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For purely hadronic processes, the standard connection between spin and statistics as well as
separate invariances under charge conjugation, parity, and time reversal are shown to be conse-
quences of self-consistency in topological particle theory.

I. INTRODUCTION

In the preceding work' (referred to hereafter as FJ) the
phases for zero-entropy terms in the topological expansion
were determined through systematic enforcement of the
requirements of pole factorization, Hermitian analyticity
and crossing symmetry. In this paper we investigate the
spin and statistics properties of these zero-entropy terms
and also their invariance properties under parity, time-
reversal, and charge-conjugation transformations. All
these properties are shown to follow from self-consistency
considerations and a knowledge of the amplitude phases
derived in FJ.

In Sec. II the theory is shown to obey the standard spin
and statistics relations. The proof differs considerably
from an S-matrix proof of spin and statistics given a
number of years ago by Stapp, since these topological
amplitudes are not unitary at the zero-entropy level. We
also show (Secs. III, IV, and V) that the zero-entropy sum
is separately invariant under parity, time-reversal, and
charge-conjugation transformations. The zero-entropy
level and higher corrections arising from connected sums
of these zero-entropy terms represent hadronic processes
so we have been able to prove the existence of the stan-
dard discrete symmetries for strong interactions as well as
the standard statistics. It should be emphasized that these
symmetries were not built into the theory. Only require-
ments of self-consistency, pole factorization, crossing
symmetry and Hermitian analyticity are used together
with a standard discontinuity equation which embodies
the dynamics. Again these results should be contrasted
with Stapp's original work where the product of these
three symmetries was shown to hold for the full unitary S
matrix.

The discussion of the discrete invariances is carried out
in the framework of the topological bootstrap theory.
After defining the invariances we simply investigate
whether the amplitude for a process has the same absolute
value as the appropriately transformed process. It is not
therefore necessary to define the action of these symmetry
transformations on individual incoming or outgoing state
vectors. Thus many tiresome phase questions are avoided
and yet any physically observable phases (such as those
associated with intrinsic parities ) are unambiguously evi-
dent.

The study of electroweak processes within the frame-
work of the topological theory shows that the ampli-
tudes for such processes appear above the zero-entropy
level where the discrete symmetries no longer hold
separately. The topological theory thus provides a basis
for understanding the presence of the separate discrete
symmetries in certain (strong) processes as well as their
absence in other (weak) processes.

II. SPIN AND STATISTICS
FOR ZERO-ENTROPY AMPLITUDE

Each term in the zero-entropy sector of the topological
expansion corresponds to a different self-consistent zero-
entropy amplitude for the particular scattering process be-
ing considered. A process is defined by giving particle
types, momenta, and spin states for the process. The indi-
vidual terms which are summed in the expansion corre-
spond to topologically inequivalent zero-entropy ampli-
tudes for the process. This summation involves two parts:
(1) a sum over all possible spin-patch orientations for a
given graph, (2) a sum over inequivalent graphs for the
same process. For a particular process, we shall represent
these two sums over zero-entropy amplitudes in the topo-
logical expansion in the following way:

where as in FJ the patch structure for the amplitude is
denoted Iz„. ztcI and the variables A, . . . , IC denote
the momentum, spin state, and flavor content (or type) of
each particle in the process. The summation over I', in
(2.1) is over inequivalent graphs and Pt is an appropriate
permutation of the variables in each case. As indicated in
Sec. II of FJ (see also Stapp and Chew and Poenaru ) the
graphs to be included in the sum over i in (2.1) are those
which differ from each other by more than just a cyclic
permutation of the variables. The cyclic permutations of
variables associated with a given graph give rise to
equivalent amplitudes differing at most by a phase. This
is the phase denoted ~ in FJ which depends only on the
cyclic order of the variables. A central issue of this paper
is the determination of which permutation (more specifi-
cally which cyclic permutation) is to be used for each
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term in the i sum of (2.1). This will in turn determine the
spin-statistics properties of the amplitudes. Of course,
one of the amplitudes in (2.1) can be specified with an ar-
bitrary cyclic order for its variables, but after that the
cyclic order of variables for the remaining amplitudes is
not arbitrary.

