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Gap equation for the chiral-symmetry-restoration transition
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The chiral-symmetry-restoration transition in quantum chromodynamics is studied in analogy to
the theory of superconductivity. Particular attention is paid to the dynamical quark mass and to the
quark condensate as a function of temperature. A critical temperature T, in the range of 170—250
MeV is obtained. The relevance to heavy-ion collisions is discussed.

I. INTRODUCTION

Now that the zero-temperature order parameter of the
spontaneously broken chiral symmetry of quantum chro-
modynamics (QCD) has been identified and partially un-
derstood, ' it is time to investigate the temperature
dependence of these parameters. Indeed, this has been
done for the gluonic sector of QCD on a lattice and more
recently this has also been attempted on a lattice with
light quarks. Such a temperature dependence may be
probed in the near future in heavy-ion collisions at very
high energies. In fact, critical temperatures and chemical
potentials may have already been detected in high-energy
cosmic-ray events.

In this paper we study two nonperturbative order pa-
rameters in QCD which in part play the role of the energy
gap 5 in the nonrelativistic BCS theory of superconduc-
tivity: *' The dynamically generated quark mass Idyl
and the quark condensate (qq )o. Some time ago the tem-
perature dependence of the chirally symmetric meson sec-
tor of the o-model Lagrangian was investigated, " but
only recently was the temperature dependence of the fer-
mion mass in gauge theories considered. ' '

We shall attempt to work out the critical temperature
T, for the restoration of chiral symmetry at which the

, nonperturbativc quark mass and quark condensate "melt"
or vanish. It may be that T, for mz~„and for (qq)o are
identical and also coincide with the temperature TD of
color deconfinement. But in the absence of a complete
solution of the nonperturbative theory of QCD, we will
consider each order parameter separately and study the
consequences based on our understanding of the
temperature-dependent BCS theory of superconductivity
and of the present approaches to zero-temperature QCD.
Based on a variety of calculations, we find that T, is in
the range 180 to 250 MeV.

We begin in Sec. II by reviewing the real-time formal-
ism of temperature-dependent field theory proposed by

Dolan and Jackiw, " in particular, the manner in which
they calculate the four-point self-energy loop for bosons.
For spinless fermions, the fermion loop recovers the
homogeneous gap equation which is the precise relativistic
generalization of the BCS gap equation, while the boson
loop leads to an inhomogeneous equation whose solution
gives T, =2f = 180 MeV in the o model.

In Sec. III we show that the "off-diagonal" left-right
chiral-symmetry-breaking quark mass acquires a tempera-
ture dependence in the BCS-gap-equation fashion. The
analog of the Debye momentum cutoff turns out to be
kD-1260 MeV and the corresponding temperature T,
where m ~„d( T)= Oagain appears to be at T, =180 MeV
for a reasonable range of the QCD coupling a, . Then, in
Sec. IV, we study the melting of the quark condensate
(qq)o, calculating the temperature dependence of the fer-
mion loop. Invoking the accepted energy scale for (qq )0,
we obtain T, =250 MeV at zero chemical potential.
Generalizing the quark-condensate equation to account
for nonzero chemical potential, we find T, =220 MeV for
a typical value of p, =200 MeV.

Next, in Sec. V we review the phenomenology associat-
ed with heavy-ion collisions and the possible phase transi-
tion to a quark-gluon plasma. This suggests typical
values for T, around 180—190 MeV for massless quarks
and slightly higher ones for massive quarks (m =315
MeV): T, -220 MeV. In either case these estimates are
compatible with our findings in Secs. II—IV. However,
the naive bag-model estimate appears to underestimate
both T, and p, by at least 50 MeV.

Finally, in Sec. VI we survey all of the nonperturbative
energy scales of QCD and set up a chain loop of relations
such that AQcD~md„„~f, (qq)o —+T, ~string tension
~AQCD In Sec. VII we summarize our findings of how
the chiral-symmetry-breaking order parameters of QCD,
md„„and (qq)o, acquire temperature dependence and
why chiral symmetry is restored when T is greater than
T, -200 MeV.
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II. TEMPERATURE-DEPENDENT FIELD THEORY:
GAP EQUATIONS

DF(P) =
p —m +is

2m.5(p —m )

iso~~Ie ' —1
(2)

The advantages of this formalism are that the
temperature-dependent part is readily isolated and calcu-
lations of Feynman diagrams are straightforward.

The showcase for the calculation of a phase diagram in
temperature-dependent field theory is the BCS theory of
superconductivity. For our purpose we need a relativistic
generalization of the BCS gap equation. Such generaliza-
tions have been considered by Bailin and. Love. ' We
focus, first, on a simplified example to illustrate the work-
ings of the method.

