & -s_1c_3 & -s_1s_3 \\ s_1c_2 & c_1c_2c_3 - s_2s_3e^{i\delta} & c_1c_2s_3 + s_2c_3e^{i\delta} \\ s_1s_2 & c_1s_2c_3 + c_2s_3e^{i\delta} & c_1s_2s_3 - c_2c_3e^{i\delta} \end{bmatrix},$$
(2.5)

where $c_i = \cos\theta_i$, $s_i = \sin\theta_i$; θ_i are chosen to be between 0 and $\pi/2$, whereas $0 \le \delta \le 2\pi$. The knowledge of U_{ud} , U_{us} , and the fact that s_3 is very small fixes s_1 to be about 0.23.

Using the constraints on $|U_{bc}|$ and $\Gamma(b \rightarrow u)/\Gamma(b \rightarrow c)$ and assuming a value of c_{δ} , it is possible to further reduce the region of allowed values of s_2 and s_3 . These regions are plotted¹¹ in Figs. 1, 2, and 3 for $c_{\delta}=0$, π , $\pi/2$, respectively. The point $(s_2=s_3=0.037)$ in the $\delta=0$ plot is the prediction of the permutation symmetry model. For any δ , the allowed ranges are: $0.01 \le s_2 \le 0.14$ and $0 \le s_3 \le 0.06$.

III. THE K^{0} - \overline{K}^{0} SYSTEM

The evaluation of the $K^0 \rightarrow \overline{K}^0$ matrix element is plagued by the unknown dispersive (long-distance) contribution. It was pointed out by Ginsparg *et al.*¹² that for the *CP*-violating piece this contribution is perhaps negligible and the short-distance calculation may then be used to constrain parameters reliably. The only remaining uncertainty is then the parameter B_{ϵ} relating the actual matrix element to the vacuum-saturation value. They used $B_{\epsilon}=0.33$ as determined from relating $K^0-\overline{K}^0$ to $\Delta T = \frac{3}{2}$ $K^+ \rightarrow \pi^+$ matrix element.¹³ We follow their procedure to find minimum allowed m_t by requiring ϵ_K to be repro-

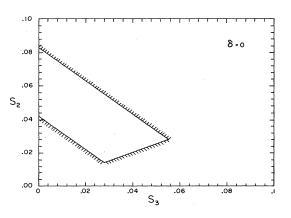


FIG. 1. The allowed region in the s_2 - s_3 plane for $\delta = 0$. The point corresponds to the prediction of Y. Yamanaka, H. Sugawara, and S. Pakvasa [Phys. Rev. D 25, 1895 (1982); 29, 2135(E) (1984)].

duced correctly. However, we do not believe B_{ϵ} is rigorously 0.33 (it may be off by as much as a factor of 2) and we allow B_{ϵ} to take on larger values. The *b*-decay widths in the spectator approximation (with $c_1 \approx c_2 \approx c_3 \approx 1$) are given by

$$\Gamma(b \to c) = \frac{1}{\tau_{\mu}} \left(\frac{m_b}{m_{\mu}} \right)^5 |U_{bc}|^2 \alpha , \qquad (3.1)$$

$$\Gamma(b \to u) = \frac{1}{\tau_{\mu}} \left[\frac{m_b}{m_{\mu}} \right]^5 |U_{bu}|^2 \beta , \qquad (3.2)$$

where α and β are dynamical three-body phase-space factors incorporating all allowed decay modes. For fixed values of $m_b = 4.6$, $m_c = 1.4$ GeV these can be inverted to give

$$s_3^2 = 3.6 \times 10^{-2} R_{bu} \left[\frac{10^{-12}}{\tau_B} \right],$$
 (3.3)

$$|U_{bc}|^2 = (s_2^2 + s_3^2 + 2s_2s_3c_8)$$

$$=4.1 \times 10^{-3} R_{bc} \left[\frac{10^{-12}}{\tau_B} \right].$$
 (3.4)

The relationships (3) and (4) place strict upper limits on the value of s_3 and select out a value of s_2 once a value of c_8 is chosen.

We choose a slightly different parametrization of ϵ , namely,

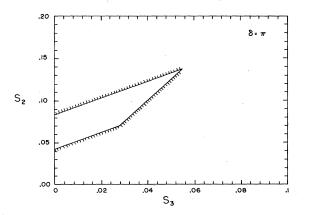


FIG. 2. The allowed region in the s_2 - s_3 plane for $\delta = \pi$.