Let us first focus on the permutation summation over i
in (2.1). Since the graphs as discussed in FJ are made up
of quark and diquark lines we can conclude that ampli-
tudes for processes that do not involve any baryons or an-
tibaryons must involve either all mesons or all baryonia.
In these two special cases the ~ factor is the same for each
cyclic order of the variables for each graph so the i sum
of (2.1) has no ambiguity. Up to a cyclic permutation the
graph determines the permutation P; and the amplitude is
invariant under cyclic permutations.

We may readily verify that for amplitudes of the type
just mentioned —all mesons or all baryonia —the mesons
and the baryonia obey Bose statistics. To see this, let us
suppose that particles 8 and J are 'the same type. Then
the sum of amplitudes in (2.1) must consist of pairs of
terms with 8 and J interchanged. The sum (2.1) is thus
clearly unchanged when the variables 8 and J are inter-
changed implying Bose statistics.

When baryons and antibaryons are present in the ampli-
tude the overall sign or ~ factor for the amplitude will in
general depend upon which cyclic permutation of vari-
ables is used for a given graph. We recall from FJ that
r = + 1 if the amplitude begins its cyclic order with a di-
quark line and ~= —1 if it begins its cyclic order with a
single quark line. It is useful for this discussion to intro-
duce an amplitude with abbreviated variables of the type
shown in Fig. 1. The external lines in Fig. 1 actually
denote clusters of particles consisting of a single baryon or
antibaryon with an arbitrary number of mesons or
baryonia. The dot in Fig. 1 designates the beginning of
the cyclic order for the amplitude, so in this example we
would write the amplitude A (1,2, 3, . . . , a, P,y, . . . ). The
variables 1,2, 3, . . . , a,P, y, . . . designate the momenta,
spin states, etc., for the baryons and antibaryons within
the cluster. The variables describing the mesons and
baryonia which may be present in the various clusters
have been suppressed. This streamlined notation is espe-
cially serviceable for our purposes because we are interest-
ed mainly in the r phase of a given amplitude as a func-
tion of the cyclic order of the variables as given by the dot
in Fig. 1. The ~ phase for the amplitude is completely
specified by indicating between which two external lines
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FICx. 1. Amplitude with baryon or antibaryon clusters.

Pk(a, P,y, . ..)

FIG. 2. Same process as Fig. 1 but with particle lines per-
muted.

the dot is placed in Fig. 1. From the way ~ is determined
(~=+1 depending on whether a diquark line or a single
quark line starts the order) we can see that shifting
mesons or baryonia from one cluster to another does not
change the value of r once the location of the dot is given.
In short, only the cyclic order of the baryon and anti-
baryon variables is relevant for determining the value of ~.

We now consider different terms or graphs in (2.1) in
which the baryon and antibaryon clusters have been per-
muted. Suppose, e.g., we take as the first term in our sum
the amplitude in Fig. 1. Then suppose we have another
graph or term contributing to (2.1) as in Fig. 2, which has
a common discontinuity with Fig. 1 but with the particle
lines permuted. The dashed lines in Figs. 1 and 2
represent the variable in which the common discontinuity
occurs. In Fig. 2, P; denotes some permutation of the
lines 1,2,3 and Pk some permutation of the lines
a, i3, y, . . . . (We shall consider here only permutations of
the lines which are a product of two permutations for
reasons that will become clear shortly. ) We note that we
are assuming that Fig. 2 and Fig. 1 correspond to the
same process so we are assuming meson and baryonia
states must be the same for each although some of these
might be associated with different clusters in the two
terms. The question is where should the dot go in Fig. 2
if it is to be added to Fig. 1~

To answer this question we shall invoke the basic re-
quirement of the self-consistency of the zero-entropy am-
plitudes in satisfying a discontinuity equation of the form
(2.1) of FJ. We begin by making several observations and
remarks.

(i) Wherever the dot is placed in Fig. 2 we obviously
will obtain an amplitude whose variables represent either
an even or an odd permutation of those in Fig. 1 which
have the order (1,2, 3, . . . , a,P,y, . . . ). We shall see that
adding amplitudes whose variables are even permutations
of one another is the self-consistent choice.

(ii) All ways of inserting the dot in Fig. 2 in such a way
that results in an even permutation of variables relative to
Fig. 1 give the same amplitude. This is because moving
the dot past an even number of baryon or antibaryon clus-
ters does not change the amplitude. Moving the dot past
any one cluster changes the ~ factor by a minus sign so
after an even number of steps one returns to the same am-
plitude. Similarly all ways of inserting the dot in Fig. 2
which results in an odd permutation of variables relative
to Fig. 1 give the same amplitude.