Calculations in temperature-dependent field theory are
most conveniently done for our purpose in the real-time
formalism of Dolan and Jackiw. " Fermion propagators
in this formalism are given by

i(p+m) 21r5(p —I )

p2 m2+ie IFO/Tl
1

with T being the temperature, while boson propagators
are given by

Tc

FIG. 2. Dependence of the gap energy 6 on temperature.

dp E1=2K,F f tanh
(2m) 2E

d p, (p 2 +m 2
)
1/2

=&F tanh
(27r) (p +m )' 2T (5)

This result is strikingly similar to the BCS gap equation
and can be used to find the temperature dependence of the
mass. One solves (5) by cutting off the ultraviolet-
divergent integral at the Debye energy coD fixed by the
zero-temperature mass m(T=O)=mo. For the nonrela-
tivistic theory of superconductivity with coD » T„one in-
tegrates an equation similar to (5) by parts to make an
asymptotic expansion in the gap energy (ho) relative to
T„where b, ( T, ) =0, to obtain the dimensionless ratio '

d4p l
772 =2k,F 4 Pl

(2n. ) p 2 m2+i e—
2~5(p —m )

e +1Iuo~T I

Performing the contour integration over po and canceling
a factor I on both sides of the equation gives

1=2X„
d3

(2m ) 2E
1— 2

E/T+ 1
(4)

The factor of 2 in the numerator of the second term on
the right-hand side of Eq. (4) is due to both po ——+E and
po —— E[E=(p +m—)' ] contributing. This equation
can further be written as

A. BCS-type gap equation

The example we consider is the four-fermion coupling

H =AF(fg)

of spinless fermions. The Dyson equation for the proper
self-energy is displayed in Fig. 1, and it leads to

I

hp

C

=we =1.76 .

Furthermore, the tanh factor in (5) forces m(T) [or corre-
spondingly b,(T)] to decrease as T increases toward T, in
the typical quarter-moon pattern of Fig. 2.

6A,21=mo+ T J (a),
7T'

(7a}

(7b)

B. Gap equation for a theory
with spontaneous symmetry breaking

A different type of gap equation can arise in theories
with spontaneous symmetry breaking. For this purpose
we consider the a model with a A21$ four-boson coupling.
The boson mass m(T} can be calculated in lowest-order
perturbation theory according to the rule"

T

2(T) 12' d k i 2w5(k —m )

(2~)4 k2 I2+ 1 e. I ko/T I

1

where a =m IT, mo is the mass at zero temperature, and
the function J (a) is the dimensionless integral defined
by

J+(a)= dX X
(

(~2+g2)l/2+ 1)
o (x 2+a 2)1/2

When higher-order loops are summed to all orders, (7b)
becomes an inhomogeneous mass equation:

FIG. i. Self-energy diagram in four-fermion or four-boson
coupling theories.

2 2 B 2m (T)=mo+ 2
T J

m-'
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T, =2f =180 MeV . (lob)

If we further introduce the zero-temperature dynamically
generated quark mass '

Pg~
m~y„- -315 MeVdyn (1 la)

as the analog of the BCS energy-gap scale b,o, then the ra-
tio of (10a) to (10b) is

~Qyn 315 MeV

T, 180 MeV
(1 lb)

almost identical in magnitude to the BCS ratio (6).
Nevertheless, it is important to note that the 8CS
fermion-loop result (6) follows from a "homogeneous" di-
mensionless equation similar to (5) while the boson-loop
result (1 lb) follows from the inhomogeneous equation (7)
combined with the nonperturbative mass scales of f in

(10b) and md„„ in (1 la). Furthermore, the inhomogeneous
equation does not admit the solution m(T)=0 which
(presumably) holds for all T & T, .

III. MELTING GF THE
CONSTITUENT QUARK MASS

In order to derive a gap equation for the (chiral-
symmetry breaking) quark mass we first express the La-

1

At the critical temperature we have m(T, )=0 and then
J (0)=vr /6. Replacing m o by the o.-model mass

m~ = —2mo, we obtain a real temperature:

2

(10a)
2A jp

If we also invoke the &r-model value' Az m ——/8f~ for
f =90 MeV in the chiral limit, then (10a) has the scale

FICx. 3. Self-consistency condition on the quark mass.

grangian in terms of the left- and right-handed chiral
components of the quark field' q:

L =qL, &e. +eR ~qR md„(ql. qR+6RqL) . (12a)

