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Semirelativistic potential model for charmonium

Suraj N. Gupta and Stanley F. Radford
Department of Physics, Wayne State University, Detroit, Michigan 48202

Wayne W. Repko
Department ofPhysics, Michigan State University, East Lansing, Michigan 48824

(Received 11 June 1984)

The charmonium spectrum is investigated with the use of a semirelativistic quantum-
chromodynamic potential model. As in our earlier nonrelativistic model, the quark-antiquark po-
tential consists of a perturbative part, which includes the complete one-loop radiative correction to
the one-gluon-exchange interaction, and a linear scalar-exchange confining part. We find that the
semirelativistic model leads to closer agreement between the theoretical and observed energy levels,
yields a larger value of the charmed-quark mass, and significantly affects the leptonic and E1 tran-
sition widths.

I. INTRODUCTION

The bb and cc spectra were investigated by us in an ear-
lier paper' with the use of a nonrelativistic quantum-
chromodynamic potential model. An essential feature of
our model was the inclusion of the complete one-loop ra-
diative correction in the perturbative part of the quark-
antiquark potential, and our results have been found to be
in excellent agreement with experiments. ' lt would,
however, be desirable to improve upon the nonrelativistic
model, especially for the treatment of the lighter cc sys-
tem, and for this purpose we shall explore a semirelativis-
tic model.

Our semirelativistic treatment, which is considerably
more complicated than the nonrelativistic approach, will
be described in Sec. II. Our investigation shows that the
sernirelativistic results for the observed energy levels of bb
are virtually the same as those obtained earlier' with the
nonrelativistic treatment, while the semirelativistic results
for cc are more interesting and will be discussed in Sec.
III. As we shall see, the semirelativistic model of cc leads
to closer agreement between the theoretical and observed
energy levels, .yields a larger value of the charmed-quark
mass, and significantly affects the leptonic and E1 transi-
tion widths.

II. SEMIRELATIVISTIC MODEL

We shall take the Hamiltonian for our semirelativistic
model as

with the Lth component
L

( ~) r/R ym( fI )— (2.3)

The coefficients a~ „t will be determined by the variation-
al technique of minimizing the expectation value of the
unperturbed Hamiltonian

~o=2(m +p 2)'

4a, 3a,
1 — + (33—2nf )[ln(pr ) +y@ )

+Ar+C, (2.4)

while the optimum value of the parameter E. wi11 be deter-
mined by satisfying the virial theorem

(pd~pldp) —(r dA pldr) =0. (2.5)

Finally, the contribution of A '=A —A o to the energy
levels will be included by first-order perturbation theory.

The main complication in the above procedure arises
from the matrix elements

(L
~

(m +p )' ~L') = f dr pl (r)(m +p )' t/gL (r)

A =2(m +p )'~ +7 ~(r)+W, (r), (2.1) (2.6)

where the perturbative and confining potentials F z(r)
and P, (r) are the same as in Ref. 1.

Our wave functions are of the form

K L

g„~(r)= g aI „t — e ' YP(Q ), L =k+1,
k=0

(L~p (m +p )
' ~L')

= J dr $1 (r)p (m +p ) '~
QL (r), (2.7)

which appear in the expectation value of A o and the viri-
al theorem, respectively, and we shall describe our pro-
cedure for their evaluation.
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A. Fourier transformation

The Fourier transform of (2.3) is

(2.8)PL(p)= f dr e ' 'QL(r) .
(2m) /

Upon expansion of the exponential as

00 E'

e ' '=4m g ( E) J—1 (pr) g Y1 *(Q-)Y1 (Q-),
I'=0 m'= —E'

. and simplified for various values of l.

B. S states

Since P1(x)=1 for l =0, Eq. (2.9) gives, upon integra-
tion over x,

y'L(P) =
(2~)'"

and use of the orthogonality relation

f dQ Y1 *(Q )Yj (Q )=51(5

(2.8) becomes

X
r(L+2)

~pRL

1 1

(R —1 p)L+2 (R —1+ )L+2

(2.12)

2 —1'
PL(p)=

1
r drj~(pv) — e " 1'~ (Q ) .

(21r )

Then, using the representation

j&(z)= f dx P1(x)e"",,
( i )'—

It is convenient to define

tanO=pR,

so that

(2.13)

and carrying out integration over r, we find

y (-) ' ""
Y-(Q )"' +"

(2 )1/2 1
P RL

1 P1(x)
X dx

(R —1 ~ )L+3 (2.9)

sinO=
(R —2+ 2)1/2

1cosO=
R (R —2+p2)1/2

and (2.12) is expressible as

(2.14)

The matrix elements (2.6) and (2.7) can be expressed in
terms of (2.9) as

(L
~

(m +p )'/
~

L')
)

1
( ),

2R 1(L+2)
(2m)' '

&&(cos8) + sin[(L+2)8] . (2.15)
dp I. P ~+P I, 'P

(L~p (m +p )
' ~L')

—+ g ~ ~2 2+ —+2 ]/2

(2.10)

(2.11)

Substituting (2.15) into (2.10) and (2.11), and changing
the variable of integration to 8 with the use of (2.13), we
obtain for the matrix elements

s 2 m/2

(L
~
(m +p )'/ ~L') = I (L+2)I (L—'+2)R f d8(cos8) +L+'

