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Chiral anomaly in the Schwinger-Symanzik formalism
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It is shown how chiral anomalies appear nonperturbatively in the Schwinger-Symanzik functional forrnal-
ism of quantum field theory.

In this Brief Report we argue that the so-called path-
integral approach to chiral anomalies pioneered by Fujikawa'
has a priori nothing to do with path integrals, but is a non-
perturbative or, more fitting, a nondiagrammatic method of
treating the variation of the fermionic determinant under
chiral transformations. The interpretation of the anomalies
hereby appearing as Jacobians is specific to the formulation
of field theory via path integrals, which, of course, is by no
means a. necessity. To illustrate this point, we derive the
Adler-Bell-Jackiw anomaly2 of QED (the generalization to
more complicated theories would be straightforward) within
the framework of the Schwinger-Symanzik formalism,
whose basic ingredients are functional differential equations
for the generating functional of the n-point functions in-
stead of the path integrals preferably used nowadays.

We start from the Lagrangian

and where the fermion and the photon fields are coupled to
external sources q, q, and j„, respectively. Next we per-
form an infinitesimal chiral transformation

[i[(x ) —[i[ (x ) = e '@(x )

where

y[ig (A ) —m ]y —,' F„„r~" (S—~a)yy,&—,y
—2im nQygg+7i[i[+ [i[ri+j„A"+ 0 (o2) (4)

T[[(x ) —7[I (x ) = T[[(x)e

on the spinor field and, thus, get a theory containing addi-
tional couplings to the external (infinitesimal) pseudoscalar
field o. (x ):

W= y[ip(A ) —m]y ,' F„„I~—" +—~q+ q &+J„A~

with

7i(x) —= e '7l(x)

7i(x) —= v)(x)e
(s)

D„(A ) —= 8„+ieA „ (2)
I

The generating functional for the n-point functions of the
theory described by W is defined by

Z[q qj; l=(0Te pt xJ d [qgx+[q+j A (8 )Py ps' 2I~ Pys[[ 0)

We now use Z to calculate the variation of transition matrix elements (a~b) for arbitrary in states ~b) and out states ~a)
under the change of the external parameter n(x); using the Lehmann-Symanzik-Zimmermann (LSZ) reduction formulas,
one has in an obvious notation'

1 S(a(n) a o.=(const)J dx e' " u(i9' —m) u(i' —m) eC3
i Sn(w)
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i sex(w ) a=O, g=q=j =0

x( —i) —m)u ( —i) —m)v a e

To construct Z explicitly, either the Schwinger or the
Symanzik approach (for a review, see Fried4) can be used
and in both cases the result reads (in matrix notation)

I

theory given by

Z [q, q,j„;0[]= exp i ( —8"ny„yq —2im y5)a
. 5 „. 5

5q Sq

& exp — ey~5 5 5

hq, 5j"
~ g&

(8)

&& exp[ —i ri(i Q' —m ) 'q] det(ijif —m ), (9)

with D+ denoting the photon propagator. Applying only
the second exponential operator in (8) to Zo yields the usu-
al QED functional ZoEo, which, by exploiting the identity

exp —i A exp(iqBq) = exp[i7iB(1+AB) '~]. 5 5

Sg

with Zo the generating functional of the free (e = 0, n = 0) x det(1+AB) (10)
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i 5j
I

exp —jD+j
2

can be written as
1

Zqsn [q, i)j„]= exp —i ri ip ———m
1 5
l 5J]

which is valid for any sufficiently differentiable functional I'.
Equation (11) then reads

r

ZQao [)i, ')1,j„]= exp jD—+j exp —— D+i 5 5
2 2 5A 5A

Now the A "(x) field appearing in the covariant deriva-
tives is replaced by the operator (1/i )5/5j„(x) acting on
the last exponential. A more useful representation of Z~qo
can be obtained by using another identity, viz. ,

1 5 iF ——exp —jAj
I' Sj 2

x exp[ —iq[iP(A ) —m] 'g}

xdetfig(A ) —m] (13)

( ( )

= exp j /()j exp——— b, F [A ]
2 2 SA Si (12)

with 3" now being defined as 3 =D+j. Inserting this in
(8) and applying the first exponential operator with the help
of (10) leads to the following form of Z:

Z [7i, qJ '() ] =exp —jD+j exp —— D+ exp( —ice '[ip(A ) —m] 'e q}2 2W 5A

x det[iP (A ) —m —5"c(y~ys —2imnys]
y]=e q, g=qe

(14)

Now the important point comes in. As we shall prove below, it holds to first order in o. that ('F"" is the dual field strength
tensor)

(

2

det[iP(A ) —m —5)'ay„ys —2imcxys]=exp i JI d nx(x) ~F„„'F» det[ig(A ) —m]
m'

so that we may write

Z[q, q,j„;n]=exp —jD+j exp —— D+ expI —iq[ip(A) —m] 'q}
l 2 2 5A 5A

2
x exp i &/d xn(x) z (F„, F("")[A (x) ] det[iP (A ) —m ]

