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Static properties of the nucleon octet in a relativistic potential model
with center-of-mass correction
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The static properties, such as magnetic moment, charge radius, and axial-vector coupling con-
stants, of the quark core of baryons in the nucleon octet have been studied in an independent-quark
model based on the Dirac equation with equally mixed scalar-vector potential in harmonic form in
the current quark mass limit. The results obtained with the corrections due to center-of-mass
motion are in reasonable agreement with experimental values.

I. INTRODUCTION

In the study of the static properties of baryons much
progress has been made by virtue of the dynamical theory
of quarks; nevertheless, the level of accuracy is far from
the experimental standards. As the quarks inside ordinary
hadrons are believed to be light, a relativistic description
seems to be indispensable. One such relativistic quark
model describing the static properties of baryons is the
MIT bag model. ' The original bag-mode1 calculations,
however, give a proton magnetic moment pz —1.9pz
(is~ ——nuclear magneton), which is about 30% smaller
than the experimental value. There have been many at-
tempts to improve the predictions further. Donoghue and
Johnson, with recoil corrections, have improved the pro-
ton magnetic moment to p~=2. 24p~. The pion-loop
corrections in the cloudy-bag-model calculations have
yielded a still better result, p&-2. 6p~. However, the vir-
tue of these models is almost entirely due to the
spherical-cavity approximation. Therefore, it is
worthwhile to study the baryons with an alternative ap-
proach based on the independent-quark Dirac equation
with some average confining potential replacing the
spherical-bag boundary. Such schemes with equally
mixed scalar and vector parts of the potential in harmon-
ic, linear, and non-Coulombic power-law form have
been followed by many authors in the recent past. The
average potential in the form of an equal admixture of
scalar and vector parts not only simplifies calculations by
converting the single-quark Dirac equation into an effec-
tive Schrodinger equation, but also produces no spin-orbit
splitting as required by the experimental baryon spectrum.
Ho~ever, in a Lagrangian formulation of this scheme, the
term corresponding to the scalar part of the potential in
the Lagrangian density breaks chiral invariance, which
can only be accounted for by an additional pionic com-
ponent. Therefore, keeping in view the need to include ef-
fects of the pionic cloud supposed to surround the assem-
bly of quarks in the baryon and also to incorporate the
spurious-center-of-mass-motion corrections at appropriate
stages, we prefer here to work with a harmonic form of

II. THEORETICAL FRAMEWORK

In this section we briefly outline the framework of the
model adopted here to study the core contributions to the
static properties of the baryons and the prescriptions used
to account for the corrections due to the center-of-mass
motion.

A. Potential model

%'e start with the assumption that the quarks in a
baryon core move independently in an average flavor-
independent potential taken in the form

U(r)= —,'(1+@ )ar, a &0 (2.1)

the scalar-vector mixed potential for its tractability in
these respects. For the moment we leave aside the pion
cloud and study the contributions of the quark core alone
to the static properties of a baryon, taking into account
appropriate center-of-mass corrections.

Keeping the Lagrangian mass parameters of the quarks
as the current quark masses within the limits of broken
SU(3) (m„=m~&m, ), we present in Sec. II a brief outline
of the potential model and its solutions, leading to a com-
plete description of the relativistic bound states of individ-
ually confined quarks of the baryon core. Then with the
Dirac wave function for the ground state in hand, the core
contribution to the static properties of the nucleon ( —,

'
)

octet in terms of the magnetic moments, charge radius,
and axial-vector coupling constant gz for P-decay pro-
cesses are calculated in the usual manner. %'e also give an
account of the prescription adopted here for the center-
of-mass correction for the above quantities. In Sec. III,
we estimate the potential parameter and the quark-mass
parameters suitably in order to yield an appropriate
ground-state energy for the nonstrange quarks which
gives the average nucleon and b.(1232) mass approximate-
ly, keeping in mind the corrections due to the center-of-
mass motion and the pionic cloud. The static properties
predicted after the center-of-mass corrections turn out to
be in reasonable agreement with the experimental results.
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and obey the Dirac equation derivable from a Lagrangian
density

binding energy Eq. The reduced radial parts of the upper-
and lower-component solutions obtainable from Eqs. (2.5)
and (2.6) are

Wq = —q(x)y"B„q (x)—q(x) [U(r)+ mq ]q (x) . (2.2)
gq(r) =%q(r/rpq)exp( —r /2rpq ),

where Aq=(Eq+mq). Now, substituting a length scale
rpq ——(a)(.q)