This gives an inverse propagator S '(p) for the quark
which is a 2X2 matrix in the space of (ql, q~ ). Then in-
verting leads to the propagator

r"D, (k)r"&md,.—tmdy„——( —g ) g, C
(2~) (p k)' —mdy„—'+i e

(13)

Working in the Landau gauge, we have y&D& y
3i/k2 —Then w.ith C2(R)= —', for the color group

SU(3), (13) generalizes to the temperature-dependent form

P mdyn
&(p) =

p —m +je mdyn P

Since the strongest qq scattering amplitude is in the J=O
color-singlet channel, the chiral-symmetry-breaking order
parameter md„„ is assumed to have these transformation
properties. Thus, color would be confined at the chiral
phase transition if it were not already confined at a higher
temperature. The mass m Qyn is determined self-
consistently from the (off-diagonal) component of the
Dyson equation (Fig. 3)

d4k l—m(T)=4g, m(T)
(2~) k [(p —k) —m (T)]

2m5((p —k) —m (T)) + 2rr6(k')

k (e ' ' +1) [(p —k) —m (T)](e ' —1)

(14)
t

so that the fermion integral upon change of variables

p —k~k becomes at p =0, po ——m,

dk 5(k —m ) 1 dk 2

(2 )3 2 I
"oy I 8(p —k) (e +1)

(16)
while the boson integral vanishes. Subtracting (16) from
(15) and substituting back into (14), we finally arrive at
the homogeneous gap equation for QCD:

2&s D [k2+ m ( T)] ~
1= tanh.

o [k +m (T)]1

2E[(m E)
I

k
I
]——

1— IkI
E(m+E)

(17)

As in the BCS case we determine kD at T=O, where
m(0) =mdy„-315 MeV:

2as I D yk 2O;, ka
1 = = arcsinhE

(2') 4m
I
k

I

1 dk=-... I E
(18a)(15)

~ayn

Since this is a homogeneous gap equation, m(T) =0 is al-

ways a solution, and is the solution actually occurring
when T & T, . But m( T)&0 divides out of (14) for
T & T„resulting in a dimensionless gap equation similar
to the right-hand side of (4).

To demonstrate that (14) in fact has the structure of the
right-hand side of (4), we isolate the boson and fermion

poles of (14), respectively, at ko ——+
I

k
I

and ko ——m+E
[E=(

I

k
I

+m )' ] at p=0. Then closing the con-
tours in the lower half ko plane, the residue of the double
propagator integral in (14) is

2IkI( —2) Ik Im
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ka ——mdy„sinh =1260 MeV .
7T'

2us

Then, returning to (17) at, T= T with m ( T ) =(j or

(18b)

If we take a, (m )=0.75, i.e., A=250 MeV for three
quark flavors, (18a) implies

More specifically, the Feynman rules for the
temperature-dependent quark condensate Q(T)
= (qq(T) )o of Fig. 4 give

Q(T)= —N, f Tr
(2n. )' P —md„„(p)

ka /2T
tanIU|, ,

X

we find the upper limit self-consistently to be

(18c) (P+mq„„)2+5(p —m z)

e +1

kD =3.58 or T, =176 MeV .
2T.

(18d)

~dyn~Tc we . 1.76

independent of the scale used.
Since we have determined the end points of m ( T) in the

ordered phase, md„„at T=O and T, at md„„(T, ) =0, we
anticipate a BCS-type quarter-moon-shape curve similar
to Fig. 2. The physical significance of the third energy
scale, the (large) Debye cutoff kii = AD = 1.26 GeV, is that
the confining QCD gluon force suggests a "linear string"
binding the quarks with Bloch-wave minimum normal--
mode wavelength given by A.D 2n/kD =——1 fm This .(con-
finement) scale is then related to the interquark distance
d=A, D/2=0. 5 fm, which is approximately what is ex-
pected for three quarks confined in a nucleon or quark-
antiquark confined in a p meson.

