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We study a two-dimensional quantum field model with axial-vector-current-pseudoscalar derivative in-

teraction using path-integral methods. We construct an effective Lagrangian by performing a chiral change
in the fermionic variables leading to an exact solution of the model.

Analysis of quantum field models in two space-time
dimensions has proved to be a useful theoretical laboratory
to understand phenomena like dynamical mass generation,
topological excitations, and confinement; all features expect-
ed to be present in a realistic four-dimensional theory of
strong interactions. Recently, a powerful nonperturbative
technique has been used to analyze several two-dimensional
fermionic models in the (Euclidean) path-integral approach.
This technique is based on a chiral change of variables in
the functional fermionic measure. '~ It is the purpose of
this Brief Report to solve exactly another fermionic model
by means of this nonperturbative technique. The model to
be studied describes the interaction of a massive pseudo-
scalar field with massless fermion fields in terms of a
derivative coupling and was analyzed previously in Ref. 5 by
using the operator-approach.

%'e start our study by considering the Euclidean Lagrangi-
an of the model:

~i (y, y, P) (x) = [ —
t$ y„B„y+T (8„&)(B„y)+ 7m'y'

+ g4V'at/ itt 4] (x)

where Q = (fatti, p2) denotes a massless fermion, Q a massive
pseudoscalar field, and g the coupling constant. The
Lagrangian (1) is invariant under the global Abelian and
Abelian-chiral groups

Q~ e™Q,alt~ e Q, (np) 6 R

with the formally Noether conserved currents

a„(yy'y„y) =0, a„(yy~y) = 0 .

The Hermitian y matrices we are using satisfy the (Euclide-
an) relations

(Vga' Yv] 28pv~ ypys tepv yves ys t ypyl

epi= —etp= 1 (p, v=0, 1)

In the framework of path intergals, the generating function-
al of the Green's functions of the quantum field theory as-
sociated with the Lagrangian (1) is given by

tss

Z [J n, n ] = D [$]D [Q ]D [Q ] exp —J d2x [W t (alt, irt, $ ) (x) + $J+ nett + Q n ] (x ) (2)

In order to perform a chiral change of variable in (2) it appears to be convenient to write the interaction Lagrangian in a
form closely parallel to the usual fermion-vector coupling in gauge theories by making use of the indentity

fe

exp — d2x g(iitysy„itt8„$)(x) = D[A„]8(A„+ie„BQ) exp „d2xg(sty„A„Q)(x) (3)

where A„(x) is an auxiliary Abelian vector field. Substituting (3) into (2) we obtain a more suitable form for Z [J,n, n ],
fO t i

Z[J n n] = D[@]D[&]D[&]D[A„]8(A„+ie„tl @)exp — d [xW (@2, iieet, A) +pJ+n i+itTnit]

with

~2(Q Q 0 Av, ) = lait'yp(6p, tgA~)lit+ T(8~$)(8~$) + Tm $

Now we can proceed as in the case of gauge theories in
order to decouple the ferrnion fields from the auxiliary vec-
tor field A„(x) by making the chiral change of variables

i'�(x)= e "~ x(x)

iTt(x) =x(x)e'~"

A„(x)= ——'(e„„8„P)(x)
g

We note the relation p=gtIi between the chiral phase p
and the pseudo scalar field C due to the constraint
8(A„+ie„8 P) in (4). After the change (6), the Lagran-
gian (5) takes a form where now the fermion fields x(x),
x(x) are free and decoupled from the auxiliary vector field
A„(x),

Ws(x, x, @)= —ixy„6„x+~(8„tt)(8„@)+Tm'$' .
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On the other hand, the fermionic measure DPDiII, defined in terms of the normalized eigenvectors of the Hermitian opera-
tor —iy„(8„—igA„), is not invariant under the chiral change and gives the Jacobian2 6

1

2

exp —g t d2x(A„A~) (x) = Det[ —iy„(6„—igA„) ] (8)

In terms of the new fermionic fields X(x), X(x) and taking into account the Jacobian (8), the generating functional reads

Z[Jnn] =„D[X] D[ X] D[P ]exp —
~ d2x[ —ixy„li„X+T(1 —g /~)(8„&)((I„&)

+ Tl m242+ J4, + ne~ "5'X+Xe'"5'5] (x)
)

We shall now use the effective generating functional (9) to compute exactly the (bare) Green's functions of the model.
The two-point Green's function of the pseudoscalar field P(x) is straightforwardly obtained,

