
PHYSICAL REVIEW D VOLUME 31, NUMBER 6 15 MARCH 1985

Gluon propagator and transverse vertices
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It is shown explicitly that in the axial gauge the Slavnov-Taylor identity contains no useful information
for determining the gluon propagator through the Dyson-Schwinger equation; rather, it is the transverse
vertex which plays the crucial role.

With the aim of investigating the color-confinement prob-
lem of QCD, people have studied the infrared properties of
the gluon propagator for some years. The method adopted
is similar to the so-called "gauge technique" in QED, '

which successfully produces the infrared behaviors of
charged particle propagators. However, the situation in
QCD is not so clear as the results obtained by different peo-
ple often disagree with one another. ' Here we want to
show that there exist intrinsic problems with the approach
for QCD.

The essence of this method is to analyze the Dyson-
Schwinger equations with the aid of the gauge identities. By
"solving" Ward identities, Ansc7tze for vertices are derived
and then applied to truncate the Dyson-Schwinger equations
which relate the propagators with the vertices. This results
in self-consistent equations for propagators (or the spectral
functions of propagators).

As noted many times, solutions of Ward identities are by
no means unique and the existence of arbitrary transverse
pieces cannot be avoided altogether. But in QED, if we are
only concerned about charged particle pro pagators, the
lowest-order Ansatze dominate the transverse parts: hence,
the latter can be neglected without affecting final results,
certainly in the infrared region. The situation changes
when we go to QCD.

Instead of studying charged particle (quark) propagators,
people choose to work in pure Yang-Mills theory (that is,
with the quark-gluon interaction neglected), and evaluate
the gluon propagator as an indicator of color confinement.
We will show explicitly that not only do the longitudinal
vertices no longer dominate the transverse parts, they do
not even contribute.

In axial-gauge QCD the Dyson-Schwinger equation reads

other by

II~~(q)h„, (q) =g„„—n„q„/n q

I, (k, k', —q)( —q)"=II,(k) —11,(k') . (3)

Needless to say (3) is also an exact relation, like the
Dyson-Schwinger equation (1). To study (3), we decom-
pose I" into two pieces, of which one is purely longitudi-

nal to q" through index v, and the other is transverse. They
are defined by

I

I "', (k, k', — ) =l, , (k k' — )
q

2 (4a)

I't ~ (k, k', —q) = I (k, k', —q) —I" (k, k', —q) . (4b)

This decomposition seems to introduce singularities in I
era v

and r at q =0, but when we apply it to the Dyson-

Schwinger equation, the singularities do not matter. As it is
quite obvious that I't ~ is completely irrelevant to (3), we

cannot obtain any information for it from (3). Applying

We display (1) diagrammatically in Fig. 1. There it is clear
that we have used I „„~ and I „,~ to represent the three-
and four-gluon vertices, respectively, with I"„„~ and I „„~
their corresponding bare ones.

In the axial gauge the gauge identity adopts the naive
form of the QED Ward identity

+pe('q ) q (gpv qpqv/q

—i~go )Id' kI"( ),(q, —k, —k')b, " (k)
(k')I', (k, k', —q)

1'.tg = Tfi'v(f)

+i'~go „d kryo&„(q, k, —k, —q)a" (k)

+ four-gluon terms

upon neglecting quarks, where d4k= [N, /(2n) ]d k with
N, the number of colors. In (1) we have suppressed the
color indices, and h„„(q) and II„„(q)are the gluon propaga-
tor and self-energy, respectively, which are related to each FIG. 1. Diagrammatic representation of Eq. (1).
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(4a) and (4b) to (1), we arrive at

II„„(q)= —q'(g „,—q „q„/q')

—i~go' &'kr"' (q, —4 —k')&" (k)&" (k')r'" (k, k', —q)O'O V

—k, —i ') [~""(k') —a""(k)]—O'V

g2

r

+i~go J 1 kl gl „(q,k, —k, —q)5" (k)+four-gluon terms (5)

In deriving (5) we combined (3) with (2) and utilized the
property of h„„(k) that

n~a„„(k) =a„„(k)n~=o .