&&(sin 8+m R cos 8)'/ sin[(L+2)8]sin[(L'+2)8], (2.16)

m/2

(L
~ p (m +p ) '/ ~L') =—I'(L+2)I'(L'+2)R f d8(cos8) + +'

2

sin[(L +2)8]sin[(L'+2)8] .
(sin 8+m R cos 8)'

(2.17)

C. P states

For l = 1, P1(x)=x, and (2.9) can be integrated to yield

yP( )
1 Ym(Q )

I (L +2)
(2 )' 'pR

I (L+1)

1 1

(R —1 ip)L+2 (R —I+ip )L +2

1 1

(R —1 p)L +1 (R —1+ ~ )L +1
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which can be expressed as

2RI L 1

(2m )'~' ' p pR
(2.18)

Substituting (2.18) into (2.10) and (2.11), changing the variable of integration to 8, and simplifying by means of in-
tegration by parts, we arrive at the results

(L I(m +p )' IL')

=—I (L+1)l (L'+1)R f dg(cosg) + +'
0

(sin 8+m R cos 8)'~ I(L+2)(L'+2)cos[(L+2)8]cos[(L'+2)8]

(L +—L'+3)sin[(L +2)8]sin[(L'+2)8] I

(L
I
p'(m'+p') '" IL')

+,&
sin[(L +2)8]sin[(L'+2)8]

(sin 8+m R cos 8)'~ (2.19)

=—r(L+1)r(L'+l)R f dg(cosg) + +'
7T 0

2t9
X 2 2 z & &&z I(L +2)(L'+2)cos[(L +2)8]cos[(L'+2)8]

(sin 8+m R cos 8)'~

(L +L '+—3 )sin[(L +2)8]sin[(L '+ 2)8] I

(sin 8+m R cos 8)3~2 (2.20)

The above procedure for evaluation of the matrix ele-
ments (2.6) and (2.7) for S and P states can be used for
any value of l.

III. cc SPECTRUM

Following .the same procedure as in Ref. 1, together
with the mathematical formalism described in Sec. II, we
have obtained the wave functions and energy levels of cc.
The value of the renormalization-scale parameter p was
also chosen by applying the criterion discussed in Ref. 1.

Our values for the energy levels below the charm
threshold as well as the values of the parameters are given
in Table I. The splittings of the energy levels are

TABLE I. Charmonium spectrum with m, = 1.55 GeV,
p=1.98 GeV, a, =0.3475, and 2=0.205 GeV .

M (g') —M( P) =588 MeV,

M(Q) —M(71, ) =109 MeV,

M(1(') —M(g,' ) =96 MeV,

M(X, , s ) —M(f) =430 MeV,

M(X ) ) —m (Xo)=94 MeV,

M(X2) —M(X)) =45 MeV,

(3.1)

which are in closer agreement with the experimental re-
sults than the earlier nonrelativistic values.

In Ref. 1, we were able to obtain reasonable results for
the leptonic widths with the use of the Van
Royen —Weisskopf formula

16m' e~
(3.2)

M (QQ)

State

1'Sl (f)
1'so (q, )

2 S) (f')
2 'Sp (q,')

Mass (CseV)

3.097
2.988

3.685
3.589

State

1'P2 (X2)

P$ (X])
1'Pp (Xp)

1 'Pi

Mass (GeV)

3.558
3.513
3.419
3.529

Transition

g~e+e
g'~e+e

10.27
6.19

8.05
4.67

4.21
2.54

r„(expt)
4.66+ 1.5
1.94+0.6

TABLE Il. Leptonic widths in keV. r„corresponds to the
Van Royen —Weisskopf formula, while I,', and F",,' include the
relativistic and radiative corrections, respectively.
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TABLE III. E1 transition widths in keV. Theoretical results for both the nonrelativistic and the
semirelativistic models are given.

Transition

0'~&J+)'

Nonrelativistic
widths

33
49
64

Semirelativistic
widths

24
35
44

Experimental
values

17+S

19+5
21+6

2
1

0

753
562
253

502
369
171

330+170
(700

97+38

I"„=I„—+ dr rX, (mr)
2 2m l((r)

88 88 3 3 P 0
(3.3)

I",,' =I „(1 —16a, /3n ), (3.4)

which include relativistic and radiative corrections,
respectively. Although the theoretical results with radia-
tive correction are in reasonable agreement with the exper-
imental data, we consider the use of the formula (3.4)
questionable here because radiative correction to the
quark-antiquark interaction has already been included in
our potential.

In Table III, the E 1 transition widths for both the non-

But, the semirelativistic model yields quite different lep-
tonic widths, and in Table II we give the results obtained
with the use of (3.2) as well as the modified formulas

2

relativistic and the semirelativistic models are given, and
compared with the experimental data. The semirelativis-
tic model yields distinctly better results, but fails to
resolve the discrepancy between the theoretical and experi-
mental values.

It should be noted that while our energy levels include
the effect of perturbation, our widths have been obtained
with the use of unperturbed wave functions. It is, there-
fore, not surprising that the theoretical energy levels are in
excellent agreement with experiments, but the theoretical
leptonic and E 1 transition widths are less satisfactory.
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