1662

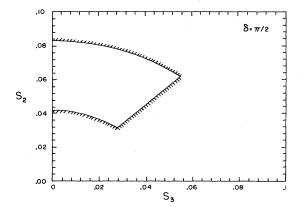


FIG. 3. The allowed region in the s_2 - s_3 plane for $\delta = \pi/2$.

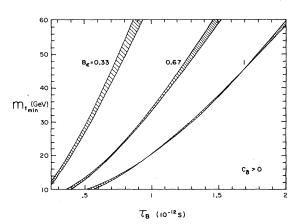


FIG. 4. Minimum value of m_t required to reproduce ϵ_K plotted against τ_B for several values of $B_{\epsilon}(\cos \delta > 0)$. The band corresponds to the change as input quark masses are varied.

$$\epsilon = -\frac{B_{\epsilon}f_{K}^{2}m_{K}G_{F}^{2}m_{c}^{2}s_{1}^{2}}{6\sqrt{2}\pi^{2}\delta m}c_{2}s_{2}s_{3}s_{\delta}\left[\eta_{1}(-c_{1}c_{2}^{2}c_{3}+s_{2}s_{3}c_{2}c_{\delta})+\eta_{2}\left(\frac{m_{t}}{m_{c}}\right)^{2}(c_{1}s_{2}^{2}c_{3}+s_{2}s_{3}c_{2}c_{\delta})\right.\\\left.+\eta_{3}\ln\left(\frac{m_{t}}{m_{c}}\right)^{2}(c_{1}c_{2}^{2}c_{3}-c_{1}s_{2}^{2}c_{3}-2s_{2}c_{2}s_{3}c_{\delta})\right]e^{i\pi/4},$$
(3.5)

where B_{ϵ} represents the uncertainty in the relationship of the physical value of ϵ to the value predicted in the vacuum insertion approximation, $f_K = 0.1722$ GeV is the K decay constant, and η_1 , η_2 , η_3 are the strong-interaction corrections. Using the experimental values $|\epsilon| = 2.27 \times 10^{-3}$, $\delta m_{L-S} = m_{K_S} - m_{K_L} = -3.5 \times 10^{-15}$ GeV, and $s_1 = 0.229$, we examined the value of m_t as c_{δ} was varied from -1 to +1 and selected the minimum m_t allowed for each value of τ_B and B_{ϵ} .

In Figs. 4 and 5, we have plotted the results of this procedure for $c_{\delta} > 0$ and $c_{\delta} < 0$, respectively, for three values of B_{ϵ} . As can be seen in these diagrams, lower values of B_{ϵ} require significantly higher values of m_{tmin} in all cases. The upper line of each pair represents a maximal choice for the quark masses ($m_b = 5.2$, $m_c = 1.86$), while the lower line is for the values $m_b = 4.6$, $m_c = 1.4$ GeV. We have used the value $m_w = 80$ GeV in all calculations. Comparing the two figures, we see the choice of quark masses has little effect for $c_{\delta} > 0$. However, for $c_{\delta} < 0$ we find that the higher light-quark masses increase the minimum m_t .

All these considerations are critically dependent on the value of the parameter B_{ϵ} ; this effect is illustrated graphically in Fig. 6 for an arbitrarily fixed value of $c_{\delta} = -0.4$. The larger values of B_{ϵ} lower the allowed m_t significantly. In Fig. 7, for each value of m_t and τ_{β} we vary c_{δ} over the full range [-1, +1] and thus find the minimum value which B_{ϵ} can assume and still satisfy Eq. (5) for ϵ .

The expression for δm from the box diagram is

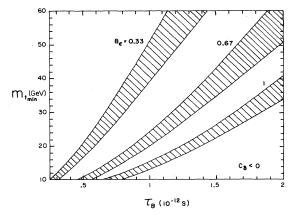


FIG. 5. Minimum value of m_t required to reproduce ϵ_K plotted against τ_B for several values of B_{ϵ} ($\cos \delta < 0$). The upper edges of the bands correspond to $m_b \sim 5.2$ GeV and the lower edges to $m_b \sim 4.6$ GeV, respectively.

