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A formula to obtain the free energy within the framework of thermo field dynamics (a real-time quan-
tum field theory at finite temperature) is presented. The relation to the Matsubara method is discussed.
Examples of a perturbation calculation are presented for the (t)~ model up to the two-loop order and are
compared with the corresponding result obtained in the Matsubara formalism.

Recently, the relation between the thermo field dynamics
(TFD), ' a real-time quantum field theory at finite tempera-
ture, and the real-time path-ordered formulation of the sta-
tistical average has been extensively discussed and their
equivalence has been examined with the context of pertur-
bation theory. Ho~ever, since the free energy is not a
thermal average, its calculation in TFD has not been formu-
lated. Nevertheless, it was found in Ref. 3 that a summa-
tion over certain vacuum diagrams in TFD reproduces the
familiar result for the free energy.

In this short paper, we present a formula for a systematic
calculation of the free energy in the framework of TFD and
show that the prescription taken in Ref. 3 is the right one.
The relation between the result obtained in TFD and that
obtained by means of the path-ordered formalism will be
clarified.

Let us consider the following Hamiltonian:

H(s ) = Ho+ sHr

where s is a c-number parameter and s=1 leads to the
Hamiltonian 0 under consideration. In the interaction

I

we have, in TFD,

dF(s)/ds = (0(p, s) IHr10(p, s)) (3)

where ~0(p, s)) is the thermal vacuum of TFD associated
with the Hamiltonian H(s). Equation (3) means that the
change of the free energy induced by a small change in the
strength of the interaction is proportional to the interaction
energy. Integrating (3), we have

r 1

F= F(1)= F(0)+ ds(0(p, s) IHrl0(p, s)) . (4)

In the interaction representation, (4) is given by

representation, Hp is the unperturbed Hamiltonian and HI
the interaction Hamiltonian. Corresponding to H(s), the
free energy F(s) is given by

F(s) = —p 'Intr(exp[ —pH(s)]}
where p= I/(krrT), with krt being the Boltzmann constant
and T the temperature. Since

dF(s)/ds=tr(e p ' Hr)/tr(e a * )

fe ooF= ( F)+0dz(OPTH, (z, )exp —, i disH, (i) p)O (5)

where [0, p) is the thermal vacuum in the interaction representation with respect to Ho and tt) is some arbitrary time. The
thermal interaction Hamiltonian Hr(t) is given by Hr(t) =Hr(t) —Hr(t), where Hr(t) consists only of the first component
of thermal doublet fields while Hr (t ) consists only of the second.

In Ref. 3 the free energy was calculated by means of a prescription such that one of the interaction vertices should be
fixed to Hr. This prescription is now justified by the appearance of Hr(to) in (5) as well as combinatorial factors which arise
from the integration over s.

We can also see the relation between the formula given in (5) and one obtained by means of the path-ordered formalism
as follows. The formula in the path ordered form may be rewritten as

fs rp- lPF= F(0) —0 'tre exp —i dzHi(z) —)
4 fp con

f 1= F(0) —P ' ds4p
p vp- lp

Tc exp —is ~ dzHr (z ) —1
Q 1p con

(

pl p vp- lp —lp= F(0) —() '
J ds( —i ) J dz'(TeHs(z') exp —is z dzHi(z) (6)

p con

where ( ) „ indicates the connected part of diagrams for the thermal average, Tc the path-ordering operator along a
path C, and Yp an arbitrary complex number. Note that

(
'p 'p

TCHr(z') exp —is J dzHr(z)
TQ con

is independent of z' as long as z' lies on the path C. Then by performing the integration over z' in (6), we have
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f+ 1 r rp-iPF= F(0)+ ds TcHI{zo) exp —is dz HJ(z)dp con
1 1

tQ
Rez

W= TB QB"$——m Q ——Q (8)

Introducing the thermal expectation value v,

where zp is an arbitrary complex time on the path C. In the
Matsubara method, the path C is chosen to lie along the im-
aginary axis in the complex time plane. In the present case,
let us choose the path shown in Fig. 1

(To Redo 11 r1 ip/2 Re'7o ip/2 To ip)

in which Redo —~ and r1~ + ~, and take zo= to (real).
With the usual prescription by which we obtain the
correspondence with TFD, (7) in the path-orderd formalism
becomes (5) in TFD. [Note that the expression (5) au-
tomatically excludes diagrams disconnected from HI(to). ]

As'an example, we consider a system described by the
Lagrangian density

—iP/2 tg —iP/2

FIG. 1. The path C in the complex time plane, corresponding to
TFD.

to

Hereafter we calculate the free energy as a function of the
thermal expectation value ~, instead of the strength of an
external field which couples to P. As is well known this
kind of free energy is given by one-particle irreducible dia-
grams.

