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We show that the nonrelativistic limit of the A¢* theory is trivial in 143 dimensions; the renor-
malized coupling constant vanishes and the S matrix reduces to the unit matrix. Our result is con-
sistent with, though not sufficient to establish, the triviality of the Lorentz-invariant theory.

I. INTRODUCTION

It is generally believed that the relativistic A¢* theory in
1 + 3 dimensions is a trivial field theory, characterized by
a vanishing renormalized coupling constant and a unit S
matrix.! The result is presumed to be true for a real field
as well as several real or complex fields; in the many-field
case, an overall symmetry such as O(N) is assumed to en-
sure that there is but one quartic coupling. As recently
emphasized,>® this triviality problem is of more than
academic interest; it modifies the traditional interpreta-
tion of the Salam-Weinberg theory; the requirement that
the canonical formulation of the electroweak synthesis be
consistent leads to upper bounds for fermion and Higgs
masses.

In view of the importance of triviality, it is worth re-
minding oneself that no firm mathematical proof is yet in
hand. We are dealing here with what, strictly speaking,
must be regarded as an article of faith. However, as noted
elsewhere,’ one may predicate one’s faith on certain re-
sults that may be deemed to have been established with a
measure of rigor; a judicious selection is listed below. It
should be borne in mind though that to complete the ar-
gument leading to some of the following results, it is
necessary to postulate that the solutions of the field equa-
tions are in accord with the Osterwalder-Schrader
axioms;* this is to permit construction of the Minkowski
space (real time) theory from the Euclidean formulation,
the customary starting point in the functional approach.

(i) Triviality cannot be proven in any finite order of per-
turbation theory.

This almost obvious result can be put on a firm basis,
using the work of Glimm and Jaffe.’

(ii) The renormalized coupling constant lies in a bound-
ed interval:®

O0<Aren<Amax ford<4, (1.1)

where d is the dimensionality of the space in which the
theory is defined.

A necessary condition for triviality is thus satisfied.

(iii) For the theory in the symmetric phase, triviality for
d > 4 has been established by Aizenman’ and Frohlich.®?

(iv) For d =4, Frohlich® has noted that triviality can
be established if Z;—the wave-function renormalization
constant—yvanishes.

(v) The continuum limit of the lattice theory is trivial,
or consistent with triviality, in all existing calculations.’
When other nonperturbative calculational techniques are
available, notably the 1/N expansion for the O(N)-
symmetric theory, triviality again follows in the limit of
infinite cutoff.!°

The preceding paragraph summarizes what appear to
be, at this time, the most compelling reasons for believing
that the theory is indeed trivial.

Our purpose in this note is to add one more result to
the above list:

(vi) The nonrelativistic limit of the theory is trivial in
1 + 3 dimensions. The collision matrix vanishes and so
does the renormalized coupling; the S matrix thus reduces
to the unit matrix.

While our result is fully consistent with the conjecture
that the Lorentz-invariant A¢* theory is trivial, it does not
by itself shed any light on the status of the relativistic
theory. The reader who wishes to boost his way to a
proof is cautioned that an essential feature of nonrelativis-
tic dynamics is the absence of production processes; in rel-
ativistic quantum field theory, however, the Aks
theorem!! tells us that scattering implies production; thus,
the no-production constraint, unless it can somehow be re-
laxed, would—without benefit of any input about the na-
ture of the field theory and the couplings therein—ensure
a trivial theory in the relativistic domain, in a not very
meaningful way.

Some readers may notice a similarity between the argu-
ments leading to our result and the ones that underlay an
early attempt,'> made before the gauge-theoretic gospel
found proper formulation and universal acceptance, to
tame weak interactions. This similarity, while amusing,
should not be taken too seriously; the physics, in the two
situations, is totally unrelated.

II. NOTATION
We shall consider a theory described by the Lagrangian
L= [ I x[3'¢"9,—M6"6—Ao(8'67], @D
where ¢ =¢(x,t) is a complex spin-O field at space-time
point (x,z) and M is the mass of its (bare) quanta. If the

Hamiltonian corresponding to L is to be bounded from
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below or, in other words, if the system is to be stable

)\«0 >0. (22)

~ Without any significant loss of generality, in the
present context, we may work with the theory in the sym-
metric phase, so that M,?> 0 and the relevant order pa-
rameter (¢ ) vanishes. This means, in particular, that N,
the ¢ number, is a constant of the motion and that the
ground or vacuum state corresponds to N =0; the physi-
cal states are thus characterized by definite values of N.

