
PHYSICAL REVIEW D VOLUME 31, NUMBER 6 15 MARCH 1985

Axial anomaly in three dimensions and planar fermions
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The origin and implications of the axial anomaly in three dimensions for fermions are discussed.
Since the zero eigenvalue of the Dirac equation makes the partition function vanish, it is a singular
point. The presence of the zero eigenvalue in the Dirac equation makes the functional space non-
trivial topologically. An anomaly term is induced and a consistency condition emerges. The Hall
conductivity is quantized and parity-violating light scattering occurs.

INTRIUCTION

In (2+ 1)-dimensional space-time, the physical proper-
ties of a system can be very different from those in ordi-
nary (3 + 1)-dimensional space-time. The structure of the
chiral anomaly is one of those properties which are sensi-
tive to the dimensionality of space-time.

The chiral anomaly played an important role first in
the calculation of the two-photon decay rate of the neutral
~ meson. ' Later, its symmetry-breaking nature was real-
ized by Adler and by Bell and Jackiw. These calcula-
tions were done in 3 + 1 dimensions.

In one of the author's recent papers, it was shown that
the origin of the anomaly is due to the path-dependent
phase factor produced by the zero-eigenvalue solution of
the Dirac equation. Nonrenormalization of the anomaly
is easily understood.

In 2+ 1 dimensions, the anomaly exists in the ground-
state energy. ' This term violates parity invariance as
well as time-reversal invariance in first order of the
quantum-electrodynamic (QED) coupling ct. The connec-
tion of this term with the quantized Hall effect observed
in a two-dimensional metal was pointed out. The ob-
served quantized value of the conductivity agrees with the
theory's prediction.

The real dimensionality of space-time is 3+ 1 dimen-
sions. So an exact (2+ 1)-dimensional space-time cannot
be built. It is achieved only approximately. There are
many cases of approximate 2+ 1 dimensionality. They
include the surface of a metal, semiconductor, etc. ; gen-
erally, a boundary of two different materials has planar
structure. In these cases, microscopically there may be an
energy gap in an orthogonal direction to the surface. If
the energy gap along the orthogonal direction is infinite,
only one state, the ground state, in the orthogonal direc-
tion is allowed. Thus the system can be viewed as that of
(2+ 1)-dimensional space-time. The finite energy gap in
the orthogonal direction, on the other hand, causes the
number of independent fields in (2 + 1)-dimensional
space-time to be different from unity. This number,
which is called the number of flavors in high-energy phys-
ics, depends on the value of the Fermi energy. As the
Fermi energy becomes larger, the number of flavors be-
comes larger. This may be seen as the steplike structure
of Hall conductivity and will be discussed later.

Since the effective Hamiltonian induced by the chiral

anomaly not only breaks parity invariance, but also breaks
time-reversal invariance in QED, the physical implica-
tions of this term may be tremendous.

In the low-energy region, much lower than the
particle's mass, it is generally acceptable to use the
Schrodinger equation for the equation of motion for fer-
mions. But there is a special case where a Dirac-type
equation is necessary to represent the system even in that
energy region.

If two energy levels are involved in the motion, a linear
term with respect to the momentum can exist in the
system's energy. An energy-gap region of the two levels is
an example of this. The equation of motion in this case
becomes equivalent to the Dirac equation except that the
energy-momentum dispersion is different from the relativ-
istic form. The effective Dirac equation gives

E =(m +c P„~d Py +eP„Py)'

with constant factors c, d, and e, contrary to the relativis-
tic equation.

We study fermionic theory in the presence of external
electromagnetic fields and its physical implication for sur-
face phenomena. The existence of the zero-energy solu-
tion in the Dirac equation with a uniform external mag-
netic field and its nonexistence in the Klein-Gordon
(Schrodinger) equation is shown in Sec. II. The second-
quantized theory is discussed and the anomaly-induced in-
teraction is obtained in Sec. III.

Physical implications of the quantized Hall effect, light
emission and absorption by density fluctuations, and
parity-violating light reflection and transmission by a sur-
face are discussed in Sec. IV. Dimensional reduction
from 3 + 1 dimensions to 2+ 1 dimensions is also made
in this section. A summary is given in Sec. V.