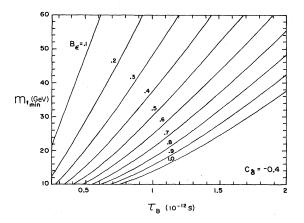


FIG. 6. The variation of m_{tmin} with B_{ϵ} is shown for a fixed $\cos\delta = -0.4$.

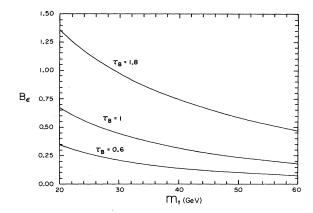


FIG. 7. The value of B_{ϵ} needed to reproduce ϵ_{K} is plotted against m_{t} for several values of τ_{B} .

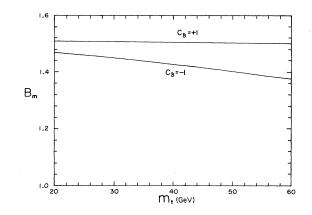


FIG. 8. The value of B_m needed to reproduce $\delta m_{K_L} \cdot K_S$ is plotted against m_t . The band shows the variation as $\cos \delta$ is changed from +1 to -1.

$$\delta m = -\frac{B_m f_K^2 m_K G_F^2 m_c^2}{6\pi^2} \left[\eta_1 s_1^2 c_2^2 (c_1^2 c_2^2 c_3^2 + s_2^2 s_3^2 c_{2\delta} - 2c_1 c_2 c_3 s_2 s_3 c_{\delta}) + \eta_2 \left[\frac{m_t}{m_c} \right]^2 s_1^2 s_2^2 (c_1^2 s_2^2 c_3^2 + c_2^2 s_3^2 c_{2\delta} + 2c_1 s_2 c_3 c_2 s_3 c_{\delta}) + 2\eta_3 \ln \left[\frac{m_t}{m_c} \right]^2 s_1^2 c_2 s_2 (c_1^2 c_2 c_3^2 s_2 - s_2^2 s_3 c_1 c_3 c_{\delta} + c_1 c_2^2 c_3 s_3 c_{\delta} - s_2 s_3^2 c_2 c_{2\delta}) \right], \quad (3.6)$$

where for reasonable values of m_t , the dominant contribution is expected to be that of the charmed quark (the η_1 term). In order to estimate B_m , we fix τ_B and then examine the variation of B_m as we change c_{δ} from -1 to +1. The results of this procedure are illustrated in Fig. 8 for $\tau_B = 1 \times 10^{-12}$ s. The *c*-quark dominance tightly constrains B_m for all values of m_t . We can say with some confidence that $B_m \approx 1.5$ which gives some measure of the dispersive long-range contribution to δm . Assuming that ϵ has negligible dispersive contribution and parametrizing the dispersive contribution to δm in the manner of Wolfenstein⁶ we have

$$\delta m_{\rm expt} = B_m \delta m_{\rm box} = B_\epsilon \delta m_{\rm box} + D \delta m_{\rm expt}$$
;

hence

$$B_m = \frac{B_\epsilon}{1-D}$$

and from the fact that $B_m \approx 1.5$, $D \approx 0.5$ to 0.8 for $B_e \approx \frac{2}{3}$ to $\frac{1}{3}$ (if D > 0).¹⁴

IV. MIXING AND *CP* VIOLATION IN $B^0-\overline{B}^0$ AND $B_s^0-\overline{B}_s^0$ SYSTEMS

The experimental signal for mixing in the $B^0 - \overline{B}^0$ (or $B_s^0 - \overline{B}_s^0$) system is same-sign dileptons (*ee*, $\mu\mu$, or $e\mu$) in, e.g., $e^+ + e^- \rightarrow B^0 \overline{B}^0 \rightarrow ll X$. The size of the signal as parametrized by $r = (N^{--} + N^{++})/N^{+-}$, where N^{+-} , N^{++} , and N^{--} are the number of events with leptonic charges (+-), (++), and (--), respectively. Possible *CP* violation in mixing is measured by the charge asymmetry

$$a = (N^{--} - N^{++})/(N^{--} + N^{++})$$

The parameters r and a are given by

(3.7)

(3.8)

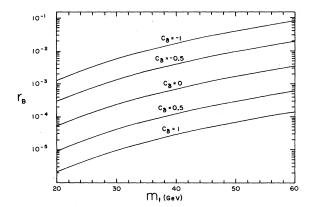


FIG. 9. r_B as a function of m_t for several values of $\cos \delta$. $f_B^2 B_B = 0.01 \text{ GeV}^2$.

