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The internal geometry of the Dirac electron is studied in a proper-time formalism with y-
Hermitian operators. We solve the Heisenberg equations, separate external and internal coordinates,
and identify the SO(3,2) internal algebra as the projection of an SO(3,3) geometry to the hyperplane
(perpendicular to the center-of-mass momentum) where the Zitterbemegung takes place. We also
give covariant intrinsic-spin and magnetic-moment operators. The system can be generalized to a
larger system with the internal geometry SO(4,2) with the inclusion of dynamical variables y' and
I', y y". The resultant internal algebras have higher-dimensional representations generalizing the
Dirac electron to multifermion states.

I. INTRODUCTION II. PROPER-TIME FORMALISM

Barut and Bracken have recently reexamined the Zitter-
bewegung of the free Dirac electron. ' One obtains the Zit
terbewegung by solving the Heisenberg equations of
motion for the position operator x(t) using the Dirac
Hamiltonian

H=myo+p a (R=c=1)
as the generator for time translations. One finds that the
coordinate operator x (t) contains a "center-of-mass" part

X(t)=H 'pt+a (a=const vector)

which on momentum eigenstates moves with a uniform
velocity, and an oscillatory part

g(t) =—[ci(0)—H ' p]H 'e
2

called the Zi tterbemegung. Then

x(t) =X(t)+ g(t)

is interpreted as the center of charge for the electron
which oscillates rapidly about the center of mass X(t).
We shall call g(t) the relative or the internal-position
operator of the electron.

Barut and Bracken then pass to the rest frame of the
center of mass and define an internal momentum propor-
tional to the time rate of change of the internal position in
this frame. The internal position and momentum gen-
erate then the ten-dimensional Lie algebra of SO(5), con-
sisting of the three components of the internal-position,
internal-momentum, spin ( =internal-angular-momentum)
operators, and the rest-frame Hamiltonian.

This description of the Zitterbewegung is not manifestly
covariant since the internal position and momentum de-
fined in some particular frame, which is the rest frame,
are functions of coordinate time rather than proper time,
and hence are three-vectors rather than four-vectors. The
purpose of this work is to develop a Lorentz-covariant
description of the Zitterbewegung and to investigate the
Lie algebra associated with it.

i g(x,s) = i B&y"P—(x,s) .. a
Bs

We now introduce "mass eigenstates"

(x,s) =e' 'g~ (x,O)

on which Eq. (2) reduces to the Dirac equation for

P~ (x,O):g(x) or—i B„y"g(x)=m g(x) .

Introducing the generator for translations in s,

~=—l BUMP
= —PpP

(2)

(4)

We expect that the relationship between ordinary time
and energy should be similar to that between the two.
Lorentz-invariant quantities: proper time and (rest) mass.
Just as energy is associated with eigenvalues of the partial
derivative with respect to time, mass should be associated
with eigenvalues with respect to proper time. Therefore,
as our starting point, we introduce the auxiliary real
Lorentz-invariant parameter s which is independent of
spacetime and has the dimensions of a length (c = I). We
make the (first quanti'zed) Dirac wave function depend on
this parameter, as well as on spacetime, and replace mass
in the free-particle Lagrangian by the operator —iBIBs,

W=q(x, s)(ia„y~+ia, I)q(x, s) .

At this point we do not yet identify s with proper time
but think of it as an independent "fifth" dimension.
Along somewhat different but related lines DeVox and
Hilgevoord and others ' introduce mass as a fifth space-
like coordinate in a de Sitter momentum space. In our ap-
proach this fifth momentum would be identified with the
operator —i 8/Bs. However, we shall not find it necessary
in this work to attach an additional metric structure to
the five-dimensional space besides the Minkowski metric
on four-dimensional spacetime. Nor is this a new extend-
ed formalism. It is, as we shall see, merely a device to ob-
tain covariant equations for operators in the proper-time
Heisenberg picture.

The Lagrangian (I) leads to the equation of motion
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we find that (2) has the formal solution

g(x,s) =e ' 'P(x) .