II. SOLVING THE DIRAC
AND SCHRODINGER EQUATIONS

WITH A UNIFORM MAGNETIC FIELD
VVe solve the equations of motion for a fermion in

(2+ 1)-dimensional space-time in the presence of a uni-
form magnetic field. The Dirac equation and the Klein-
Gordon (Schrodinger) equation are studied and the two re-
sults are compared. A remarkable difference in the eigen-
values will be shown to exist. The Dirac equation has a
zero eigenvalue, but the Klein-Gordon (Schrodinger)
equation does not have such a zero-energy eigenvalue.
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The existence of the normalized zero eigenvalue solu-
tion to the Euclidean Dirac equation

1s

y —h /=0,
Bt

h =eAp+y y'(i 8; +eA;)
(2.1)

1 ~=l CT

2 2=lO

and satisfies

(2.3)

says that the eigenvalue of the Hamiltonian h should
change sign. Conversely, if h has an eigenvalue that
changes sign in the adiabatic approximation, there could
be a normalized zero-eigenvalue solution to the Euclidean
Dirac equation. Thus it is important to study the zero-
energy solution of the Dirac Hamiltonian.

Let us first study the following Hamiltonian Dirac
equation:

yJ(iA'BJ+eAJ. )g=y EP,
(2.2)

0 ~ 1 2= —lg P

1 ~ 2 0 (2.4)

(2.5)

'7 = —IXT ~

We use the following simple form of the vector poten-
tial which gives a constant magnetic field:

A representation for the y~ matrices in 2 + 1 dimensions
I

Then the Hamiltonian Dirac equation (2.2) becomes

0

AB1+ ifi02 —ieA 1+ed 2

—A'01+ i AB2+ ieA1+ eA 2

0 (2.6)

—a (y —yo) /22 2
I.

gp ——Npe Hp(a(y —yp» 0
e' (2.7a)

—a (y —yo) /2-2 2

f+ ——e

—a (y —yo) /22 2

=e

yp ——erik /eH,

N„H„(a(y —y, ) )

iN„ iH„ i(a(y —yp ) )
e', (2.7b)

N„H„(a(y —yp) )

iN„ iH„—i(a(y —yp) )
e', (2.7c)

Now it is easy to see that the solutions of the equation are

[—~'~, '+ e'H'(y —yo)'14 =E'0

The eigenvalues of the above equation are

(2.9)

It should be remarked that there is a zero-energy solu-
tion (2.7a) to Eq. (2.2) for arbitrary values of H. This
zero-energy solution is responsible for the phenomena
which is related to the degeneracy. The anomaly is one of
those interesting things.

Second, we obtain energy eigenvalues for a scalar field.
The equation (2.6) in this case is replaced by

where N„are constants and a=V'eH gp, g+, a. nd g
have the discrete eigenvalues

E =fieH(2n+1) . (2.10)

Eo=O

E+ „(ZfieHn )'~——

E „=—(ZReHn)'~

(n)1) .

The states are generally called Landau levels.

(2.8a)

(2.8b)

(2.8c)

There is a positive-definite zero-point oscillation eH, and
no zero-eigenvalue solution. Degeneracy of the states does
not occur.

So far massless particles have been discussed. The mas-
sive case is slightly different, since a nonzero energy gap
exists between the positive-energy values and the
negative-energy values. The Hamiltonian Dirac equation
(2.6), for the massive case, becomes

i681+ iAB2 —leA 1 +eA 2

—A'81+ iA'82+ ieA1+ eA 2

(2.11)

The y-dependent part of the eigenfunctions and their eigenvalues are

fo)
leap= (), Ep =m (2.12a)

fn)
i (ZeRHn)'~

(m +2eAHn )
'~ +m

(n —1)
E+ =(m +ZRneH)'~ (2.12b)
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in)
i (2eRHn)'

in —1)
m —(m +2efiHn)'

E = —(m +2fineH)'~ (2.12c)

where n is a positive integer. N and N' are normalization
factors, and

i
n ) are harmonic-oscillator eigenstates.

The zero-energy solution Itjo to the massless equation is
also interpreted as the eigenfunction of the massive Dirac
Hamiltonian with the minimum positive-energy eigen-
value m, since fo is the eigenstate of yo with positive
eigenvalue 1. There is no counterpart to this solution
which possesses the negative value —m. Thus there is an
asymmetry in the energy spectrum. For other eigen-
values, solutions are always paired and there is no asym-
metry between positive and negative energies.