We shall now show that adding zero-entropy ampli-
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A(1,2, 3, . . . , a,P, y, . . . )

+(—1) ' A(p;(1, 2, 3, . . . ),Pk(a, P,y, . . .), (2.2)

where the indices i and k are two-valued denoting either
even or odd permutations (recall that moving the dot past
a cluster produces a minus sign). The phase factor in
front of the second term in (2.2) in effect designates where
the dot should be placed in the graph of Fig. 2 when add-
ing it to that of Fig. 1. This same factor ( —1) ', of5k+1

course, must also be inserted in the expression for the
discontinuity of (2.2) which results from adding the
discontinuities of Figs. 3(a) and 3(b). However, the
discontinuity formula can also be written as a bilinear
product of sums of other zero-entropy amplitudes for pro-
cesses involving the intermediate states. The term in this
bilinear product corresponding to the process (intermedi-
ate state )~(final state), where the final state is defined as

c
b
0

(a)

P;«,z,~, ...) Pk(ct, P,y, " )

Pj (a, b,c,

(b)

FICx. 3. Discontinuity graphs for Figs. 1 and 2.

tudes whose variables are even permutations of one anoth-
er results in self-consistency with respect to the discon-
tinuity equation (2.1). Afterwards, we shall indicate that
other conceivable choices for the permutations in the sum
are not self-consistent.

We have put the variables in Figs. l and 2 into two
groups (1,2, . . . ) and (a,P,y, . . . ) corresponding to a
common discontinuity for these two graphs indicated by
the dotted lines. Although we have suppressed the meson
and baryonium variables in these amplitudes we assume
the same variables for these states are associated with the
same two groups of variables for both Figs. 1 and 2. %'e
shall take the common discontinuity indicated above
across the same intermediate state, which in the case of
Fig. 1 we shall designate by the variables (a,b, c, . . . ) and
in the case of Fig. 2 by some permutation Pj(a, b, c, ) of
these variables. These planar discontinuities- are depicted
in Figs. 3(a) and 3(b) for the individual terms, where we
have arbitrarily placed a dot in Fig. 3 above the group of
particle lines corresponding to the variables P;(1,2, 3, . . .).
This dot will, in general, have to be moved when cornbin-
ing the discontinuity of Fig. 3(b) with that of Fig 3(a)., as-
suming the location of the dot in Fig. 3(a) to be fixed. As-
suming that the correct prescription is to add amphtudes
whose variables are even permutations of one another we
would have for the two amplitudes of Figs. 1 and 2 the
sum

the one involving the (1,2, . . . ) clusters is just the sum:

A+(1,2, 3, . . . , a, b, c, . . . )

+( —1) " A+(P;(1,2, 3, . . . )PJ(a, b, c, . . . )) (2.3)

using the same even permutation rule as was assumed for
the original amplitude and the plus sign refers to above
the cut as in FJ. The term in the product corresponding
to the process (initial state)~(intermediate state) is the
sum:

where PJ (. . ,c,b, a. ) is just the reverse of PJ(a, b, c, . . . ),
and the minus sign refers to below the cut. Clearly I'J
has the same evenness or oddness as a permutation as I'J.
has. The self-consistency of taking even permutations in
the zero-entropy sum is then simply proved by the obser-
vation:

S; +1 5k+&
(

)5;k+1 (2.5)

It can be readily shown that the rule of adding amplitudes
whose variables are even permutations of one another is
also self-consistent in the special case where the Pk per-
mutation is the identity. In this situation there may be
four terms in the expression for the discontinuity.

Qne cannot achieve self-consistency using a sum of two
amplitudes whose variables are odd permutations of one
another since the additive plus one in exponential of each
factor in (2.5) would be missing and there would be no
equality.

Having achieved self-consistency adding amplitudes in
(2.1) with dots placed so that only even permutations of
variables occur, we must now ask whether self-consistency
can be achieved with any other rule for dot placement.
We have seen that an odd permutation rule is not self-
consistent. The amplitudes we are adding only differ
from one another by permutations of the variables so the
rul~which must be general enough to work for any
process —can only specify which relative permutations to
use in generating the sum. We emphasize that the value
of a given amplitude is determined once we specify wheth-
er it has an even or odd permutation of variables with
respect to some reference amplitude. So the only question
remaining is whether any self-consistent general rule can
be given for summing zero-entropy amplitudes which can
give a mixture of even and odd perrnutations of the vari-
ables.