By recalling

r „„,(q, —k, —k') = (q +k)„,g„„

By decomposing I, into two pieces

r&'~, (k, k', q) =—r",~(k, k', —q)+r&", &(k,k', —q) (12)

with

n (k —k')I', '(k, k', —q )

+ (k' —k) g,„,—(q+k')„g „, (7)

rtol „(q,k, —k, —q) =2(g„„g „—g„g„„)
the third and fourth terms on the right-hand side of (S) can
be simplified to

= [II,(k) + II (k') ](n„—q„n q/q2) (13)

the tadpole term is removed and (11) is altered to

n "II„„(q)= —q (n„qn q—/q2)

+i~go J~ d kn (k —k')b, „(k)

xa" (k')r",'(k;i', q) . (14)—

V

—ig '
J~

d'k g„" — ", [b (k) —g &"(k)], (9)
t

and (5) can be rewritten as

II„„(q)= —q'(g„„—q q„/q')

i~go' Z—4kr&'„'„, (q, —k, —k')

xh"~(k)h" ~ (k')I" &, (k, k', —q)

go'„~rt k(g'." q q" /q )l~„„(k)—g 4g(k)]

+ four-gluon terms (10)

n"II„„(q)= —q2(n —q n q/q )
fO

+i fgo2 if4kn (k —k')b~(k)

x a".'(k')r'", (k, k', —q)OO' V

+igo2„i d4kb)", (k)(n„q„n. q/q ) . (1—1)

In (ll), even if we suppose the tadpole integration does not
vanish, the third term cannot possibly dominate, because it
must be cancelled away by certain contributions of the
second term, in order for II„„(q) to satisfy the requirement

II„„(q) 0 as q 0

Basically what we have done is to absorb the I part of
the original equation into a tadpole term. Upon multiplying
(16) with n", the four-gluon terms are eliminated, 5 and we
arrive at

I
Like I itself, I,' is purely transverse to q through v.
therefore it does not arise in the identity (3).

The point we are trying to stress is that, contrary to com-
mon belief, the purely longitudinal three-gluon vertex does
not contribute to the self-energy equation; rather the radia-
tion corrections to the gluon propagator lie solely in the
contribution of a transverse part of the vertex, which is
completely irrelevant to the Slavnov-Taylor identity. Thus
in the axial gauge the Slavnov-Taylor identity contains no
useful information for determining the gluon propagator
through the Dyson-Schwinger equation and we have to look
for other effective methods which can determine the
transverse vertex at least in the infrared region.

Multiplying (14) with n„/n results in an equation entirely
equivalent to that of Baker, Ball, and Zachariasen. There-
fore, the longitudinal part of the vertex is not present there
either.

People have also studied (5) in another slightly different
way. Instead of making an Ansatz for I', (k, k', —q)
which satisfies the Slavnov-Taylor identity, they have tried
to obtain an expression for

[b, (k)A(k')5( —q)I (k, k', —q)]„„
which satisfies

[5(k)5 (k') I'(k, k', —q ) ]„„p(—q )~ = A„„(k')—A„„(k)
(15)

This does not change the problem in any essential way, for
although they are able to introduce a transverse piece intoI, , it is inherently nonunique; hence, the resultant equa-

ETCF V

tion obtained by applying their Ansatz to (5) is still arbi-
trary, although they do attempt to incorporate lowest-order



1514 BRIEF REPORTS 31

perturbation theory in their work.
The same thing happens to QED when we apply the

gauge technique to study the photon propagator. After the
lowest-order Ansatz

S(p')I'„(p', p)S(p) = Jt dwp(w)
p' —w p w

is used, the vacuum polarization tensor adopts the form

(16)

k„k 1=„fdwp(w) ie'„dp tr
p —k —w " k' p —w"

(17')

II„„(k)= J dwp(w) lez
&I dp tr y„y„"p —w

(17)
If we regularize II~„(k) by the dimensional method we can
confidently change (14) to

Obviously the purely transverse piece of (13) determines
II~„(k). It has been recently shown that the lowest-order
Ansatz (12) is unique. ' Hence, we can expect (14) to give
the proper result. But one thing should be emphasized, the
Ward identity

S (p') I „(p',p )S (p) (p' —p )"=S (p) —S (p')

only determines the longitudinal part of the vertex, which is
irrelevant to the determination of II„„(k); the purely
transverse piece is introduced through other considerations.

We conclude that the common belief that the longitudinal
three-gluon vertex gives the dominant contribution to the
gluon propagator through Dyson-Schwinger equation is not
true; the lowest-order gauge technique is in principle useless
for QCD.

I am indebted to Professor R. Delbourgo for instructive
remarks and helpful discussions.
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