The zero-energy solution t/ro, which was responsible for
the anomaly in the divergence of the axial-vector current
in two dimensions now gives the asymmetry of the spec-
trum. This asymmetry will be shown to be responsible for
the nonzero-induced current in 2 + 1 dimensions.

III. SECOND-QUANTIZED THEORY
AND CHIRAL ANOMALY

I

terms here.
It is useful to expand the field in terms of a complete

set of functions:

P= ga„(t)P„(x),

g= g b„(t)P„(x),
(3.4)

where

8$„=[y A +yj(ikdj+eAJ)]P„(x)
=i A„P„(x, ),

(3.5)

P„(x)[y A +yj( ibid'+eAJ)—]=iA„P„(x,) .

%'e assume that 3& do not depend on t, and derive a con-
sistency condition for a magnetic flux. Using the above
expansion, Z is written as

W =Py" (i fi"d„+eA„)g mPg . — (3.1)

In this section, we study many-body problems. The
fields, are quantized by the path-integral method. The
canonical method is also convenient for a fermion theory
and is used sometimes.

We investigate the theory described by the following
Lagrangian density in 2+ 1 dimension with external elec-
tromagnetic fields:

Z =f+da„(t)db~(t)

X exp —fdt's(b„c„~a~ i A,„b„a„—mb„a„)—

where c„~ is defined by

cnm d x Nn 1 0(i'm
2

(3.6)

(3.7)

In the presence of a nonzero fermion density, a chemi-
cal potential term pf g is added to the Lagrangian densi-
ty. The vector potential eAo in Eq. (3.1) is replaced with
eAO+p then. Thus it is sufficient to study Eq. (3.1) re-
gardless of whether the density is finite or zero.

Both quantum field theory and statistical mechanics are
formulated with Feynman's path-integral method. The
metric is Minkowski in quantum field theory and is Eu-
clidean in statistical mechanics. It is well accepted that
analytic continuation from one to the other can be made
without any problem. Although our argument is mainly
for quantum field theory, it may be applied also to statis-
tical mechanics.

The path-integral'representation of the Green's function
(or of expectation values) in Euclidean space is given by

b„(t)= g b„N~e

where X~ are the normalization factors and w„are deter-
mined by a boundary condition. 8'o is set at zero.

Now let us study a transformation

f dt P(x, t)~e ' fdt g(x, t),

f dt g(x, t)~ fdt P(x, t)e
(3.8)

The variables a„(t), b„(t) are decomposed further by a
complete set of the variable t,

im t
an (g) n +m

m

—f+dodge O(g, g),
(3.2)

and obtain the anomaly term which is connected with this
transformation. The time-independent components in
(a„(t), b„(t)), (a„,b„)[=(a„,b„)] are transformed as

Z = f+dgdge
where O(g, g) is a function of P and P. To know the
property of

Z= f+dodge (3.3)

is important. The corresponding quantity and its loga-
rithm are called, respectively, the partition function and
the free energy in statistical mechanics. Let us use these

an~ gdnmttm ~

b„~g d„b

where

d„=(Pe '
P ) .

The Z in Eq. (3.6) is decomposed into
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Z —ZOZ

where
r

Zp ——fQ da„db exp g(i A,„b„a„+mb„a )

and Z' does not depend on (b„,a„).
We rewrite Zo using transformed variables as

Zp= fQda „'db '
exp g(iA, „b „'a „'+m b„'a „')

(3.9) Zp =fQ da„"db "detd detd'd"

Xexp g(b „"iA„"a, „"+mb „"a„")

, (3.10)
where

(d')„=fd xP "P, (d")„=fd xP„P" .

For infinitesimal a(x), we have

detd =1+2i g P„ypa(x)P„',

(3.14)

=fQ da„db~(detd )exp g(ib„d„„k,„d„a detd'd" = 1 .
(3.15)

+mb a„)

=f ff da„db (detd )exp g[b„(p„e' p ge' +p )a

Thus we have

Zo =exp 2i g[P ypa(x)$& ]
n

+mb a„] (3.11)
X f ada„"„db„"exp g(ib „"A,„"a „"+mb „"a„")

We make another transformation from (a„,b„) to
(a „",b „") in such a way that the path dependence separates
in Zo in the following way:

Wo= 2i g—[P yoa(x)(t'„]+ Wp

(3.16)

+n n ~n n

gb„P„=gb „"P„",

where
\

~Y0+~ Y04 ~« -q «~«

''YO m ''YO ~ ~ «c

(3.12)

(3.13)

where the following definition was used:

Wp ———ln f ada „"db „"

Xexp g(ib „"X„"a„"+mb „"a „")

The term

g [P„ypa(x)P„']

(3.17)

Then Zo becomes is calculated by the prescription given by Fujikawa, '

g (P„yoa(x)P„')= lim g (P„ypa(x)e " P„')
reg M —moo

lim g (P„ypa(x)e Q„')
M —+oo

= lim g(e ' ypa(x)e + ~ e' )
M —+00

~ (2~)~ M M
ypa(x) .