Conservation of N plays a crucial role in the transition
to the nonrelativistic limit; without it one cannot envisage
a nonrelativistic many-¢ system. For any such system
would collapse spontaneously into a highly relativistic sys-
tem with fewer ¢ particles. Note that we distinguish be-
tween many-¢ systems and many-¢,¢ systems, ¢ being the
charge conjugate to ¢. The latter are intrinsically relativ-
istic and do not lend themselves to a nonrelativistic treat-
ment. In the following, we shall write

N=N(¢)—N()

and restrict our discussion to systems with either N(¢)=0
or N(¢)=0; later on in our paper, this restriction will
emerge naturally, in the nonrelativistic limit.

(2.3)

III. THE NONRELATIVISTIC LIMIT

The logically correct way to take the nonrelativistic
limit (hereafter called the NR limit) of a theory is to first
calculate the S matrix and then go to the large-mass limit
for all the particles in the theory. (Coulombic interac-
tions, if any, are to be understood in terms of action at a
distance rather than photon exchange; real photons do not
exist in the NR limit.) This is in general an impossible

- task, however, since the S matrix does not lend itself to
explicit calculation. What is done in practice, in atomic
physics and low-energy nuclear physics, for example, is to
take the NR limit of the Hamiltonian and then calculate
the S matrix. This is a tractable procedure but essential
radiative effects, such as coupling constant and mass re-
normalization, have to be put in by hand. A formal proof
of the validity of this procedure may be sought, albeit
only in finite orders of perturbation theory, using logic
analogous to that in the decoupling arguments of Appel-
quist and Carazzone.!* We shall not delve into it here,
however; instead, we take the sanction of usage in, say,
atomic physics—the NR limit of the electrodynamics of
electrons and protons—to be sufficient justification for
taking the NR limit in this way.

H(+)=—"2A14_0 f d3fo+)(x,t)V2X<+>(x,t)

+ 0
4M,?

Here we explicitly indicate the space-time dependence of the field operators.

[ @*xad®xx{ o (x, 0X] (5,8 (x— XWX (XX (4 )(X,2) -
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Our first task, therefore, is to take the NR limit of the
field operators and the Lagrangian. To this end, we intro-
duce an auxiliary field X, via

Xiy=(2Mg) 2™ g (x,1) 3.1

and evaluate it in the large-M, limit. (In actuality, with
self-energy effects included, it is the renormalized mass M
that is relevant. Vide infra.) The suffix on X is to indi-
cate that only the positive-frequency part of ¢ will survive
in this limit; the negative-frequency part will oscillate rap-
idly and may be set equal to zero. (The argument can be
rendered precise by, for example, working with fields
averaged over a small time interval and using the
Riemann-Lebesgue lemmas.!*) To project out X,_), the
negative frequency part of the ¢ in the NR limit, all we
need do is change the sign of M, in the exponential in Eq.
(3.1). The limit yielding X, takes us to a sector of the
Hilbert space in which N(¢)=0; likewise the X(_, projec-
tion takes us to the sector N (¢)=0; in the NR limit, there
is, of course, no way to communicate between the two sec-
tors.

The Lagrangian corresponding to the positive-
frequency projection may be written as
’r v v T
H=7 fd3x X (X ()= X (+ X (+)
1 1
*mvxu)'vxw)
Ao ——x!
T oM (+X ()
1 . .
o7 J @ { ). (3.2)

Here we have simply used Eq. (3.1) to eliminate ¢ from
Eq. (2.1). The term with two time derivatives, in Eq.
(3.2), is of an order traditionally ignored in NR mechanics
(i.e., v2/c?) and will henceforth be omitted. We imple-
ment a Legendre transformation, on the rest of the La-
grangian, to obtain the Hamiltonian:

8Ly, - 8L(4) .t
H y=—L+ fdsx : X))+ — X (+)
OX (4) X )

or equivalently,

(3.4)

If we choose to work in, say, the

Schrédinger picture, we may simply set ¢ =0 in Eq. (3.4) and work with time-independent operators.
The presence of radiative effects, that do not vanish in the NR limit, obliges us to rescale the field operators

X(+)=¢\/7 ’

(3.5)
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where ¥ is normalized such that

b

1 ik
(O'¢(X,O)|k>=me k
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(3.6)

| k) being a one-particle state with momentum k. The field renormalization constant Z, as well as all other renormali-
zation constants of the relativistic theory, can be absorbed in the definition of M and A, the renormalized mass and cou-
pling constant, respectively. We, therefore, rewrite Eq. (3.4) as

A
4M

Hipy=—5= [ dx gl 0V +

The Hamiltonian (3.7) is identical to that of a second-
quantized Schrodinger field;!® the forces between the par-
ticles are two-body forces generated by the potential

V(x,x')=g8x—x'), (3.8)
where
‘g=k/2M2 . (3.9)

With the derivation of Egs. (3.7)—(3.9), we have com-
pleted the reduction of the Lorentz-invariant A¢* theory
to its NR limit; the mass M may now be regarded as a
fixed parameter—rather than one tending to infinity—
that admits of an operational definition within the frame-
work of NR mechanics. To have a coupling constant
which lends itself to a similar definition, we shall renor-
malize it once again in the next section.