Taking the Dirac adjoint of (5a) we find

P(x,s)=f(x)e' '= ill (x,s)y

(5a)

(5b)

and conversely any Hermitian operator A' is associated
with the y -Hermitian operator A,

A=@ A'.
In particular, in the nonmanifestly covariant normaliza-
tion of the Dirac wave function,

where the dagger stands for the Hermitian adjoint.
For any operator A with no explicit dependence on s

we make the transition to the (proper-time) "Heisenberg
picture" by equating

P(x, s)A i'(x,s)=g(x)A~(s)g(x),

where the Heisenberg operator is defined by

el' sAe iA —s

In this picture states depend only on spacetime while
operators depend on the parameter s. At this point we in-
terpret s as a "proper time" in the Heisenberg picture.
This interpretation is implemented by defining the expec-
tation value of the Heisenberg operator A(s) (with sub-
script M dropped) as follows:

(A(s)) =fd xg(x)A(s)g(x)5(n„x" s),— (7)

where n is a unit vector in the time direction of the frame
in which A (s) is measured. This definition is manifestly
covariant since d x and the argument of the 5 function
are Lorentz invariant and (P(x)A (s)P(x) ) forms a bilinear
covariant quantity. In this expression the laboratory
frame, characterized by n, is in general independent of the
frame with coordinates x". If these two frames are
chosen to coincide then

n =(1,0,0,0)

and (7) reduces to

( A (s) ) = fd x P(x,s)A(s)f(x, s) .

The proper time s parametrizes a timelike precession of
spacelike hypersurfaces in spacetime.

Let us find the condition which must be satisfied by A
in order that its expectation value, defined by (7), be real:

( A (s) )' =fdx 5(n.x —s)[g (x)y A (s)P(x)]'

=fdx 5(n.x —s)g (x)A (s)y g(x)

= fdx 5(n x —s)gt(x)At(s)y g(x),
where the asterisk denotes complex conjugation. Thus
(A(s))*=(A(s)) implies that

y A (s) =A t(s)y

(8)

A (s)=y A (s)y

We call an operator A, "y -Hermitian, " if it satisfies (8).
Then its expectation value is real. Every y -Hermitian
operator A can be associated with a Hermitian operator

dA =i [A,A (s)]
gs

(10)

so that ~ generates proper-time translations in the
- Heisenberg picture. Several authors including Corben,
Szamosi, Drechsler, Ellis, and Barut have chosen this
operator as the generator for proper-time translations of
particles which obey the Dirac equation. We shall use
this generator to find the proper-time development for the
position operator of a free electron.

III. HEISENBERG EQUATIONS
FOR THE POSITION OPERATOR

AND THEIR SOLUTIONS

Applying the Heisenberg equation (10) to x&(s), we get

x"(s)=i [A,x"(s)]=y"(s),
where the dot denotes differentiation with respect to prop-
er time. A further differentiation gives

x„(s)=i [A,xz(s)]
=i [2A y„(s) [A,y&(s) j]—
=2l A y~(s) +2lp~

Following Barut and Bracken' we define the operator

ri"(s)=y"(s)+~ 'p" (p ~0), .

which obeys the equation

ri (s)=2iA ri"(s)

with the solution

g"(s)=e ' 'g~(0)

~P(0)e —2M s

f d x Pt(x)@(x)=1,

A'=1, and hence A =@ so that

f d x g(x)y f(x)=1 .

»nce y =n„y" for n = (1,0,0,0) the normalization can be
put into the manifestly covariant form

1=f d x 5(n.x s)n~p—y"p= f dcrpitly"@,

where o(s) is the spacelike hypersurface orthogonal to n
at the proper time s and do.

& is an oriented area element
on that surface. In general n„and der„ in (10) can depend
on x. The normalization (10) must hold at any proper
time.

The Heisenberg operator A(s) obeys the equation of
motion

A'=y A, (9a)
since g& anticommutes with A . The velocity operator
then has the solution
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yP(s) =[y"(0)+A 'pP]e ' '—A 'pP,

and integrating, we can write

x p(s) =X"(s) +Q"(s),
where

Xp(s)=a" +s(p y) 'p" [ap=xp(0) —Q"(0)]

(12)

(13)

(13a)

is the center-of-mass position operator, a" being a con-
stant operator which depends on initial conditions, and

[QP,A /m]= P",
m

[PP, A /m ]= —4i m Q",
[SP",A /m]=0,
[SaP S pv] i( g apS Pv+ —pvS ap —avS pp

—PpS av)

where we have introduced

(15f)

(15g)

(15h)

(15i)

QP(s) = —[yP(0)+Pi 'pP]~ 'e
2

(13b)
p v-pv pv p p

2m

is the internal-position operator.
On mass eigenstates the center-of-mass position opera-

tor becomes

pPXp(s) =a"+s

This is precisely the behavior that one would expect for
the center of mass of a free relativistic particle and we see
that s should be interpreted as the proper time of the
electron's center of mass, exactly as in the classical model
of the Dirac electron. '

IV. THE INTERNAL ALGEBRA

Q (s) =gp(s) .