=fdx a(x) —F~2(x) .
h

(3.18)

In Eq. (3.16), Wp 1s a local functional of variables but
the first term is not. We assign the two nearby points P
and I' in Fig. 1 to the position of variables before the in-
finitesimal transformation and after the transformation
specified by Eq. (3.16). Wp is defined locally on P', but
the first term is defined on both points P and P'. Thus
the first term depends on the path.

A finite transformation. , is expressed by a multiplication
of the successive infinitesimal transformations. Then we
have

where a(x) is finite and Wp is a local functional. By a
transformation along a closed path, which is described in
Fig. 1, a(x) becomes 2m and Zp must agree to Zp. Oth-
erwise Zo vanishes due to destructive interference. Thus
the path-dependent term in Eq. (3.30) is

e
2fdxa(x) —F~2(x) ~.,„. ..=2m Xinteger,

(3.20)
1 hf dxF~2(x)= ——Xinteger .
2 8

Wp —— 2i fdxa(x—)—F&2(x)+ Wo
h

(3.19)
The singularities inside the closed path, which are
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described by crosses in Fig. 1, give these nonzero values.
Equation (3.20) is a condition of a magnetic-flux quantiza-
tion. "

Next we study a change of action which is produced by
an adiabatic change of A&. It is convenient to calculate
this in the Euclidean metric space. Using the Euclidean
Dirac operator

g=y (ifiBO+eAO)+y'(ikey;+eA;),

which is anti-Hermitian, a complete set is defined as

gp„=i A,„(t(„.
Then we can represent g+ m as a matrix:

(P+m)( =(iA(+ m)5(

Then Z becomes

Z=Det(g+m)=g(iA(+m) .
I

(3.21)

(3.22)

(3.23)

(3.24)

FIG. 1. The solid line shows the path along which the chiral
transformation is defined. P and P are the positions in the
internal space before and after the transformation. The crosses
show the singularities.

A small change of A& leads Z to be changed to Z',
which is given by

Z'= Det(P +y('5A„+ m )

1=Det(g+m)exp trln 1+ y"5A&+ (7Z

The induced current density is derived from the above
equation:

6
Jp

IJ

1=Z 1+tr y"5A„
+m

Thus we have'

6 lnZ =tr y"5Ap
1

g+m

1=tr (g+m) y"5Ap

=tr (g —m) y"5Aq
1

=tr (g —I)(—)f ds e'~ 'y"5A„

Q (2m )
I

&& fdk I e ' tr[(g m)e@ 'y—('5Aq]e

f "d"—
0 (2n )

(3.25)

d"~F ~+0
4~% m

(3.27)

The first term in the above equation' is independent of
mass m. The second term, on the other hand, depends on
the mass m and vanishes in the large-mass limit.

In the previous section, it was shown that the asym-
metry between the positive-energy solution and the
negative-energy solution exists in the Dirac equation
(2.11). Since the solution, Eq. (2.12a), is the eigenstate of
pQ there is an asymmetry in the electric charge. This
electric charge can be seen as the induced charge density
jo in Eq. (3.27). Similarly, the induced current density j„
can be understood from the asymmetry of the solution of
Dirac equations which are obtained by replacing (t,y)
with (x,y) in Eq. (2.11).

We present now a direct calculation of j by using the
complete set of the eigenfunctions of

g y y"(iABp+eA„) —my"
p+x

for a constant electric field in the y direction. The spec-
trum has an asymmetry between the positive and negative
values, just as the spectrum of Hamiltonian, with a con-
stant magnetic field, has asymmetry, Eq. (2.12). This
asymmetry causes the induced current, the first term in
Eq. (3.27), to appear. The complete set g„ is defined by

)& fdktr[( —m+g) g [y"y"(iAB&+eA&) —my"]g„=i',„g„,
p+x

where we assume

(3.28)

A~ =Ay ——0,
(3.29)

1 e(' ('5A F, +0 —5A . (3.26)
1

4M " ~ m

AQ ——yE .