First, we apply the formula (5) to the calculation of the
deviation of free energy induced by the change of the un-
perturbed Lagrangian density from

~p = T9„p9"p—Tm2p (11)

~ = (0(p, 1)14(x) lo(p, 1))
we rewrite (8) in terms of p(x) = Q(x) —u:

1 1 2 AV 2
Wp=~Q pQ&p ——m + p2 2

(12)

me+ p —Tm v ——v
XV3 1 2 2 A. 4

3! 4! (10)

The term —~A.v p2 is treated as an interaction. The devia-

tion of free energy density, Fp —Fp, is obtained from the
series of one-loop diagrams given in Fig. 2. The lowest-
order one-loop contribution to the effective potential con-
sidered in Ref. 4 is included here.

d k Xu . she
Fo =Fo+J ds~ Tr 4 r+ ikey(k, 0) g r AF(k, 0)(2'�)' 2

'
„=o 2

d"k . i1.v2 SXv2= Fo+ ds~ Tr 4 i r+b, F(k, 0) 1 — rhF(k, 0)
22r ' 2

d4k
=Fo+& ds~ Tr„4 i r+h~(k, s)

2m ' (13)

where

/2F(k, s) = Us(lk'l)&o(k, s) Us(lk'I)

= Us(lk I)r[(ko)2 —«1(k,s) +i«l 'Us(lk'I)

= Us[o1(k, s)]r[(k ) —o1(k,s) +ire) 'Us[o1(k, s)]
and

1

c (o1) s (o1)
Us( )= { ) { ) c{o1)=(1 e-a )-1i2 s( )={e~ 1

m (k s ) = (k2+ m2+ sy&2/2) 1/2

(14a)

(14b)

(15)

(16)

with

1
7 0

0 l+~ 1 0
—1' + 2 00 1

2
1+ 2 + 2 + 0 ~ ~

Although the trace is taken with respect to the thermal in-
dices, the matrix r+ picks up only the (1,1) component of
5(k, s) in (13). The free energy density Fo obtained has

FIG. 2. Diagrams contributing te I'p —I'p. A solid line denotes
the propagator ihF(k, 0), a small open circle is assigried by HI, and
a dot is by sH~.
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the familiar form
re 3

F =P ' — [1n(1—e ~"«»)+~Pcs(k, 0)](2~ )

After a simple calculation, we have

d k Xu P~(k, s)
(2~)32~(k, s) 2 2

(18)
(a)

FIG. 3. Diagrams contributing to F2~~ and F2 . A solid line
denotes the propagator ii3F(k, 1).

= Eo+ ds~ ——ln sinh
d k 2 d . pcs(k, s)

(2~)3 P ds 2

= Fo+P ' [ 1n(1 —e S"t" t3) + YPcu(k, 1)(2~)3

- in(& —&-i' «») —7p~(k, 0) ]

fe 3=p-t "" [in(1-e-i-«' )+Tp (k, 1)l . (»)
(2m) 3

As expected, the result (19) corresponds simp1y to the re-
placement of m appearing in (8) by m +»2/2.

Secondly, in (10) considering &0 as the unperturbed part
and regarding&1 = —(»/3!)p —(A/4!) p~ as the perturba-
tion, we calculate the two-loop approximation. As it was
pointed out previously, the one-loop contribution con-
sidered in Ref. 4 is included in I'0 through the effect of
~A, v p term in &0. The two-loop contributions F2' and
F2 are given by the diagrams in Figs. 3(a) and 3(b). The
diagram 3(a) gives

() ~& i3 ~ dkt ~ d k3F2t'3 = ds—
~

—
4 X/3p'(k~, -l)AF" (k2, 1)

8 & 2m ~ " 2m 4

d'k c[~(k 1)]'
8 " (2m )" (k')' —co(k, 1)'+ is

s [co(k, 1)]'
(k')' —a)(k, 1)'—ie

d3k 1
th pcs(k, 1)

8 " (2m)3 2o)(k, 1) 2 (20)

and the diagram 3(b) gives

d4k ~ k t' k 2

ds—' — ' ' ' (gm)"5' '(kt+k3+k3)» X &p (kt, i)&F (k3, 1)&F' (k3, 1)& s»6 ~ (2m) " (2n') " (2&)' « ——t

Since b.~t2(k&, 1) does not contribute to the integration because of the on-shell condition in AF" (kl, 1), we obtain

(21)

S2
2

(k3 )' —o)2' —is
C2

2

(k2 )' ~,'+ ie—
(2n ) St (kt+ k3+ k3)12 ~ (2n )' " (2m)" " (2m)' (k')' —cut'+ ia

S 2

(kt )' —o)3' —ia

C3
2

X
( k, ko)z

S 2

( —kt —k2 )' —o)3' —ia

v " d k1 ! d k2 f' gk3
J ( )3 J ( )3 ( )3

(2m)38t33(kt+ k3+ k3)

C C2 C3 C1C2S C S C C1$2$
, 1+ 2+ 3 ~1+~2 3 ~1 ~2+ 3 ~1 2 ~3

S C S S1$ C

1+ ~2+ 3 1+ ~2 3 1 0 2+ 3
S $2$

P—0)1 —M2 —O)3
(22)

where

«); =ru(k;, 1)= (k2 —m2+»'/2)'i, c~= c(co,), s&= s(co, )

One can easily check that the results (19), (20), and (22) are identical with those obtained by the use of the Matsubara
frequency method.
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