$$r = \frac{2\Delta}{1 + \Delta^2}$$

and

$$a = \frac{4\operatorname{Re}\epsilon_B(1+|\epsilon_B|^2)}{(1+|\epsilon_B|^2)^2 + 4(\operatorname{Re}\epsilon_B)^2}$$

In Eq. (4.1) Δ and ϵ_B in turn are

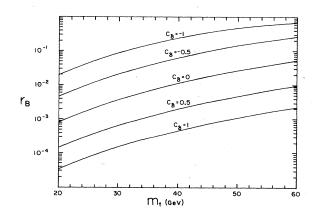
$$\Delta = \frac{(\delta m / \Gamma)^2 + (\delta \Gamma / \Gamma)^2 / 4}{2 + (\delta m / \Gamma)^2 - (\delta \Gamma / \Gamma)^2 / 4}$$

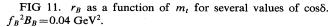
and

$$\epsilon_B = \frac{-\text{Re}M_{12} + \frac{1}{2}i\,\text{Re}\Gamma_{12} + (M_{12} - \frac{1}{2}i\Gamma_{12})(M_{12}^* - \frac{1}{2}i\Gamma_{12}^*)}{i\,\text{Im}M_{12} + \frac{1}{2}\text{Im}\Gamma_{12}} \,.$$

For comparison, we recall that for the $K_L^0 - K_S^0$ system $r \cong 1$ and $a \approx 4 \times 10^{-3}$. These quantities for the $B^0 - \overline{B}^0$ (and $B_s^0 - \overline{B}_s^0$) system have been calculated before.¹⁵ Here we calculate them once more with the KM parameters as determined from τ_B as well as constrained to reproduce ϵ_K . We also allow f_B to vary over a wide range of values.

To a good approximation Γ_{12} and m_{12} are given by the absorptive and dispersive parts of the box diagram which for $m_t < 60 \text{ GeV}$ yields





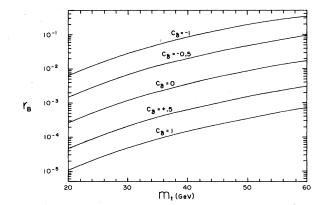


FIG. 10. r_B as a function of m_t for several values of $\cos \delta$. $f_B^2 B_B = 0.025 \text{ GeV}^2$.

(4.2)

1.0 0.8 02 0.6 $r_{\rm B_{S}}$ 0.4 0.2 0.0 30 40 50 60 mt (Gev)

FIG. 12. r_{B_s} as a function of m_t for several values of $f_B^2 B_B$ in GeV².

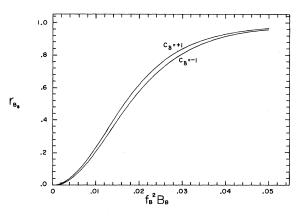


FIG. 13. r_{B_s} as a function of $f_B^2 B_B$ in GeV² as cos δ is varied from +1 to -1.

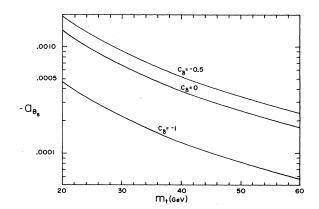


FIG. 15. a_{B_a} as a function of m_t for several values of $\cos \delta$.

$$\Gamma_{12} = -\frac{G_F^2 f_B^2 B_B m_B}{8\pi} \left[\frac{1}{3} (2f_+^2 + f_-^2) (U_{td} U_{tb}^*)^2 m_B^2 + \frac{8}{3} (\frac{3}{2}f_+^2 - f_+ f_- + \frac{1}{2}f_-)^2 (U_{td} U_{tb}^* U_{cd} U_{cb}^*)^2 m_c^2 \right],$$

$$m_{12} = \frac{\eta G_F^2 f_B^2 B_B m_B}{12\pi^2} \left[(U_{td} U_{tb}^*)^2 \left[m_t^2 + \frac{1}{3}m_b^2 + \frac{3}{4}m_b^2 \ln \frac{m_t^2}{m_b^2} \right] \right],$$
(4.3)

 δm and $\delta \Gamma$ are given by $\delta m = 2 \operatorname{Rem}_{12}$, and $\delta \Gamma = 2 \operatorname{Re}\Gamma_{12}$. Leading-logarithmic QCD corrections are incorporated into deviation from 1 of $(\frac{2}{3}f_+ + \frac{1}{3}f_-), (f_+ - f_-)$, and η . We have taken $2f_+^2 + f_-^2$ to be 3.23, $(2f_+ - f_-)^2 = 0.18$, and η , which depends weakly on m_t , is around 0.8. These values correspond to a $\Lambda_{\overline{MS}}$ (\overline{MS} denotes modified minimal-subtraction scheme) of about 100 MeV.