Note that the operator is anti-Hermitian in Euclidean
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space since the following relations are satisfied: k =&'"'ri [X —Xo(k)]

Since Eq. (3.28) is almost equivalent to Eq. (2.11), it is
easy to see that g„ is decomposed to

where

Akyo(k)= —.
eE

The induced current can be written as

(3.32)

1j„=eA y"

f gk g Tr[&i(k/A)xgt& i(A/—A')xg ]
2m — 2m. — „+i p„

' f" gg f" gkg Tr[q„[y —yo(k)]g. [y —yo(k)]J

' f ~~+ . f 4'oTr((n. [X —Xo«)]n. [X —Xo(k)] 1

e ~ 1 1 eE
ZEST C0 A, + ltu~ 2' fl

oo 1 1 1 1 1+ . + g . + . + . +
A, +im A, +im —„0 I+ip„, A+i@„—, Lip„,— Aip—„.—

. e E
2mB

(3.33)

In the above equations, we have used (1) the normaliza-
tion condition of the function g„(y —yo) and (2) the fact
that the contributions from the paired solutions are can-
celed. Thus the result Eq. (3.27) is obtained by an intui-
tively clear method. It is obvious that the existence of
asymmetry in the spectrum caused the induced current to
appear.

IV. PHYSICAL IMPLICATIONS

In this section several implications of the anomaly-
induced interaction, which was obtained in Sec. III, are
discussed. The quantized Hall effect, a light emission due
to a density fluctuation, a parity-violating light reflection,
and transmission, is studied.

Before we go on into detailed discussions about
phenomenological applications, we describe two indepen-
dent problems. The dimensional reduction from the 3 + 1

to the 2+ 1 dimension is one. The derivation of the ef-
fective Dirac equation and Lagrangian for the equation of
motion for the correlated two levels is the other.

The dimensional reduction is made in a situation where
there is an energy gap in the z direction. The
2)&2 y& ()M=O, 1,2) matrices in the 2+ 1 dimension are
derived from the 4X4 y& matrices in the 3+ 1 dimen-
sion.

The derivation of the effective Dirac equation and La-
grangian which is satisfied by nearby two levels is similar
to that of the effective Lagrangian for bound states in
high-energy physics. A state in one level is regarded as a
bound state. Since the state has a spatial structure, there
may be some physical cutoff in the system described by
the effective Lagrangian. However, the result which is in-
dependent of the cutoff should be physically accepted.
The electromagnetic coupling in the effective Lagrangian
is also uniquely determined, only from the charge.

Some phenomena which we will discuss have been seen
experimentally, but the others have not been seen so far.
We hope that they will be observed.

We study the dimensional reduction in the following
Lagrangian:
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W = j/Jy (l R'8p+ Ap+Bp )g

+PyJ(i fiB) +Aq +S~'")@

+gA'p+ ~' (4.1)

where a fermion f behaves in a two-dimensional plane (xy
plane) due to a boundary condition. The electromagnetic
field Az is not confined in a plane, but moves the full
(3+ 1)-dimensional space. A scalar P may or may not be
confined in the plane. W' depends on A„and P.

We assume that the confining condition is given
through the external fields Bp"(z) and B3"(z). It is as-
sumed that Bo" and 83" depend on only the variable z.
This is an example to obtain a planar structure and may
be general enough. If the wave equation in the z direction

(4.4)

is the solution of the equation if u is the solution. Ma-
trices a ~~2~, which are defined by

a; =fdzut (z)y y'u5'(z),

are Hermitian and nondiagonal in the following standard
representation of y„matrices:

where u~ (z) (5=1,2) are the two independent solutions
of Eq. (4.2) with the same eigenvalue A,;. From the sym-
metry of the equation, namely the operator on the left-
hand side commutes with y &

and y2,

lpga& 1P2fe e u

I ypy3[EAB3+B3 (z)]+Bp"(z) I u; =A,;u; (4.2)

