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A quadratic Lagrangian for the Einstein theory of gravitation is proposed. It gives a11 that is obtained
from Hilbert's (linear) Lagrangian and, in addition, the tracelessness of the Weyl conformal tensor.
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~here T p is the energy-momentum tensor and T is its
trace. A priori no relations are assumed to exist among
these four fundamental elements of the theory. As usual,
the curvature tensor is defined by means of the affine con-
nections and their first derivatives,

g-p„, =rp, ,—I „,+ r,,r:,—r,,I., (2)

Several scalar densities can now be defined from those
four tensors. %e define six such densities to build up our

In contrast to other field theories, and in spite of the
great effort invested in it, Einstein's gravitational theory
seems to resist attempts to quantize it. Perhaps the most
conspicuous difference between Einstein's and the other
field theories is the fact that the first is obtained from a
linear (in the Riemann tensor) Lagrangian. It is therefore
important to have a quadratic Lagrangian for the gravita-
tional field with similar structure to those of the other
fields.

Carmeli' has provided a quadratic Lagrangian for his
SL(2, C) gauge theory of gravitation. This theory, as is
known, is equivalent to Einstein's general relativity. Its
quadratic Lagrangian is invariant under the SL(2,C) group
and gives the gravitational field equations in the Newman-
Penrose4 form. Herrera has introduced some modifica-
tions to Carmeli's Lagrangian.

In this paper we propose a quadratic Lagrangian, inspired
by Carmeli s work, which gives the Einstein field equations
in their traditional tensorial form.

Let us have a Riemannian four-dimensional space with
metric g&", affine connections I py=I'„p, a geometrical ten-
sor satisfying C~pyq= —C~pqy, and a matter tensor T~py~ de-
fined by

Lagrangian:
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and is considered as a function of the independent dynami-
cal variables g P, I ~p, I ~p y, C pyq, and T»&. It is built of
three parts. (i) The first three terms constitute the matter-
free Lagrangian; (ii) the fourth represents the material
term; and (iii) the last two are the interaction between grav-
itation and rnatter with the Einstein gravitational constant K

as the coupling constant.
Now, performing the usual variational procedure with

respect to the components of the rnatter tensor T»&, we
obtain

C p, +KTp, ——R p, ,

and, from the variation of the components of the tensor

Here ay~~ is the Levi-Civita skew-symmetric tensor density
with values +1 and —1, depending upon whether ybpo. is
an even or an odd permutation of 0123 and zero otherwise,
and K is the Einstein gravitational constant. In Eqs. (5) and
(8) R pya is understood to be given in terms of It'p and
I "p y according to Eq. (2).

Then the Lagrangian density is defined by
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C»a and using Eq. (10), it follows that

C pa~=0

and

aI „= g ( „+ — „ ) (17)

Therefore, using the definition (1), we find

R is=K(T is
—~tg AT) (12)

where R ~=R1'
~p is the Ricci tensor. Furthermore, one

sees from Eqs. (10) and (11) that C»s is the Weyl tensor.
From the variation of the components of the affine con-

nections I p~ one has

a~Pea(R g~n) (13)

But, as is well known, from the definition (2) of the curva-
ture tensor it follows that

g Pv&R gee = O (15)

Hence, for any given p we have a set of 16 homogeneous
equations for the same number of quantities +~.s. Its coef-
ficient determinant is a homogeneous expression of the
16th order in the components of the Riemann tensor which,
in general, is not equal to zero. Consequently,

(16)

(14)

which are the Bianchi identities. These identities, along
with Eq. (13), give

Using Eq. (17) in Eq. (12) we obtain the standard differen-
tial form of the Einstein field equations.

No additional information is obtained from the variation
of the metric tensor components g~". This is so because,
through Eqs. (10) and (11), our Lagrangian becomes

4 P,aP Vy5 (18)

gPV~ g PV
/gal
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with a constant P .

(19)

I am thankful to Professor M. Carmeli for helpful discus-
sions and to A. Feinstein for useful comments.

and as a consequence of Eq. (17), no dynamical law can be
derived from it.~

In conclusion, the Lagrangian density (9) gives all that is
available from that of Hilbert. In addition, the traceless na-
ture of the %eyl conformal tensor C»q is also obtained
from it. Our Lagrangian has the advantage that it is more
similar, in its structure, to the Lagrangians of the other
fields, such as the electromagnetic field. It is worthwhile
noticing that it is, in its extremum value, given by Eq. (18),
invariant under a scale change, 7 namely, under the substitu-
tion
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