The algebra generated by these operators does not close
since the commutator of Q" with ri' introduce's the opera-
tor (p ) 'A; then the commutator of Q" with A /p
brings in (p ) 'gP and so on, so that continually higher
powers of (p )

' must be introduced into the algebra.
However, if we impose the condition that the Zitter
bemegung operators act on the Hilbert space spanned by
positive- and negative-frequency solutions of the Dirac
equation with fixed mass m, then

p =m, (p ) '=1/m

become constants. With this restriction let us introduce
the internal-momentum operator:

P =Pm Q"= m[ y(P)0+% 'p"]e (14)

Then we obtain the following algebra generated by the
internal-position and -momentum operators:

Let us now focus our attention on the internal operators
associated with the Zitterbemegung. We have found an
internal position QP(s) and the internal velocity operator

Q (s) which turns out to be equal to gp(s), introduced be-
fore

g"" being the Minkowski metric of signature
(+,—,—,—), and

P V

s~ =s~ — s-— s~
m m

(17)

It is easily verified that all of the operators in this algebra
are y -Hermitian.

Acting on plane waves of the form u(p)e '~, the Lie
algebra (15) is characterized by the fixed four-vector p,
i.e., the center-of-mass momentum of the particle. In or-
der to transform from the internal algebra characterized
by p to the algebra characterized by

p'P —gP pV

where (A" ) is the matrix of a Lorentz transformation, we
introduce the corresponding spinor transformation

U(A) ESL(2,C)I3 SL(2,C)',
such that

U(A) 'yPU(A) =A" y

U(A)y" U(A) '=(A ')",y
and obtain the following transformation law between alge-
bl as:

Q "(p') =AP„U(A)Q "(p)U(A)

P"(p') =A"„U(A)P"(p)U(A)

A (p')=U(A)A (p)U '(A),
S""(p')=A" A't3U(A)S ~(p)U '(A) .

(18a)

(18b)

(18c)

(18d)

The algebra (15) is therefore manifestly covariant.
The vector and tensor operators of (15), acting on a

state of momentum p, are confined to the hyperplane
orthogonal to p:

[Q" Q l=-
m

[P",P ]= 4im S"", —

[Q",P"]= ig" A /m, —

[ QP S vk] i(gPvQX g PAQv)

[PP S vil] '( PvPA PXPv)

(15a)

(15b)

(15c)

(15(1)

(15e)

PpQ"=PpP"=P'pSP =o .

The tensor

2gpv =gpv pppv /m—
acts like a metric on this hypersurface, mapping pairs of
vectors into scalars with precisely the same effects as g&,
and can in fact be written as the composition of the pro-
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jection operator g" onto this plane with the Lorentz
metric:

~p
gpv =gapg p g v ~

spacelike vectors all orthogonal to p . The corresponding
eigenvalues are —1, —1, —(E +p )/m . Therefore the
diagonal form of g'b is

where

g p=5 p
—p palm

g =diag, 0~ —1,—1, — (25)

The restriction (19) implies that only ten of fifteen gen-
erators in (15) are linearly independent. In order to identi-
fy the algebra generated by these ten elements we write
(15) in the standard dimensionless form

[gab gcd] & ( acgbd-+ —bdgac ad-gbc bcga-d
)