If instead we take a, to be a, (1 GeV) 0.50 with again
A=250 MeV, then although kz increases substantially,
T, remains almost unchanged. Even if we let a, (k ) run
under the integral or work in the Feynman gauge, we still
retain

Tc -180 MeV,

so that the dimensionless order-parameter ratio is still
md„„/T, =l.75 according to (11). With hindsight, since
roD »T„ the BCS asymptotic expansion (6) is now also
valid for QCD with

6M dyn 2 m= &qq &o,~+
7T2 T

(19a)

(19b)

2&qq &o,~
C &0

mdyn
(20)

because —(qq)oM &0. The subscript M on (qq)oM in-
dicates the ultraviolet cutoff of the divergent fermion loop
in Fig. 4. When the running quark mass of QCD,

md~„(p') -p '(lnp2/A')"

for d = 12(33 2NF ) ', is e—mployed in the zero-
temperature term one obtains'3

M d pm'„(p ) 3mdy„
qq o~=

(2m. ) p —md~„(p ) 4ma, (M2)

(21a)

Note that the driving term (qq )o M in (19) is evaluated at
T=O, as in the other inhornogeneous integral equation
(7), and also that the constant md~„-315 MeV multiply-
ing the second term in (19b) is analogous to the constant

in (7). By definition m(T, }=Q(T,)=0, and since.
J+(0)=n. /12 from (8), the analog of the boson result
(10a) is

=(246 MeV) (21b)

IV. MELTING OF THE QUARK CONDENSATE

Besides the quark mass, the second fermion order pa-
rameter which measures the breakdown of chiral symme-
try in QCD is the quark condensate (qq )o. Unlike md„„
however, (qq )o does not lead to a homogeneous BCS-type
gap equation. Instead it parallels the inhomogeneous di-
mensional calculation of Sec. II for the boson self-energy
loop, Eq. (9).

FIG. 4. Quark-condensate diagram.

3

2na, (m~z)
Tc ~dyn =250 MeV, (22)

which is reasonably close to our other estimates (18d) and
(lob).

Since quark and antiquark densities are different in
several interesting physical situations, we now generalize
the above to include the effect of a chemical potential
p&0. Then po in the statistical factor in (19) is replaced
by po —p, where po is the time component of the quark
four-moxnentum. The temperature-dependent integral in
(19a) now becomes

for M =1 GeV, a, (1 GeV }=0.50, and md„„-315 MeV,
in close agreement with the exnpirical estimate. Howev-
er, T, is presumably determined by the minimuin value of
(qq)oM which we suggest occurs at M=m =Zmd„„,
where a, (m ) =0.75 and the QCD coupling freezes out.
Then (20) and (21) imply

' 1/2
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Q(»V)=&et&o, ~+ —, Tr(P™d )
( )y +

( )y (23a)

3md T= &ee &oM+ (23b)

K+(0)+K (0)= f

2
Pc

6+2T2

1

(p —p )1T
e ' '+1

t

+ (p+p )/T~ +1

(24)

At the critical temperature we again take Q( T„p, )

=m(T, ) =0 and then the EC+ (0) integrals in (23) become

E=(0.5 GeV) &&2.4&& (nuclear density) X2A '

=0.432)& A '~ GeV/fm (27)

per unit of rapidity in the central region. For a uranium-
uranium collision (A =238) the above estimate gives

fied argument: Look at the energy density in the center-
of-mass frame in one 'unit of rapidity. The number of
pions is known to be about 2.4 for' p-p collisions with
average energy about 0.5 GeV. Multiplying these two
numbers with the number of targets per fm in a nucleus,
one obtains a first rough estimate of the energy density as

Consequently the critical-temperature equation (22) be-
comes generalized to @=2.7 GeV/fm (28)

2
3@~

Tg + ~2
2' o~ =(250 MeV)

This curve in the T„p, plane is plotted in Fig. 5. In par-
ticular, we note that for cold nuclear matter with T, =0,
Eq. (25) requires

pc, max =450 MeV (26)

Furthermore, for a typical value of p, -200 MeV, (25)
gives T, -225 MeV.

v. HEAv Y-roN coLLrsroNs

There exist several indications from cosmic rays show-
ing that, for incident energies above the TeV region, sub-
stantial deviations from usual hadronic interactions
occur ' ' for interactions involving heavy ions. In the
c.m. frame this would correspond to energies of about 50
GeV per ion and such energies are accessible to present-
day accelerators. Estimates of the energy densities
reached in such collisions have been performed. '

All these estimates lead to values around 2—3 GeV/fm .
These values can be understood with the following simpli-

T(MeV)

250 ——

0 200 400 450
p(MeV)

FIG. 5. Critical line in the temperature —chemical-potential
— plane.

n~ =0.5/fm (29)

Qnly a few other estimates exist since those based upon
the hydrodynamic equations concentrate on the central re-
gion of rapidities where contamination from baryons is
negligible. The estimates of Kajantie and collabora-
tors ' lead to values which are smaller than the one
given above by about 20% The basi.c difference, howev-
er, is that in their estimate these high baryon densities are
only reached in a region where the energy density is less
than l GeV/fm and thus no phase transition occurs. Be-
cause of this basic uncertainty as regards the relevance of
the baryon-number density to the phase transition, we
consider two cases: (a) hot neutral gas, corresponding to
e-2 GeV/fm and nz —0; and (b) hot baryonic gas, corre-
sponding to e-'2 GeV/fm and n~-0. 5/fm . %'e now
want to translate these numbers into parameters relevant
to the physical description of the situation, namely, tem-
perature T and chemical potential p.