The only rule of this type that can be given is one
where, for example, the dot is placed in each zero ampli-
tude at the same place with respect to a given cluster.
Thus we might have a rule in which the dot is always
placed adjacent clockwise to cluster 1. Rules of this type
will produce in general a sum of zero-entropy amplitudes,
some of which have an even permutation of variables with
respect to some reference amplitude and others an odd
permutation. Simple examples can be given, however, to
show that such rules are not self-consistent with respect to
the discontinuity relation. Thus in general the only self-

A (. . .,c,b, a, a,P,y, . . . )

+( 1)sk"A (p, (. . ,c,b, a.)pk(a, p, y, . . )), (.2.4)



31 DERIVATION OF DISCRETE INVARIANCES (T, C, AND I'). . .

FIG. 4. Sum of graphs indicating Fermi statistics for baryons
and antibaryons.

consistent rule is the even-permutation rule for the vari-
ables.

Finally we verify that our results in this section imply
the normal Fermi statistics for baryons and antibaryons.
We first note that the clusters alternate in their baryon
number property: if cluster 1 contains an outgoing baryon
or incoming antibaryon, then cluster 2 contains an incom-
ing baryon or outgoing antibaryon, etc. Suppose now that
two different clusters contain baryons (or antibaryons) of
the same type with both either incoming or outgoing. For
example, suppose clusters 2 and 6 have this property.
Then, (2.1) will consist of sums of pairs of terms with 2
and 6 interchanged. One such pair is depicted in Fig. 4,
where each graph is assumed to have the same spin-patch
structure. The crucial point is that the dot must be relo-
cated in the second term of Fig. 4 in order to have an even
permutation of variables relative to the first term. Clearly
if variables 2 and 6 are interchanged, we have introduced
an odd permutation of the variables relative to the first
term if the dot remains above cluster 1. Thus to reinstate
an even permutation of variables the dot must be ad-
vanced past an odd number of clusters as shown in Fig. 4.
As discussed earlier the r factor changes sign every time
the dot is moved past a cluster so the two terms in Fig. 4
have opposite r factors and the sum is antisymmetric
under the interchange of momentum and spin variables
for two identical baryons or antibaryons.

Thus we have proved that self-consistency requires the
correct connection between spin and statistics for the sum
of zero-entropy amplitudes corresponding to hadronic re-
actions. Since the correct connection between spin and
statistics exists at the zero-entropy level, it will persist to
all levels of the topological expansion ach level of topo-
logical complexity (such as cylinder terms, torus terms,
etc.) separately exhibiting the correct connection between
spin and statistics.

((A . K)) .

Now we determine this same sum for the parity-
transformed process, namely,

B" (A . K)=A " «((A K))

K)) . (3.3)

According to Eq. (2.2) of FJ each amplitude on the
right side of (3.2) and (3.3) can be written as the product
of three terms, e.g.,

=I S " (A . . K)f(P~ . P«), (3.4)

where I is a phase given by (9.9) of FJ, the second term is
the spin structure factor, and f is an invariant scalar func-
tion so that

f(P~ ' ' P«)=f(P~ ' P«) (3.5)

The spin structure factors given in (2.3) of FJ as a se-
quence of Lorentz-invariant products of two-component
spinors can readily be shown to satisfy the identity:

~ ~ ~S" (A K)=S" (A . K) . (3.6)

A(A K)= y y A " "(P(A K)),
Iz~ ~ z~ I i

(3.1b)

and A, B, . . . refers to states in which the three-
momentum has its sign reversed p~ ~—pz, etc., but the
spin state is unchanged. Thus parity invariance requires
the amplitudes for two processes in which all particles
and spin states are the same but for which all three-
momenta are reversed to be equal up to an overall phase.
We shall prove that this is true for the zero-entropy sum
(3.1b).