We find that $\operatorname{Im} \epsilon_B$ is large (near 1) over a large range of parameters. Of course in the asymmetry a in $B^0 - \overline{B}^0$ mixing this only has the effect of making the effect slightly smaller (by a factor of 2). The only possible way to exploit a large $\operatorname{Im} \epsilon_B$ is through observing *CP* violation in exclusive decay modes.¹⁶

In Fig. 9, we show the mixing r_B as a function of m_t as

cosδ is varied from +1 to -1 corresponding to $f_B{}^2B_B = 0.01 \text{ GeV}{}^2$. In Figs. 10 and 11 r_B is given for $f_B{}^2B_B = 0.025$ and 0.04 GeV², respectively. In Fig. 12, we show $r_B{}_s$ as a function of m_t as $f_B{}^2B_B$ is varied from 0.04 GeV² to 0.005 GeV². Figure 13 shows that $r_B{}_s$ has very little dependence on cosδ provided the KM angles are constrained by τ_B as well as ϵ_K . The charge asymmetry exhibits very little variation as $f_B{}^2B_B$ is varied. In Fig. 14 (15) a_B ($a_B{}_s$) is shown against m_t with the variation with cosδ exhibited. Here $f_B{}^2B_B$ was taken to be 0.0225 GeV². Finally, in Figs. 16 and 17 the total charge asymmetry $l = ar = (N^{--} - N^{++})/N^{+-}$ is exhibited for $B^0 - \overline{B}{}^0$ and $B_s^0 - \overline{B}{}^0$, respectively.¹⁷

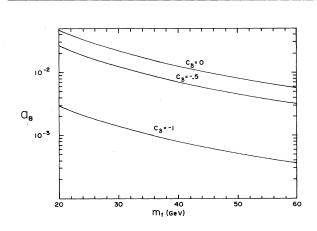


FIG. 14. a_B as a function of m_t for several values of $\cos \delta$.

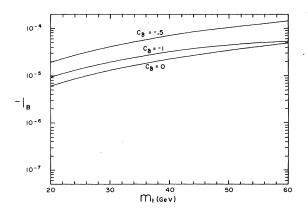


FIG. 16. l_B as a function of m_t for several values of $\cos \delta$.

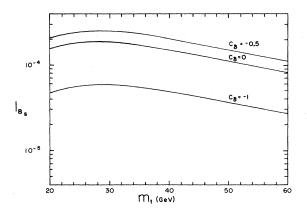


FIG. 17. l_{B_e} as a function of m_t for several values of $\cos \delta$.

V. CONCLUSION

To repeat, our main results are as follows. The new results on τ_B and $\Gamma(b \rightarrow u)/\Gamma(b \rightarrow c)$ restrict the KM angles considerably. In particular, s_2 and s_3 must satisfy $0.01 \le s_2 \le 0.14$ and $0 \le s_3 \le 0.06$.

With these small angles, the t quark (for a reasonable mass) contributes rather little to $\delta m_{K_T-K_S}$ and the c

quark (in the manner of Gaillard-Lee) dominates. Then the effective value of the matrix element (including corrections due to long-distance contributions) relative to the vacuum situation has to be about $B_m \cong 1.5$. The similar factor B_{ϵ} for the *CP*-violating matrix element (i.e., ϵ_K) is in general different. For a given value of B_{ϵ} , a lower bound on m_t can be deduced. We find that for B_{ϵ} between $\frac{1}{3}$ and 1 m_t can be as low as 25 GeV. The lower values of m_t favor $\cos\delta < 0$. We estimate mixing and *CP* violation in $B^0 - \overline{B}^0$ and $B_s^0 - \overline{B}_s^0$ systems allowing large latitude in the unknown matrix elements. We find generally rather small mixing (r) in the $B^0 - \overline{B}^0$ system but fairly large mixing in the $B_s^0 - \overline{B}_s^0$ system. *CP*-violating asymmetries (a) are found to be rather small and the "observable" effect (ar) to be smaller than 10^{-4} . Our results for B_m and mixing (r) in B^0 and B_s^0 systems are valid even if *CP* violation is not described by the phase in the KM matrix and are to that extent more reliable.