—'~, the energy-eigenvalue condition for the
ground state is given as

)(,qrpq (Eq —mq) =
1 /2

(Eq —mq) =3,
a

(2.6)

which yields the ground-state (1S—,) individual quark-

Hence the Lagrangian mass parameter mq for the quarks
must be regarded as the current quark mass. Then the in-
dependent quark wave functions gq(r) satisfy the equation

[yPEq —y.p —mq —U(r)](/)q(r) =0 . (2.3)

If we now assume that all the three quarks in the baryon
core corresponding to the nucleon octet are in their
ground state with J = —, and J,= —,', then a solution to
the independent-quark (normalized) wave function (/)q(r)
can be written in the two-component form as

igq(r)/r
(2.4)

4~ (T r q(r)/r

where the reduced radial parts fq(r) and gq(r) can be
found to satisfy the equations

1——gq(r),

(2.5)
d'gq(r)

+Aq(Eq mq ar )gq(—r)=0—,

(2.7)

Xq V7wpq

8i,
q

1

(3Eq+mq)
(2.8)

B. Static properties of the S-wave baryon core

We can now present some consequences of the model in
terms of derived expressions for the quark-core contribu-
tions to certain measurable quantities of the S-wave
baryons in the nucleon octet which are obtained simply by
appropriately adding the contributions of each individual
quark.

With the ground-state quark wave function (/)q(r)
known from (2.4) and (2.7), the confined quark magnetic
moment pz can be computed in the usual Inanner to give

4Mpeq
Pq= (3E + )PN . (2.9)

Here Mz is the proton mass and ez is the electric charge
of the quark in the unit of proton charge. Then, with the
usual assumption of quark additivity, the quark-core con-
tribution to the octet-baryon magnetic moments can be
obtained from the well-known relations '

fq(r) = — (r/r()q) e
~q "pq

where N~ is the overall normalization factor satisfying the
relation

1 1

Pp Y( Pu Pd)~ Pu=Y( Pd Pu)~ PA Ps
1 1 1

Px+ —
3 ( Pu Ps)~ Px =Y( Pd Ps—)~ Pxo Y—(2Pu+2—Pd Ps) ~

= 1 1

P(xpA) ~3 (Pd Pu)& P' — 3 ( Ps Pd)& P 0 3( Ps Pu)

(2.10)

Here P„d, are the magnetic moments of the core quarks
u, d, and s, respectively.

Now )'nterpreting the weak P decays of the octet
baryons B~B'+e +v, as quark /3 decays like
qj~u+e +7, occurring inside the baryon core (where

q~ could be d or s quarks), one can obtain, in a similar
manner as bag-model calculations, the axial-vector cou-
pling constant gz as

which reduces for neutron /3 decay to

Xu Mwrpu 1

2~u ~Ou

1/2 2 2 4
Nu J(/J r()„rpj (rpj/r()„)

2 (r()„+rp ) A,„(r()„+r()g )

(2.12)

(2.13)

gA(B) =gA"'"(B) I, «[gu(r)S, (r) ,'f.(r)f, (r)]——

SU(6)(B)i (2.11)

Here A
' ' stands for the matrix element

(B't
~

(r(„.)~/2
~

Bt ). The integral expression in (2.11) can
be obtained as

Then, with gz
' ' ———,', the axial-vector coupling constant

for neutron /3 decay is obtained as

5 (5E„+7m„)
9 (3E„+m„) (2.14)

Similarly gA(B) values corresponding to all the members
of the nucleon octet can be obtained with appropriate



1654 N. BARIK, B. K. DASH, AND M. DAS 31

values of gz
' ' and I„z. Finally, the mean-square charge

radius of the quark core of the proton can be obtained
-from the expression

I(P)=
3K

' 3/2
p2 3

exp —rpq g c„(I' vpq )",
Pl

n=0

(r )z ——(pt f geq I d rr gq(r)x/iq(r) fpt)

= geq&r')q=&r'). , (2.15)

where

c = , (Eq——mq)/(3Eq+mq),

cp ——(1—6c+20c —",'c ),
(2.23a)

where (r )„ is the individual quark contribution obtained
as C) = 4c

3
80c 560c

9 27
(11E„+m„)

2 (3E„+m„)(E„—m„)
(2.16)

16 2 14c
C2=

27 3
c and c3 ——( —,', ) c' .