The parity properties of (3.1b) are made evident by fix-
ing the permutation i and summing only over the spin-
patch structure Izz . z«J. Specifically we shall show
that the sum (3.1b) can be grouped into pairs of terms

i8&each satisfying (3.1a). Further the phase e for each
pair is the same so (3.la) holds for the complete sum of
zero-entropy terms. The pairs we consider are those in
which spin-patch structures are completely reversed. In
the notation of FJ one such pair can be written

B'" '«(A K)=A" «((A . K))

III. PARITY INVARIANCE

)g
A (A K) =A (A K)e (3.1a)

%'e shall now show that the sum of zero-entropy terms
(2.1) which is the first approximation to hadronic ampli-
tudes is invariant under parity transformations. The con-
dition of parity invariance expressed in terms of scattering
amplitudes takes the following form for the zero-entropy
sum of (2.1):

L. &n (34,P) (3.7)

which may introduce relative signs between the terms in
the zero-entropy sum. In (3.7), NL+(P) is the total number
of "like" paraquark lines whose ends are either both "in"
states or both "out" states; n (34,P) is the number of para-
quark lines within diquark lines involved in a baryon (or

Examination of the phase I in (3.4) as given in full gen-
erality by (9.9) of FJ shows that I consists of a set of fac-
tors which are common to every term in the zero-entropy
sum plus the factors
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antibaryon) to baryonium transition. Recalling that
e=+ 1 and utilizing (3.5) and (3.6) we can conclude that

(3.8)

(3.9)

where %L& is the number of like quark lines in the graph
whether these quark lines are ortho or para. While proved
for a pair of terms with a given permutation of the vari-
ables, (3.8) clearly holds for any permutation of the vari-

NLqables. What may not be entirely clear is that ( —1) "o has
the same value for any permutation of the variables. This
must be the case if (3.1) is to hold for the total zero-
entropy amplitude.

NLgTo show that the factor ( —1) "o depends only on the
overall process and not on the permutation of variables of
a given term in the zero-entropy sum, we note the identity

( —1) 'o=( —1) ~=( —1) ~, (3.10)

where X& is the total number of quarks involved in the
process whether incoming or outgoing and similarly X& is
the total number of antiquarks. This result already shows
that this phase factor is dependent only on the process
and is the same for every pair of terms of the form (3.2).

Further insight occurs by noting the further identity

Q ( 1)E(M)+N(BB) (3.11)

where

X(M) =number of mesons in the amplitude,

%(BS)=number of baryon-antibaryon pairs
either incoming or outgoing in the
amplitude.

The result of (3.11) is, of course, related to the fact that a
negative intrinsic parity can be assigned to low-lying
mesons and to baryon-antibaryon pairs.

The entire zero-entropy sum (3.lb) can be written as a
sum over pairs of terms like (3.2), each pair satisfying a

NLgrelation like (3.9) with the same phase ( —1) o. Thus the
entire zero-entropy sum satisfies (3.1) with

P
( 1 ) LQ

( 1 )K(M)+1v(BB) (3.12)

This completes the proof of parity invariance for hadronic
processes at the zero-entropy level. As connected sums of
the zero-entropy amplitudes are made to calculate
higher-order approximation to the hadronic amplitudes,
parity invariance will continue to hold at each level of the
topological expansion involving purely hadronic process-
es.

IV. TIME-REVERSAL INVARIANCE

In this section we shall show that the sum of zero-
entropy terms is invariant under a time-reversal transfor-
mation. The discussion here parallels that given for pari-
ty invariance in the preceding section and, in particular, is

[A (A E)]~R——e A (A IC) . (4.1)

To see if (4.1) holds for the zero-entropy sum we first
examine the behavior of the spin structure factors S'
under time reversal. These factors are made up of
Lorentz-invariant scalar products of two-component
spinors. An example of such a spinor is q (u, P), whose
Lorentz transformation properties are of the "upper-
dotted" variety. Here U is the associated particle four-
velocity and P is the two-component rest-frame spin state.
As explained in Ref. 10 the spinor with a reversed spin
direction is Just

g (u, CQ'),
where

(4.2a)

C= —l02,
and o.2 is the standard Pauli matrix. Reversing the direc-
tion of the three-momentum converts the spinor in (4.2a)
to

g (v, CQ*) . (4.2b)

Changing in states to out states converts (4.2b) into a
spinor with a lower dotted index and also complex conju-
gates the rest-frame spin state giving

(u, CQ)=Cg (.v, P) . (4.3)

The equality (4.3) also holds when the spinors have upper
indices.