ACKNOWLEDGMENTS

This work is supported in part by the U.S. Department of Energy under Contract No. DE-AM03-76SF00235.

- ¹E. Fernandez et al., Phys. Rev. Lett. 51, 1022 (1983); N. S. Lockyer et al., ibid. 51, 1316 (1983).
- ²S. Stone, in Proceedings of the 1983 International Symposium on Lepton and Photon Interactions at High Energies, Ithaca, New York, edited by D. G. Cassel and D. L. Kreinick (Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, 1984).
- ³M. Kobayashi and T. Maskawa, Prog. Theor. Phys. **49**, 652 (1973).
- ⁴S. Pakvasa and H. Sugawara, Phys. Rev. D 14, 305 (1976); L. Maiani, Phys. Lett. 62B, 183 (1976).
- ⁵J. Ellis *et al.*, Nucl. Phys. **B131**, 285 (1976); V. Barger *et al.*, Phys. Rev. Lett. **42**, 1585 (1979); R. Shrock *et al.*, *ibid.* **42**, 1589 (1979).
- ⁶L. Wolfenstein, Nucl. Phys. B160, 50 (1979); C. T. Hill, Phys. Lett. 97B, 275 (1980).
- ⁷S. Pakvasa, S. F. Tuan, and J. J. Sakurai, Phys. Rev. D 23, 2799 (1981); S. Pakvasa, in *Proceedings of the 21st International Conference on High Energy Physics, Paris, 1982,* edited by P. Petiau and M. Porneuf [J. Phys. (Paris) Colloq. 43, C3-234 (1982)]; K. Kleinknecht and B. Renk, Z. Phys. C 15, 19 (1982); L.-L. Chau, W.-Y. Keung, and M. D. Tran, Phys. Rev. D 27, 2145 (1982); E. A. Paschos and U. Turke, Phys. Lett. 116B, 360 (1982).
- ⁸M. Bourquin et al., Z. Phys. C 21, 27 (1983).
- ⁹J. L. Cortez, X. Y. Pham, and A. Tounsi, Phys. Rev. D 25, 188 (1982).

- ¹⁰L. Maiani, in Proceedings of the 21st International Conference on High Energy Physics, Paris, 1982, edited by P. Petiau and M. Porneuf [J. Phys. (Paris) Colloq. 43, C3-631 (1982)].
- ¹¹Such bounds were also deduced in the following papers: K. Kleinknecht and B. Renk, Phys. Lett. 130B, 459 (1983); L.-L. Chau and W.-Y. Keung, Phys. Rev. D 29, 592 (1983); F. Gilman and J. Hagelin, Phys. Lett. 133B, 443 (1983); A. J. Buras, W. S. Slominski, and H. Steger, Nucl. Phys. B238, 529 (1984); X. Y. Pham and S. C. Vu, Phys. Lett. 133B, 262 (1983).
- ¹²P. Ginsparg, S. L. Glashow, and M. B. Wise, Phys. Lett. **50**, 1415 (1983).
- ¹³J. Donoghue, E. Golowich, and B. Holstein, Phys. Lett. 119B, 412 (1982).
- ¹⁴This agrees with the conclusions in J. Donoghue, E. Golowich, and B. Holstein, Phys. Lett. **133B**, 481 (1984); I. I. Bigi and A. Sanda, Phys. Rev. D **29**, 1393 (1984).
- ¹⁵J. S. Hagelin, Nucl. Phys. **B193**, 123 (1981), and references cited therein.
- ¹⁶This has been stressed particularly by L. Wolfenstein, Nucl. Phys. **B246**, 45 (1984).
- ¹⁷After the completion of this work, we came across several similar recent calculations of mixing and CP violation in B systems: Gilman and Hagelin (Ref. 11); Chau and Keung (Ref. 11); Buras, Slominski, and Steger (Ref. 11); Bigi and Sanda (Ref. 14); M. Lusignoli and A. Pugliese, Rome report, 1984 (unpublished); E. Paschos and U. Türke, Nucl. Phys. B243, 29 (1984).