Sm

1

2
= exp i J d~xu (x),(F„„'F"")— Z [g, q,j„;n= 0]

87r' ""
( 5J (x) (16)

To obtain the last line, (12) was used again. Now the
derivative with respect to o. is trivial to perform:

I

Equating (18) and (19), we thus deduce that the operator
relation

1 5Z [7), g,j";a]
i 5a(w)

2e (F +F») 1 5
i 5j(w)

2

5('(Py„ysP) = 2im (l)ys(i(+ ~
F„„"F"" (20)

x Z[7i, 7i,j„;o=0]
Inserting this in (7) yields

=(a, ()' „F )[A ( w ) 1 ( ), ()8')"
(a=o

with the original meaning of 2 „(x) as an operator field.
On the other hand, by explicitly differentiating Eq. (6) with
respect to n, we observe that (1/i )5/5o. (w) causes an in-
sertion of the operator (after an integration by parts)
5+(@y&ysQ) —2im (Qys(l)) in any n-p iont function calculat-
ed from Z. By LSZ reduction, one then gets

= (~ I [&"[P(w)y„ysP(w) ]
I 5(~lb)
i 5o(w)

—2im T(((w)ys(i)(w)} Ib) (19)
det(ig —m )

det(ig —m —8"ny„ys —2im nys)
(21)

is satisfied between arbitrary states. This nonconservation
law is one way to state the y5 anomaly; another one is the
corresponding Ward-Takahashi identity, which could be
derived by also taking derivatives with respect to q and q in
(6).

Obviously, the only nontrivial part of the above deriva-
tion is Eq. (15), which we are now going to prove. It is
clear that when representing the determinants appearing
there as Gauss-type Grassmann integrals, the anomaly fac-
tor on the right-hand side corresponds to the Jacobian of
the transformations (3), where (l( and ([I now denote in-
dependent variables of integration. In the present approach,
however, this interpretation is not necessary.

To compute
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we note that det( . . ) =det[ys( )ys], so that (21) is equal to

J[a]= det(ig —m ) det( —iP —m )
det(iP —m —8"uy„ys —2im ays) det( —ig —m + 8~ay„y s

—2im uys)
(22)

Hence, one gets

lnJ[u] = —
2 [lndetQ —lndet(g'+ m )] (23)

I

the explicit form of 0„this leads to

lnJ[a]= —2i d wa(w) g$„(w)ys$„(w)

with

0, = P, +m +i@,[tl,"u(z)y„ys —2imu(z)ys]

+i [8,"a(z)y„ys+ 2ima(z)ys)P,

+ 4im'a (z ) + 0 (a') (24)

Because we are working only to first order in a, (23) can be
replaced by [note 0 (a = 0) =P'+ m']

—Z„/M
g@„ysp„ lim gQ„yse
n N

we obtain in the well-known manner'

(28)

Apart from the fact that in our case the [$„]are eigenfunc-
tions of g'+m' (as opposed to P in Ref. 1), (27) is a
divergent expression of the same kind as in the works of
Fujikawa if we regularize it by substituting

lnJ[u] = —
2

I 14wu(w) lndetA +O(a )
hu(w)

2

lnJ[a]= —i ld wa(w) F „'I'""
~J 8 2

(29)

(25)

The standard evaluation' of (25) is achieved by performing
a Wick rotation to Euclidean space and introducing a com-
plete set (P„] of eigenfunctions of the Hermitian operator
J5 +m in order to write

5 lndetQ = TrlnQ5
Sa w 0 Sa w

sn
Su(w)

= gJ d'zy„'(z)n, ' ' @„(z)5a(w)

= gX„'& d'z@t(z) ' @„(z),

(26)

where A.„ is the eigenvalue belonging to $„. Making use of

which establishes (15).
A better way to proceed from (25) is to express the deter-

minant of 0 in terms of its zeta function. This method
leads to the same anomaly (29) but produces finite results
at every intermediate stage of the calculation and, thus,
avoids artificial modifications like (28). (For this procedure
to be applicable, the basic operator has to be positive for
a =0; that is why we work with P + m instead of P. )

This completes the argument that the nonperturbative
anomaly proof of Fujikawa is intrinsically a regularizing
scheme for the fermionic determinant, which also appears in
the older language of quantum field theory as originated by
Schwinger and Symanzik.

It is, perhaps, not unfair to say that the regularization
scheme used in the present paper —which is essentially also
Fujikawa s—is similar to the proper-time method plus point
splitting as introduced by Schwinger more than three de-
cades ago to derive the axial-vector anomaly. In this con-
text it is also fitting to mention the dissident view of the au-
thors of Ref. 8 regarding second-order radiative corrections
to the triangle graph.
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