1 0
7o= 0 1 ~ 'Vg=

o-o

—o.. 0

f&(x,y, z, t)= g u~' (z)gs"(x,y, t),
P&(x,y, z, t)=ggs"(x, y, t)u~" (z),

/=1, . . . , 4, 5=1,2,

(4.3)

has discrete eigenvalue, an eigenfunction which corre-
sponds to this discrete value has a finite support. The
other direction, the x and y direction, does not have an
energy gap and is the same; thus the (2+ 1)-dimensional
phenomena, if the energy scale in the z direction is less
than a gap energy, is expected. We expand g as

where

0 1 . 0 —i 1 0
0 ' i 0 ' 0 —1

After we substitute Eq. (4.3) into the action, the terms
which express the discrete level states in the action

f dtdxdydzW

reduce to

y fdt dx dy [g; (xy, t) [(iABp+eA p)+a &(i AB&+eA, )+a2(iRB2+eA2)+A, ;+A 3+yP]g;+ fdz W'], (4.6)

where

Ap ——fdz Apu (z)u(z),

a i A i
—— dz A, u (z)y py iu (z),

a2A2 —— dz A2u (z)ypy2u (z),

A3= dzA3u (z)ypy3u(z),

P = fdz Pu (z)y, u (z) .

(4.7)

a& ——eio. o'+eio. o-

(4.8)
a2 dio o+——fio o'.,

where o.; are the Pauli matrices.
Whether coefficients c, d, e, and f are of the simple

Dirac equation depends on the function u(z), hence on
the boundary condition.

We define

If A& and P are smooth functions of z, much smoother
than that of u(z), Az and P becomes A& and P at the
constant z variable zp, where zp is the position of a plane.
The a; can be written as

0 3 1 ~ 1 2 ~ 2=0, P =lo, f =lo

Then Eq. (4.6) becomes

(4.9)

f dtd dyx@[y (ifidp+eAp)+(y'+ey )(ifiB~+eA&)

+. (dy +fy')(ifiB2+eA2)+A, ,y +y eA3g+g'f;f;p+ fdzW' (4.10)

f dx dy(B(A2 —B2A, )=——&&integer .
2 e

(4.11)

This is the action in the (2+ 1)-dimensional space. We
can apply the results of the previous section, if the energy
in the z direction is much smaller than the gap energy.

The consistency condition Eq. (3.20) now becomes

I

If the z dependence of 3; is negligible, then 2; in the
above equation is replaced with A;.

Next we investigate the effect of additional magnetic
field on the system of planar electrons. A strong magnet-
ic field in an orthogonal direction to the planar electrons
leads electrons to split into many levels, as was discussed
in Sec. II. The field operators Pz(X) are used for express-
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ing the state in N level at the center position X.
For our study the following Hamiltonian is assumed

E1 ~1 P1
~=(41 0Z) g1 .E2 'P2

X,X;X',X'
C(N, X;N', X')Q~(X)f~ (X') . (4.12)

0

+(1}j1A) c"irg

The second term in the above equation shows the effect of
electrons scattering with scatterers. The functions
C(N, X;N', X) may be decreasing with respect to

I
X —X'

~

. Thus it would be reasonable to write +(01 02)
C ih'

Qy

(4.15)

g C(N, X;N', X')f~ (X')

=Cp(N, N')g~ (X)+C'1 (N, N') p~ (x)
~&s

In writing the above equation, parity conservation is as-
sumed and the diagonal parts in the least two terms of the
right-hand side are set to be zero.

The Lagrangian density by which the previous Hamil-
tonian is derived is

a2
+Cp' '(N, N') $1v (x)+

2

where

(4.13) W =P[yo(i ABo+ eo) d/y—'(i AB~+f ) m]/, —

where

(4.16)

Cp(N, N')= gC(N, X;N', X'),
X'

C', (N, N )= g C(N, X;N', X')(X —X')',
X'

C ' '(N, N') = y C(N, X;N', X')(X —X') '(X —X) ',
X'

(4.14)

1
0

0
0 0 l

» —' l 0

0 1

—1 0

4=(41 A)yo

ImC' —keC'
(d) =

ImC —keC
(4.17)

The contributions of C2, C3, . . . to a large-scale proper-
ty of the higher system may be less important than that of
C, , because the higher derivative of P in Eq. (4.13) is
smaller than the first derivative of g if the wave length of
g is large. A simple dimensional analysis also suggests
that C& is most important in that region. The induced
current which depends on C2 is proportional to the spatial
derivative of the electric field if the C1-dependent current
is proportional to the electric field from the dimensional
analysis.