(20)

where

Corresponding to the similarity transformation which di-
agonalizes g:

ab S—lae- Sfbg = gef

where the matrix S is chosen to be orthogonal, there exists
an automorphism of the Lie algebra

e "=S-'"e Sf'ef

which brings the commutation relations into the form

g", a, b =p, v=0, 1,2, 3
gab

c

(21)
—g

—~ ad~~ bc —~ beg~ ad) (27)
and the antisymmetric matrix 0 is given by

9" =S"", 1L1,,v=0, 1,2, 3

9" =mQ",
(22) Pg Q

P P P () (28)

with the diagonal metric given in (25). Moreover, the au-
tomorphism (26) eliminates five of the fifteen generators
in the algebra

with

g", a, b =p, v=0, 1,2, 3
6

5', a =4,5
(24)

onto the hyperplane orthogonal to p. Using the projection
operator

rr'6 —g I'„, a, b =p, v=0, 1,2, 3

=56, a =4, 5

and writing

gab a 6 g ef —ab a 6 ef—'7T e P f p g —'7T e'7T fg

we can obtain (20) from (23). Indeed the tensor S&", de-
fined in (17), can be obtained from the ordinary spin ten-
sor S" by this projection.

To identify the algebra (20) we diagonalize the 4&&4
nondiagonal part g" of g'. It has already been men-
tioned that g& and therefore g"' annihilate vectors along
the direction of p, g" p =0, so that the four covariant
components of p, (E,—p), form an eigenvector of g""
with eigenvalue zero. Three other eigenvectors of g""can
be readily found by constructing a triad of orthogonal

g45 2'
Expression (20) looks like the standard form for the Lie
algebra of a (pseudo-) orthogonal group in six dimensions.
The fifteen generators of this algebra can be viewed as the
result of projecting the operators of the so(3,3) algebra

[gab g cd] &(gacg bd+gbd gac gad g bc gbcgad)

(23)

Rescaling Q', P', and S ' J,
Q3

P 3/

mQ'

(E2+ 2)1/2

mP'

(E2+~ 2)1/2

m(
I p I

Q'+EQ')
~2+~ 2

m(IpIP +EP )

Q2+~ 2

(30a)

(30b)

However, the automorphism has the effect of dilating
Q, P, and S by a factor of [(E +p )/m ]'/ along the
direction of p in the plane orthogonal to p=(E, p). We
therefore choose to augment (26) by rescaling these opera-
tors so that the internal-position and -momentum vectors
and the tensor S are left invariant by the resulting Lie-
algebra automorphism, which amounts merely to reex-
pressing these operators in a coordinate system intrinsic to
the hyperplane in which the Zitterbemegung takes place.
Then the space part of the metric (25) becomes diag
( —1,—1,—1).

For simplicity let us choose for the moment an ortho-
normal frame (ep, e1,e2, e3) in which the space component
of the center-of-mass momentum points in the three
direction

p =Eep+
I p I

e3 ~

Then the automorphism (26) leaves Q', Q, P, P, and
S ' unchanged and leads to

IP I
Q'+EQ'

(E2+ ~ 2)l/2

with similar expressions for P' and S'j3. The spacelike
unit vector pointing in the direction of p along the hyper-
plane orthogonal to p is

I p I
ep+«3
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~t J3
mS

(~2+~ 2) 1/2
m(

~ p ~

S +FS )

+2+~ 2
(30c)

where

I.I' =xI'p —x p" (36)

we find that

Q e3 ——Q eo+Q e3
3' 0 3

P e3 ——P eo+P e3,3' 0 3

S ej &e3 ——S ej &eo+S ej && e3, .

(31a)

(31b)

(31c)

Thus the redundant 0 and 3 coordinates have been re-
placed by the single 3' coordinate which lies in the hyper-
plane of the Zitterbetoegung F.rom the commutation of
Q with P we also find that

JPv ~PY+S /lv

where

(37)

is the orbital angular momentum and S""[defined in (17)]
is the spin angular momentum. Both L" and S" vary in
proper time, since they do not commute with A, while
their sum J&" is constant. However, by substituting ex-
pression (13) for the position operator into (36) and (35)
we can rewrite the total angular momentum as the sum of
two constant tensors:

—3'3' = 3'3'— W""=X"p"—X"pi' (38)

Now if p points in an arbitrary direction we can rotate
the expression (31) and write the operators of the algebra
(20) in terms of the orthonormal frame (e, ,e2, e& ) which
is intrinsic to the hyperplane orthogonal to p =(E,p ), and
obtain the algebra (32)

[gab gcd] t (g acgbd+g bdgac g adgbc g bcgad)

(32)

where

gt =SJ", j,k =1',2', 3'

is the orbital angular momentum of the center of mass,
and

Sl +Qlp Q pw. (39)