(2.23b)

C. Center-of-mass correction

Clearly our shell-type relativistic independent-quark
model is not translationally invariant. Therefore the in-
dependent motion of quarks inside the baryon core does
not lead to a state of definite total momentum as it should
to represent the physical state. The problem appears in
the same way in nuclear physics in the case of He and
also in the bag model and therefore has to be resolved ac-
cordingly. ' Particularly we adopt here the prescription
followed by Wong and other workers' for such purposes.
We decompose the static three-quark baryon-core state
with the core center at x into components y(p) of plane-
wave momentum eigenstates

d P
f
3q, x)= J e' *y(P) f8(P)), (2.17)

W(P)

where the momentum eigenstates
f
8(P)) of the baryon

core 8 are normalized usually as

(11Eq+mq)
6 3E, +m,

Then with (2.24) and (2.25), one easily gets

(M, '/E, ')= 1 —g(p'), /E, ' =5,'.

(2.25)

(2.26)

This overlap function permits ready estimates of center-
of-mass effects in terms of the expectation values
(M~ /Es ), (Ms/E~ ), (P ), and (R ), where

R=QE r
q

evaluated according to (2.21). In fact we get

(2.24)

where (p )q is the average value of the square of the indi-
vidual quark momentum taken over the 1S single-quark
states and is obtained as

& Il(P')
f
&(P) & =(2 )'6(P —P') ~(I'),

with

W(I ) =(M, '+P')'"/M, .

(2.18) Now taking (Mz /Es ) as roughly equal to
5~ ——(M~ /E~ )' and (R ) for the proton as —,

' (r„),
one can compute the corrected' static properties in the
following manner:

The momentum-profile function y(P) can be obtained
from (2.17) and (2.18) as

QM~
Va= 3mB+ (1—6a)

Mg
(1+6s+5s ),

y (P) = I(P),
(2m)

where

(2.19) gg (Il) =3gg (&)/(1+26g ),
& "&,'=("),/(1+-,'6, ') .

(2.27)

I(P)= f d re ' '(3q0
f
3qr)(2')

(2.20)

I(r)=[(1 cr /rpq )—exp( r /4vpq )]-
for three 15~&2 quarks in this model, comes out as

(2.22)

is the Fourier transform of the Hill-Wheeler overlap func-
tion. This result along with (2.17) can be used to calcu-
late expectation values of any F(P) as

(3q, O
f
F(P)

f 3q, O) = I d pI(P)F(P) . (2.21)

Then it is a simple matter to evaluate various c.m. correc-
tions, once the Hill-Wheeler function I(P) is calculated
which, with Hill-Wheeler overlap

Here Q is the total charge of the baryon, the unprimed
quantities pz, gz, and (r )~ are the uncorrected expres-
sions given through Eqs. (2.10), (2.11), and (2.15), respec-
tively, and the primed quantities are the corresponding
corrected ones.

III. RESULTS AND CONCLUSION

The static quantities to be calculated are the rms charge
radius of the proton, axial-vector coupling constants, and
the magnetic moments. The expressions for these quanti-
ties, . as derived in Sec. II, are found to depend on the La-
grangian mass parameters m~ and the single-quark energy
eigenvalue Eq. Although the parameters a and mq are
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TABLE I. Magnetic moments of the nucleon octet with and without center-of-mass correction in

comparison with experiment {all numbers are in nuclear magnetons).

8aryons
Magnetic Moment p~

Uncorrecte, d Corrected Experiment Reference

A
y+
yo

X

(X,A)

2.302
—1.5346
—0.5581

2.2321
0.6975

—0.837

—1.2556
—0.4884
—1.329

2.6067
—1.7113
—0.6165

2.494
0.7705

—0.9528

—1.3759
—0.5585
—1.482

2.7928
—1.9130
—0.613+0.004

2.33 +0. 13
0.46 +0.28

—1.10 +0.03
—0.89 +0.14
—1.25 +0.014
—0.69 +0.04

1 82—0.25
+0.18

11
11
11
11

13
14
11
11
12

a pnori unconstrained, we have to make a suitable choice
by reasonable assumptions.