Localization of the electrons' may suggest that
l ~ ~ ~ I g

0 ~ 0
g

C1' ' (i&1) vanish. If C&' ' vanish exactly, there is
no induced current. However, the nonzero value of C1,
even though the value is very smaH, leads the nonvanish-
ing induced current to exist. The induced current has a
quantized value. A perturbative treatment of C2 does not
change the result.

The wide separation of energy levels, which may occur
under the strong magnetic field, leads us to study the mix-
ing of only two nearest-neighbor levels. We do not need
to consider the mixing of two levels with others, especially
when the Fermi energy is located in their gap region.
Hereafter we concentrate on this case.

The Hamiltonian density is given by

and the numerical constants eo, m, f; are linear combina-
tions of E1, Eq, 61.

The coupling of P with the external electromagnetic
field is determined by the usual minimal coupling. Thus
we have

W =g[y p(i RBo+eAo+eo) d$y'(i RBJ
—+f, +eA, ) m]g . . —

(4.18)

The above Lagrangian density is the same as the ordinary
Dirac equation except the numerical coefficient d, . As
we will see this factor does not change the anomaly-
induced current.

The states 1( 1 and li 2 are actually generated by the exter-
nal magnetic field. The vector potential in Eq. (4.18)
should not include the above magnetic field, in order to
avoid double counting. Only the additional term, by
which a small perturbation of the system is produced, is
put into Eq. (4.18). Then the system's response against
the small change of the external fields is obtained. We
understand the vector potential in Eq. (4.18) to be this
small term.

The induced current is obtained for the system
described by the Lagrangian density, Eq. (4.18). We have
the following induced current:



K. ISHIKA%'A 31

2j„= «„+~+O(e),
4~X "

where

e=det(d) .

(4.19)

(4.20)

2

J„=X Vy,x I y ~

2

conductivity =X—
(4.24)

Thus in the vanishing d limit, which corresponds to the
electron's localization, the Hall current does not vanish.

Since the time derivative of the particle's position

(r, )—= (id pxt(tx)xg, (tx))
is proportional to d'J, the particles do not move long dis-
tances if d'~ are infinitesimal. They are localized. The
nonzero Hall current in the localized region is understood
to be carried by phases of the fields but not by particles.
In this sense, the HaH current may be similar to the
Josephson current.

Now we study the physical applications.

A. Quantized Hall effect (Ref. 16)

The external electric field is added to the parallel direc-
tion (y) in addition to the external magnetic field to the
orthogonal direction (Z). The anomalous term in the
current in the vanishing d limit becomes

and behave as shown in Fig. 2. These behaviors have been
observed in recent experiments. '

B. Light emission by a density fluctuation

We replace both of the external electromagnetic fields
or one of them with the nonzero density fluctuation or the
nonzero momentum fluctuation of the system which is
produced by the external condition. These external vari-
ables are represented in the theory by adding

p(x)A i; (x)A— e'0 (4.25)

to the Lagrangian. The Lagrange multiplier p(x)
represents the density fluctuation and p;(x) represents the
momentum density fluctuation. The p(x) plays the same
role as Ao(x) and p;(x) plays the same role as A;(x). The
equivalent phenomenon, known as the Hall effect, is ex-
pected to occur.

We study light emission by the induced current. The
current density is given by

2

j;= F ' (l&i) .
2wfi

For the external electric field in the y direction,

FO/ y Ox 0

Then the current in the x direction is given by

(4.21)

(4.22)

2

J;(x,y) =X eo~j BJp(x,y) .
LJ J

The charge density is given by

e
p(x,y) =N (B~p2 —B2it~) .

h

(4.26)

(4.27)

h
dyI' y

e
y (4.23)

These currents and charges become sources of the
Maxwell equation.

C. Parity-violating light scattering

Thus at each gap region, the current equation (4.23) is
added. The total current and conductivity become

Integrating Eq. (3.26) with respect to A„, we have
2

fdt dx dye„&A "F"t' (4.28)

QZ

h

as the action. This can cause parity-violating light
scattering. A simple way to see the effect is to see a re-
flection and a transmission of the hght along the z direc-
tion and to study a rotation of a polarization plane.

%'e study the maxwell equation using the vector poten-
tial in the Ao ——0 gauge. We study the following equation,
which is free except on the surface z =0

2

8, A, = 5(z)iB,A2,
h

2

a —'
a, ' A, = —'

S( ) a, A, ,t (4.29)

F01'mI

2
2

FIG. 2. The behavior of the Hall conductivity o.„~ is drawn.
The value is the {e )n)&&integer in the gap region. In the tran-
sition region, one unit is added to o.„~.