S""(s)= S""(0)— S (0)— S" (0)
m I

is the intrinsic spin, being the sum of the orbital angular
momentum which the internal coordinate Q"(s) has by
virtue of the electron's center-of-mass motion plus S"'.
From the solution of Heisenberg's equations of motion for
the spin operator

g J=mQJ,
(33)

pp pp
(40)

and

8 J= PJ,
2HZ

2'

it is easily verified that (39) is equivalent to (17).
In analogy with expression (38) we can write the intrin-

sic spin of the electron in terms of its internal position
and momentum as follows:

g'b=diag( —1, —1, —1,+1,+1) . (34) SPv (QPPv QvPP)
2pp1

(41)

This l.ie algebra of y -Hermitian operators is so(3,2). The
algebra so(3,2) is the noncompact form of so(5) proposed
in Ref lto. be the dynainical algebra of the Dirac electron
in an arbitrary frame. It turned out that so(3,2) worked
for this purpose while so(4, 1) did not. It is interesting
that when the Zitterbeivegung is formulated in proper
time with y -Hermitian operators, the algebra so(3,2)
comes out automatically.

V. PROPERTIES AND INTERPRETATION
OF OPERATORS IN THE INTERNAL ALGEBRA

Expression (17) for S""and the commutator (15a) are
remarkably similar in form to Eqs. (2.13) and (2.14a) ob-
tained by Aldinger et al. " in their work on the relativis-
tic rotator, and to Eq. (14) in the classical theory of the
electron. ' Following them we shall call S" the
intrinsic-spin tensor.

In order to interpret S" let us consider the expression
for the total angular momentum of a (free) spin- —,

' parti-
cle:

e Be =B+—[B,A]+—[[B,A],A]+

where 3 and B are Lie algebra elements, we find that

e ' ' Qje+' =Q~cosg+Q"sing,

e ' Pje' =PjcosO+P sinO,

for j, k = 1',2', 3', and j&k.
While e'~' generates rotations, the operator

(42a)

(42b)

The presence of the term —A /2m in (41), in contrast to
the absence of a corresponding term in ~38), exemplifies
the difference between the internal and center-of-mass
motion of the electron.

When S is written in terms of the coordinate system
characterized by the basis (e i,e2, e3 ), intrinsic to the hy-
perplane of the Zitterbewegung, it becomes clear that S
should indeed be regarded as an internal angular momen-
tum, since it generates rotations of the internal position
and momentum vectors. Using the formula

Jfcv L Pv+SPv (35)
e

I', (,n I2)A /m

Pl
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generates parity transformations on the internal space of
the Zi tterbemegung,

[y'(s), Q~(s)] =0, (49d)

i(s—s/2)P /mQj i(n/2)'A /m ~j
—i(n./2)A /mpj i (n. /2)A /m Pj

7

—i(n./2)Pi /mS jk i(~/2)A /m Sjk

—i(m. /2)A /m~ i(m/2)A /m

(43a)

(43b)

(43c)

(43d)

j,k = 1',2', 3' .

Z—iy (s),

Pa'V, SPv =0,
Sa(S)

VE

Sa(S)
QP(S ) ~ PS(s

(49e)

(49f)

(49g)

The commutators (15f) and (15g) indicate that the inter-
nal position and momentum of the electron exhibit the
harmonic-oscillator dynamics found also in Ref. 1:

Sa(S)
,P"(s) =0,

m
(49h)

Q (s) =i[A,Q&(s)] = P"(s), (44a) s = —2l (49i)

P (s) = & [A,P"(s)]= —4m Q&(s),

implying that

Q "(s)+4m Q"(s)=0,

P "(s)+4m P"(s)=0.

(44b)

(45a)

(45b)

Sa(S )
PS& =4 2Q~( )

Pl

[P I', y (s)]=2ipl'(s),

[PS~,~]=0,

(49j)

(49k)

(491)

The harmonic oscillator has a frequency of 2m.