1

((p(x)p(y))& =
2 Ko, ,/, lx —y I (10)

where Ko(w) denotes the Hankel function of an imaginary argument of order zero. The two-point fermion Green s func-
tion is easily computed by noting that the fermion fields X(x), X(x) are free and decoupled in (9). The result reads

1 g' Pl
&(p ( )p (y))&

2
(y )

l l

p ( / ) ( / )
l y

where we have used the dimensional regularization scheme to assign the value 1 to the "tadpole" contribution that appears
in (11), i.e.,

2

exp g2 i Ko(0) = 1
1 —g! I

It is also interesting to compute correlation functions involving fermions Q(x), Q(x) and the pseudoscalar field $(x).
For instance we get the following expression for the vertex I /)(xy, z) = ((P (x)P/)(y)$(z) ) &:

1

1

y l2 2 (I g2/ )i/2 0 (I g2/ ) /2 0 (I g2/ )i/2
i

2

2n (1—g'/m) (1—g'/n )'/' '

It is instructive to point out that in a perturbative analysis of
the model, the previous correlation functions correspond to
the full sum of nonrenormalized Feynman diagrams involv-
ing all possible radiative corrections. The perturbative re-
normalization analysis can be implemented by applying the
asymptotic Lehmann-Symanzik-Zimmermann conditions (or
equivalently, the Dyson prescription) in the (bare) propaga-
tors and the vertex function of the model. This analysis
results in that the pseudoscalar field qh gets (finite) wave-
function and mass renormalizations, (t(~)=(Z~) '$ and
m()() = m (Zg)', respectively, with

Z 1
4 (1 g2/~)1/2

and the coupling constant gets a multiplicative renormaliza-
tion g~~~=gz&. For instance, the renormalized two-point
fermion Green's function is given by

((q.(x)y, (y)) &")= (y ).,

which has the following short- and long-distance behavior:

&(i] ( x)yp(y)) &,I' ()0=(y-„).plx —yl

(14)

((e.(x)e) (»)&I"-' i--=—
2m

(15)

The ultraviolet behavior (14) implies that the fermion field
carries an anomalous dimension y&=g(/()2/4n. We remark
that the model displays the appearance of the axial anomaly
as a consequence of the presence of the massive field P.'5
For instance, in terms of the bare field $, we have

'd, Qy, y e) = ~(:)4=~
m n 1 —g2/~

(16)

Next, we shall consider the case of massive fermions in
the model

~(Q, Q, p) = [ —iilIy„8„$+pQQ+ ~(8„$)(8„$)
2

x exp Ko( m(a) lx —y l )
S(z)

, 2m

(13)

+ ~m'4'+ gal)y'y„i])()) 4 ]

In order to get an effective action as in (9), we make again
the chiral change (6) where it becomes important to remark
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+ ~(1 g—'/~) (r)„P)(8„&)

+ Tm'P'](x) (18)

~here now the fermion fields x(x), x(x) possess an in-
teracting term izX[cos(2g@)+ iyssin(2gg)]x which contri-
butes to the phenomenon of formation of fractionally fer-
mionic solitons. s

that the fermion measure DictDilt is to be defined by the
eigen vectors of the massless Her mitian Dirac operator
N(A„) = —iy„(r)„i—gA„) and thus yields the same Jacobi-
an (8). This fact is related to the fermion mass indepen-
dence of the anomalous part of the divergence of chiral
current 8„(atty "y'itt) in fermion models interacting with
gauge fields. Proceeding as above we obtain the new effec-
tive (bare) Lagrangian

~(x, x, g)(x)=[—ixy„h„x+i xe""' x

As we have shown, chiral changes in path integrals pro-
vide a quick, mathematically and conceptually simple way to
solve and analyze the model studied in this Brief Report.

Note added. %e would like to make some clarifying re-
marks on the analysis implemented in this Brief Report.
First, in order to implement the regularization rule in Eqs.
(3)—(11) we consider the associated perturbative power
series in the coupling constant g dimensionally regularized
which automatically takes into account the VA'ck normal-
order operation in the correlation functions Eqs. (9)-(11).
Second, we observe that the model should be redefined in
the region g )m since its associated Gell-Mann-Low func-
tion has a nontrivial zero for gz= n (the model contains a
tachyonic excitation) .s
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