The above results on the change of the spinors when the
time-reversed process is considered imply for a given spin
structure factor:

(4 4)

where ( )ra means that each.of the variables in the origi-
nal spin structure factors is time reversed as described in
(a)—(c) above.

We now show that pairs of terms of the form (3.2) in
the zero-entropy sum separately satisfy time-reversal in-
variance. Unlike the parity transformation, however, the
time-reversal transformation takes us to a new process
where in and out states have been reversed. Using (4.4)
and (9.9) from FJ we find that the time-reversed ampli-

again based on proving the invariance separately for pairs
of terms of the form (3.2). The time-reversal transforma-
tion for a process involves

(a) reversing the three-momentum of each particle
P~ —P~

(b) reversing all spin states;
(c) making all incoming particles outgoing and vice ver-

sa. %'e shall designate by the notation

[A (A . IC)]ra

any zero-entropy or sum of zero-entropy amplitudes in
which the time-reversal transformation specified by
(a)—(c) has been carried out on the process specified by
the amplitude or sum of amplitudes within the square
brackets.

If A (A K) above designates the complete zero-
entropy sum time-reversal invariance would imply
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tude for a given term in the zero-entropy sum is related to
a zero-entropy amplitude for the original process by the
relation

rc)TR=e 'Ra" «(a .

where, in the notation of FJ Sec. IX,

(4.5)

e "=(—1) "o( —1) ' '+ ' 'exp[2i(y) —y2){X,„,(M) —X;„(M))]

X exp[2i (yp+ I")+ —y4 —I p+ )(X,„,(8)—X;„(8))]exp[2i (I 2+ —I 4+ )(X,„,(8)—N~„(8) )] . (4.6)

By way of explaining the meaning of (4.5) and (4.6) we
make the following remarks:

(i) In the time-reversed process in and out become inter-
changed so the variables have the opposite order to the
original process, namely, (E. . . 3). The r factor with
this order of variables for the time-reversed process is
identical to that for the original process where the order
of variables is ( A . K).

(ii) All the variables such as X,„t(8) in (4.6) refer to the
original process M.(M) and N(8) denote, respectively,
the total number of mesons and antibaryons whether in or
out.

(iii) Since it was shown in the previous section that the
NLgfactor ( —1) o depends only on the overall process and

not on the particular zero-entropy expansion, it follows
'OTRthat the total phase e depends only on the process and

not on which zero-entropy term we are time reversing.
From this discussion and (4.5) we can see that for the

pair of terms (3.2) we have

[8 A «(g. . . ~)] e TR8 A «(g. . . ~) (4.7)

Since the same phase factor occurs for each pair of terms
in the zero-entropy sum, (4.1) must hold and the entire
zero-entropy sum is thus time-reversal invariant. This
completes the proof of time-reversal invariance for ha-
dronic processes at the zero-entropy level. As in the case
of parity invariance, time-reversal invariance will continue
to hold separately at each level of the topological expan-
sion for purely hadronic processes.

V. CHARGE-CONJUGATION INVARIANCE

Here we shall prove that the zero-entropy amplitudes
are invariant under charge-conjugation transformations.
We shall show that each individual term in the zero-
entropy sum is charged-conjugation invariant. This is un-
like the cases of parity and time-reversal invariance where
the invariance was evident only when we considered pairs
of terms. In particular, the part of the phase of the am-
plitudes which depends on the spin-patch structure plays
no role in establishing charge-conjugation invariance as it
did in the case of parity and time reversal.

The charge-conjugation transformation involves
(a) changing quarks to antiquarks and vice versa;
(b) leaving spin states unchanged;
(c) leaving momenta unchanged;
(d) leaving in and out unchanged. The above descrip-

tion of the charge-conjugation transformation requires
some elaboration. By (b) is meant that a quark present in
the charge-conjugated process wi11 be in the same spin

vp(u, p) ~g .(U, CQ) . (5.1)

The lowering of the index in (S.l) just means a quark is
replaced by an antiquark or vice versa. As explained in
Ref. 10, the transformation of the rest-frame spin state
P~CP is necessary in order that the antiquark (quark) be
in the same spin state as the original quark (antiquark).
The need for this transformation of the rest-frame spin
state quark and antiquark states transform according to
different representations of the rotation group (these rep-
resentations, in fact, are just complex conjugations of each
other). The transformation P~CP in (5.1) is appropriate
for all spinors in the spin structure factor for the charge-
conjugated process whether the spinor has upper or lower,
dotted or undotted indices.