We solve the equation with a boundary condition where a
plane wave with a polarization e is coming to the sur-
face, namely
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+( I)a i (kz —wt), C(i)I i ( —kz —mt)=e a~e I

for z ~0, and

(j) i (kz —mt)
J

for z (0, where the linear polarization vector e" is

e"'=(1,0,0),

e'"=(0, 1,0) .

By substituting Eq. (4.26) in Eq. (4.25), we have

(4.30)

(4.31)

I e
b

2
. pa)

2

2 ——,

2

b2 ——c2 ——— i
h

-2a) )
2

2 ——,

(4.32)

2
e1+—,

H'= —eEz (4.33)

is odd against parity transformation. However, if oppo-
site parity states are degenerate, the nonzero electric di-
pale moment can appear. Due to the degeneracy of the
Schrodinger equation with the Coulomb potential, the
electric dipole moment of the n =2, I, =O hydrogen be-
comes nonzero. The symmetry-breaking term exists due
to the degeneracy of the opposite-parity states.

V. SUMMARY

The importance of the zero-energy solution of the
massless Dirac equation has been discussed. The zero-
energy solution was shown to exist, to cause the asym-
metry of the spectrum of the massive theory, and to break
the symmetry of the Lagrangian.

The axial anomaly in even dimensions is due to the ex-
istence of the singularity in the partition function and the
free energy which is produced by the vanishing eigenvalue

The effect of the parity violation is seen in the coefficients
b2 and c2. It may be interesting if this effect can be seen
by an experiment.

It is amazing to see the parity-violating phenomenon in
the order of the electromagnetic interaction strength.
However, a similar phenomenon has been known a long
time.

One is an occurrence of permanent electric dipole mo-
ment in the hydrogen atom' in the nonrelativistic ap-
proximation. The first-order energy perturbation due to
the external electric field vanishes generally for parity-
conserving unpeturbed Hamiltonian systems, since the
perturbed Hamiltonian

of the Dirac equation. The same solution is interpreted as
that of the zero energy of massless Dirac theory and leads
the spectrum to have the asymmetry in the massive Dirac
theory in odd dimensions. Due to the asymmetry, there
appears the induced current and the induced effective La-
grangian which violates parity invariance as well as time-
reversal invariance.

The simplest, but macroscopically most important,
theory, QED, has been discussed. Inclusion of other in-
teractions such as quantum chromodynamics, the
Glashow-Weinberg-Salam unified electroweak theory, or
the Georgi-Glashow grand unified theory is possible.
Since the structure of the fermion zero-eigenvalue solution
is sensitive to the structure of the Lagrangian, a classifica-
tion based on topological argument is needed. In fact, the
several relations' between the zero eigenvalues and the to-
pologically invariant quantity is well known. Although
the relation is that of classical theory, it can be applied in
the quantized theory too.

A remarkable property is that the anomaly-induced in-
teraction is irrelevant to the ordinary symmetry breaking.
The term Eq. (3.26) is induced in the theory described by
the Eq. (3.1) as the mass-independent term.

The effective coupling in the unified model is reduced
by the large mass of the vector meson. The anomaly-
induced term, on the contrary, is not reduced by the large
mass. The induced interaction is determined from the
structure of the Lagrangian.

The induced action, which is obtained by integrating
Eq. (3.26),

2h f dtdx dy e„„pA~B At', (5.1)
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breaks parity invariance in the strength of QED. The im-
plication of this term, other than the one discussed here,
might exist in a wide area.

The existence of the degeneracy is very critical in our
argument. A Dirac-type equation was used in describing
the electrons of low energy. The relativistic effect is not
the important factor, but the degeneracy which is ex-
pressed by the Dirac equation is the important factor. We
may use the Schrodinger equation if we treat the degen-
eracy correctly.

The explanation of the quantized Hall effect seems to
us a little complicated in the ordinary method of solid
state physics, ' contrary to our simple explanation. This
may be related to the treatment of the degeneracy.

As a summary, the anomaly-induced interaction Eq.
(5.1), which violates parity, and the consistency condition
Eq. (3.20), were shown to exist in the system of planar fer-
mions. They are produced by the zero-eigenvalue solu-
tion. The existence of this kind of solution in the uniform
magnetic field was shown explicitly. The physical impli-

. cations were also investigated.
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