The Lagrangian mass parameters of the quarks are
small and may well be chosen according to the prediction
of current algebra, which would restrict mq for the non-
strange quark not to exceed some 10 or 20 MeV
(m~ &m„). However, since no physical quantity con-
sidered here depends appreciably on these parameters as
long as they are small, we keep them fixed as
m„=m~ ——10 MeV. Then the potential parameter a has
to be adjusted properly to yield the appropriate single-
quark ground-state energy E„. Normally E„=E~ is ex-
pected to be of the order of —,M&, where

4M~ + 16M'
=1173 MeV

20

is the spin-isospin average mass of the nucleon and
b, (1232). However if one admits that spurious-center-of-
mass-motion corrections, and other possible corrections
such as pion-cloud effects not considered in this model,
are to be accounted for at appropriate stages, then E„
must be somewhat larger than —,'M&. Since we are not
particularly interested here in the detailed baryonic mass
spectrum, we only choose a and hence E„appropriately
to obtain an order-of-magnitude prediction for the quark-
core contributions to bare-nucleon properties before any
possible corrections are applied. We find that with

a =2.273 fm, m„=my ——10 MeV, (3.1)

the energy-eigenvalue condition (2.6) yields E„=E~=540
MeV, which results in the bare-nucleon properties as

pp 2.3@~,——(r')~'~'=0. 85 fm,

gg ——0.944 .
(3.2)

Now with the assumed flavor independence of the poten-
tial, the parameter a obtained in (3.1), along with
m, =252 MeV chosen well within the limits of current-
algebra predictions, gives rise to a unique positive real
root E, =663 MeV from Eq. (2.6). This yields a reason-
able value of pA ———0.56@~.

Now with the parameters a and m~ along with the cor-
responding binding energy E~ being known, all the
relevant quantities leading to the predictions of the
static-core properties before c.m. correction can be calcu-
lated. First of all we obtain from (2.9) the bound-quark
magnetic moments as p„=—2p~ ——1.5346p& and
p, = —0.558'~, which through expressions (2.10) provide
the uncorrected magnetic moments of the quark core for
the baryons in the nucleon octet. The magnetic moments
calculated in this way are presented in Table I. Then,
computing the expression I„J in Eq. (2.12) as I„„=0.5665
and I„,=0.6S4, we can obtain the axial-vector coupling
constant gz for the P-decay processes corresponding to all
the members of the nucleon octet, with appropriate

+TABLE II. Axial-vector coupling constant gq in the P-decay processes of 2 baryons.

SU(6)
gw ——gw I J

Decay mode Uncorrected Corrected
Experimental

data Reference

nappe V

A~ne V

X —+ne v

—+Ae v

:--~X'e -V

:-'~r+e -v

3 I„„=0.944

Ius =0.6537
—

3 I„,= —0.2179

9 I„,=0.1453

3 I„,= 1.0895

3 I„,= 1.0895

1.02

0.702
—0.234

0.155

1.1624

1.1624

1.255+0.06

0.690+0.034
+0.385+0.06

0.248+0.05

11

15
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values' of gz
' '. The results obtained here without c.m.

corrections are presented in Table II. Finally, we may
mention again that the rms charge radius of the proton
comes out at this stage of the calculation to be 0.85 fm.

For introducing center-of-mass corrections, we estimate
the factor 5z from expressions (2.25) and (2.26), which
certainly depend on the flavor combinations of the quark
core in baryons. Accordingly we find 6~ ——0.893, 0.902,
and 0.91, respectively, for the baryon cores with three
nonstrange quarks, two nonstrange quarks with one
strange quark, and one nonstrange quark with two strange
quarks. Then it is straightforward to obtain the corrected
values of the magnetic moments, axial-vector coupling
constants, and the proton rms charge radius from expres-
sions (2.27). These quantities, so obtained after the
center-of-mass corrections, are presented in the appropri-
ate tables (I and II) in comparison with the corresponding
uncorrected values as well as the experimental ones.

We observe that our results for the magnetic moments
and axial constants compare reasonably well with the ex-
isting experimental data. However, the proton charge ra-
dius (r )~'~, which was 0.85 fm before the center-of-

mass correction, becomes 0.72 fm, as against the experi-
mental value of 0.88 fm. Any departures of our calculat-
ed values in the (u, d) sector from the experimental data
can hopefully be accounted for by the pionic contribu-
tions, which will be taken up in a subsequent work. But
in the strange-quark sector we expect the pionic contribu-
tion to be less significant in view of its being heavier than
the pion. In any case, our overall predictions for the stat-
ic properties of the baryons in the nucleon octet show a
significant improvement over the results obtained earlier
in a similar model ' without c.m. correction, which
differs from ours in the choice of the potential form as
well as the parameters. In view of the simplicity of the
model, the results obtained are quite encouraging.
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