For a free gas of quarks and gluons the energy and
baryon-number densities are given by

(2~)3 e~E P~~&+ l e~E+P~~T+ l

(2~)' eE" l'—(30a)

More involved estimates based on the hydrodynamic
equations of motion reduce this value because of dilu-
tion effects in the final state; the actual values fluctuate
around 2 GeV/fm depending on the model used.

Estimates of the baryon-number density have also been
made. An essential difference with the energy density ap-
pears here because baryons are mainly produced in the
fragmentation regions. Dilution effects will therefore be
more severe in this case. The early estimates based on the
presence of a hot fireball neglected this final-state dilu-
tion. ' This leads to a baryon-number density strongly
enhanced by the compression factor:
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d p 1

(2~)3 e(E IJ, )IT—+1 e(E+P)/T+ 1

3

ng=3 g pT +1 p
flavors

(31a)

(31b)

For a hot neutral gas this leads to T=188 MeV (two fla-
vors) and to = 177 MeV (three flavors). For a hot baryon-
ic gas it leads to T= 178 MeV and p = 171 MeV (two fla-
vors). For a quark mass of 315 MeV one finds for a hot
neutral gas T=194 MeV (two flavors) and for a hot
baryonic gas ( = 180 MeV and p =230 MeV (two flavors).

These estimates indicate that the temperature expected
to be reached in a heavy-ion collision will be in the
180—200-MeV range while the chemical potential will be
either close to zero in the central region or around
170—230 MeV in the fragmentation regions.

Our analysis in the previous sections shows that the
above estimates make us optimistic about reaching the
phase transition in future high-energy heavy-ion col-
lisions.

(30b)

Factors of 2, 3, and 8 refer to spin, colors, and number of
gluons, respectively. The first term in the large
parentheses corresponds to the contribution of quarks
while the second term corresponds to the contribution of
antiquarks. We will now focus on two possibilities: in the
first one we consider e and n~ for massless quarks; in the
second one we fix all quark masses to be 315 MeV.

For the massless-quark case we obtain

4 2 1 8 2

T + T +— +

Nf =3 (MS denotes the modified minimal-subtraction
scheme). The former coupling also fits the nonleptonic
baryon 8—+8'm decays. Furthermore, scaling violations
and the R value for larger p suggest AMs(5) = 130 MeV
for Nf 5——and p -(10 GeV) . It has been shown that
in fact AMs(5) =130 MeV corresponds to AMs(3) =250
MeV.

Given this latter "unique" A, we follow Ref. 4 which
uses renormalization-group techniques and two-loop order
to obtain

mq„„——AMs(3)e i =300 MeV, (32)

where mz~„ increases to -317 MeV for a, (l GeV) =0.53.
Next we relate may„ to the pion decay constant by calcu-
lating the nonperturbative quark loop for (0i && in)
=if q&, from which one obtains in the chiral limit

v3f = mq~„-87 MeV
2m

(33)

for N, =3. Also the quark condensate (qq )0 M then fol-
lows from mz„„-315MeV according to (21).

The next link is the string tension vcT where it is ap-
proximated that

1 /2

yn —400 MeV . (34)

Since the heavy-quark qq potential is or for r large, o. can
be inferred from the charmonium decay spectrum where
Richardson also finds v c7=400 Mev. Moreover, the
ratio

v cr (35)A-MS

has been independently obtained. Lattice QCD (Ref. 6)
then gives the next link in the chain by finding

T, /~cr-0. 5, (36)
VI. QCD ORDER-PARAMETER CHAIN

Finally we review how the QCD energy scales, invoked
so far in a somewhat ad hoc fashion, are in fact related to
one another. To begin, we introduce A—

s as the overall
energy scale in QCD. Asymptotic freedom requires

~, (p') =
lnp /AMs

albeit for pure glue or massless-quark theories. Given
V o.=400 MeV, (36) predicts T, =200 MeV, which is ver-
ified by the melting of m q~„and ( qq )0 as given in this
paper. Lastly, (35) of this paper relates T, back to AMs
and to mz„„and the QCD order-parameter chain is closed
by returning to (32).
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in the deep Euclidean region, where d=12(33 2Nf)—
To match the quarkonium decay widths for P~e+e
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