Note that the second term in Eq. (3.7) contributes to the
four-point function but not to the two-point function, as
it would if ¢ had both positive and negative frequency
parts. This, of course, is why self-energy effects had to be
handled separately.

1V. THE COLLISION MATRIX

Separating out the center of mass motion, the Hamil-
tonian for the ¢ — ¢ system may be written as

H=H,+V, (4.1)
where

Hy=—(1/M)V,? 4.2)
and

vV =g8r), (4.3)

r being the separation between the two particles. The suf-
fix r on the Laplacian indicates that it operates in r space.
Equations (4.1)—(4.3) follow from Eq. (3.7) specialized
to the N =2 sector. In Eq. (4.2), we have used the fact
that the reduced mass is M /2.
We shall formally define'® the collision matrix T, at en-
ergy E, through the Lippmann-Schwinger equation'®

T=V+VG,T, (4.4)
where
Go=(E+ie—H,)~'. (4.5)

In coordinate space,17

tion for G,

one has the explicit representa-

> [ &Pxd*x iz, 09T (x, )83 (x—x Wp(x', e p(x, 1)

(3.7
—

d3q eiq(r—r)

"| Gy |r)=M (4.6)
(r'[Go[r) f 27) k*+ie—q?

M eiklr—r’|
—_—— 4.7
47 |r—1'| @7

Here, and hereafter, it is understood that k= |k]|,
9=|q], etc. .

When V is a singular short-range potential, it is neces-
sary to introduce some regularization procedure to give

meaning to Eq. (4.4). We define a regulated Green’s func-
18

tion'® via
(r'|Gg®|r)
N 1
=M ) o T mie—e T arge | Y
g +q
=_%—lr1—r,|—(eik“~” —e—Alr=rly 4.9)

This Green’s function is regular at r=r’ for all finite A.
Also, its imaginary part is independent of A; this ensures
that only the real part of the inverse collision matrix is af-
fected by regularization. We emphasize that the introduc-
tion of A is a purely mathematical artifice; no physical
significance should be attached to it.

To calculate the collision matrix, we use the modified
Lippmann-Schwinger equation

T=V+VGyET (4.10)
with the understanding that A is to be taken to infinity at
the end of the calculation. Taking the matrix elements of
both sides of Eq. (4.10) in momentum space, we obtain,
after a little manipulation,

(k'|T |k)=—2

(2m)?
d’p 1 1
M,
+Mg f (217.)3 k2+i6—p2 A2+p2
x{p|T|k). 4.11)

The right-hand side of this equation has the remarkable
feature that it does not depend on k'. Hence,
1

K|T|k)={(p|T|k)=F(k
(K| T |1y =(p| T k) =/ (k)

(4.12)

and we obtain the solution
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= g

FUk) 1+(M /4m)g(A+ik)

Now, in a theory with purely quadrilinear interactions,

a natural way to define the renormalized coupling con-

stant is to equate it to the value of the reduced collision

amplitude—the amplitude up to inessential factors of

27—at some judiciously chosen momentum, say k=ik.

(The momentum must be such that the amplitude is real.)

We therefore write for g.,r), the renormalized four-
field coupling in the NR limit,

(4.13)

8ren(NR) =f(ik)

=g/ 1+ —AigA for k << A . 4.14)
47
In terms of dimensionless quantities
A A
}\'ren(NR)z}‘v/ 1+'8—"M— ] (4.15)

The requirement that the theory be stable implies that
g>0. This, in turn, implies that g .,r) >0, that it goes
smoothly to zero as A— o« and that the S matrix is unity.
The result stated in Sec. I is thus established.

V. CONCLUDING REMARKS

We have shown that if ¢ be a complex spin-0 field, the
A¢* theory reduces in the nonrelativistic limit to a
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second-quantized Schrodinger theory with repulsive two-
body forces, the potentials being three-dimensional &
functions of the interparticle separation. We have also
shown that such potentials lead to a zero collision matrix,
and thereby established that the theory reduces to a trivial
theory with zero renormalized coupling and unit § ma-
trix. The physical reason for this result is not difficult to
see; two point particles interacting via a repulsive 6-
function potential will be unable to perceive each other.

Our considerations have their origin in the recent surge
of interest in the almost universally accepted conjecture
that the relativistic A¢* theory is a trivial theory. By
proving the triviality of the NR limit of the theory, we
have established a consequence of this conjecture though
not the conjecture itself. As we have taken pains to em-
phasize, a Lorentz-invariant field theory cannot be easily
reconstructed from its Galilean limit.
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