VI. EQUATION OF MOTION OF y5

AND THE INTERNAL ALGEBRA so(4,2)

The Lie algebra so(3,2) was generated by the internal
position and velocity of the Zitterbe(vegung There e.xists
a larger algebra associated with the Dirac electron which
can be obtained by considering, in addition to the dynami-
cal variables described above, the motion of the pseudo-
scalar operator

'Y ='V X T 'V

with

[P ",P"(s)]=2im g""y (s),
5a

[P'"(s),Q "(s)]= —ig ""

[P "P"]=4im S"",
[p Is S B] ( (s p B --lsBP

where

P'"=iy'(0)p"(0)—

p y' (0)=m y "(0)— p"
m

is constant and

(49m)

(49n)

(49o)

(49p)

(50)

(y5)2 (46b) y5a(s) p y5a(0) 2is~— (51)

Using Heisenberg's equation of motion we find that the
proper-time derivative of y is

Since

p„P I'=0
y'=i[m, yS] =2imyS

5a=&Pa'V

where the axial-vector operator

(47)

this axial vector can be written in terms of the coordinate
system intrinsic to the Zitterbemegung:

P e&
——P e& +P e2+P e35p 51' 52' 53'

=lg P (48)

is also defined to be yo-Hermitian. The solution of (47) is

y5(S) e2iA sy5(()) y5(())e 2isA—

In this coordinate system we introduce the dimension-
less and rescaled operators:

(9' =Sj", j,k= 1',2', 3'

y'(s),

Commuting y (s) with the other operators of (15) and
completing the algebra we obtain

Sa(
=2- ' (49a)

8 j=mQj,

g5j 1 pj
2pp1

8 =A /2m,
46 Sa 56 & 5

(52)

[y (s),S" ]=0,
[y (s),p&(s)]= 2iP"—(49b)

(49c) and obtain
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[gab gcd] i (g acgbd+g bdgac g adgbc g bcgad)

(53)

where g is diagonal and

g =g = —&~ g =g =+ &
jj 66 44 55 (54)

y'"=i[~ y'" j= 2p—"y'. (55)

Differentiating again and using the fact that p" is con-
stant and y is given by (47), we obtain

=2EA p

Solving (56) for y "(s)

5ts( ) e2isMy its(0) y5is(0)e —2is~

ts 5( ())
—2isA

(56)

(57)

and integrating again we find

y5ts(s) a 5ts+ y5a(0)e 2isA-P Pa
m

(58)

where the constant a " is determined by initial conditions
to be

The algebra obtained is therefore so(4,2).
For completeness, let us also find the proper-time evo-

lution of y ". Heisenberg's equation of motion yields

p& directions and is constant in the orthogonal directions.
We see from solutions (48) and (58) that the motions of

y (s) and y "(s) are decoupled from the other dynamical
variables in the case of the Dirac electron. This would
not be the case if we had generalized the Dirac equation
to include a y term which is allowed by Lorentz invari-
ance alone, "i.e., to

(y"p& —m +Ay )/=0 .

The internal Lie algebra o(4,2) given by (53) defines a
more general quantum system with internal dynamics of
which the Dirac electron and further the neutrino' are
special projections. The general Lie algebra o(4,2) has
many other representations and realizations. If we go fur-
ther to infinite-dimensional representations, we arrive at
systems like an H atom, or a hadron, where now the inter-
nal dynamics refer to a "Zitterbewegung" which we know
well, namely, the motion of the electron around the pro-
ton in the H atom, for example. ' We emphasize that in
all these cases the internal or dynamical algebra o(4,2) is
quite di'stinct from the external algebra o(4,2) of the
motion of the system as a whole in space-time, although
some connections exist.

VII. COVARIANT-MAGNETIC-MOMENT
OPERATOR

Generalizing the three-vector magnetic-moment opera-
tor derived earlier' to a four-vector, we define a covariant
magnetic-moment operator

P Pa
a '~ =y'~(0) y "—(0)=q'~

m

Therefore we have obtained

y "(s)=g'"+ y' (s) .
m

(59)

(60)

hatt
=—(xx"—xx ),

2

and using Eqs. (12) and (13) and separating the even and
odd parts of the product' we obtain after some calcula-
tions

It is interesting to note that while the vector operator
y"(s) is constant in the direction of the center-of-mass
momentum p" and oscillates in the directions orthogonal
to p", the axial-vector operator y "(s) oscillates along the

showing again the g factor 2 and the role of S as the in-
trinsic spin of the particle. The first term is the orbital
magnetic moment of the center of mass.
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