We shall now show, taking one term of the zero-
entropy sum that

(3 . K)= 'A (IC. A), (5 2)

where an example of two amplitudes such as those on the
left and right side of (5.2) is given graphically in Fig. 5. It
is understood in (5.2) that the spin states are the same on
both sides of the equation as explained above. We shall

t'

C).-B= C

A

t

FIG. 5. Effect of charge conjugation on amplitude.

state as the corresponding antiquark in the original pro-
cess, etc. In carrying out (a) the quark lines in graphs
denoting the zero-entropy terms must have their direc-
tions reversed. But to maintain our convention (see FJ)
that single quark lines run clockwise and diquark lines
run counterclockwise we must "flip" the graph for the
charge-conjugated process leading to a reverse cyclic order
for the variables. This is illustrated for a sample graph in
Fig. S, where K denotes charge conjugation for the partic-
ular zero-entropy graph.

The key observation in proving charge-conjugation in-
variance is that a two-component spinor such as g (UP)
associated with the tail of one of the quark lines in the
graph becomes replaced in the charge-conjugated process
by
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find that (5.2) holds for each term in the sum (2.1) with
i8

the same phase e ' so that a relation of the form (5.2)
holds for the entire zero-entropy sum. This means the
theory is charge-conjugation invariant.

%'e have already discussed how the individual spinors
change under charge conjugation. The spin structure fac-
tor is made up of Lorentz-invariant spinor products of the
orm

(5.3)

In the charge-conjugated process this scalar product be-
comes

q (u', CP')g (uCQ)=. q (u', P')g (u, i'), (5.4)

is~, )N,„(B)+N,„(B'(
(5.5)

where the sum of the two integers in the right-hand ex-
ponent can be evaluated either for the original or the
charge-conjugated process since they have the same value.
It is clear the phase (5.5) will be the same for each term in
the zero-entropy sum (2.1). It is important to note that
when the left side of (5.2) is summed over all the ap-
propriate even permutations of the variables (A . . E) as
discussed in Sec. II, the right side will automatically come
out as an appropriate sum of the even permutations of

(K . . 3 ) all multiplied by the common phase e
This completes the proof of charge-conjugation invari-

ance in hadronic processes. As in the other cases this in-
variance will continue to hold at each level of the topolog-
ical expansion for hadronic processes.

which shows that the spin structure factor is invariant
under charge conjugation. The invariant scalar function f
in (3.4) does not change under this transformation (it does
not depend on flavor —see Ref. 10). To determine the
phase in (5.2), we examine the amplitude phases given by
(9.9) of FJ. The result is simply

VI. DISCUSSION

It has long been the goal of S-matrix theory to start
from general basic assumptions —including Lorentz in-
variance, crossing analyticity —and to deduce from self-
consistency the properties and parameters of elementary
particle interactions that must be assumed in other more
conventional approaches, We have shown here that topo-
logical particle theory —the modern version of S-matrix
theory —is capable of explaining the separate discrete in-
variances of parity, time reversal, and charge conjugation
in strong interactions as well as the connection between
spin and statistics.

Earlier work in S-matrix theory showed that the pos-
tulates of the theory implied the correct connection be-
tween spin and statistics and the invariance under the
product of the above three discrete symmetries. The new
topological theory, however, clearly separates the origins
of the strong-interaction terms associated with hadronic
processes and the terms associated with electroweak pro-
cesses. 6 The former come from the zero-entropy terms
in the topological expansion ' involving coupling
strengths known to be of the correct order of magnitude
for strong interactions. " Terms responsible for elec-
troweak processes do not occur at the zero-entropy
level.

Owing to this unambiguous identification of zero-
entropy with strong interactions, it has been possible here
to prove the existence of the three separate discrete invari-
ances for such processes. These separate invariances, of
course, fail in the terms of the topological expansion asso-
ciated with electroweak processes. Thus topological parti-
cle theory gives a basis for answering the age-old question .

of why the degree of symmetry in interactions is associat-
ed with the strength of the interaction, at least in the case
of the discrete symmetries.
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