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We study the meson spectrum in a model with a confining Lorentz-vector —and hence chiral-
invariant —interaction between massless quark fields. As shown in a previous work, chiral invari-
ance is spontaneously broken. In the case of the harmonic oscillator, as the Fourier transform of the
potential is the Laplacian of a 5 function, the Bethe-Salpeter (BS) equation —a system of linear in-

tegral equations in general —splits into a system of differential equations that we solve in the broken
vacuum. Without appealing to any spin-spin interaction, we find, besides the massless pseudoscalar,
a vector meson at ihe right scale and an excited pion and two vectors in the 1—2-GeV region. More-
over, we find a large L-S splitting with the expected ordering for a vector interaction. We study in
detail the BS wave function for the pion in motion, necessary to compute axial-vector-current matrix
elements, and recover well known relations of current algebra. We compute f„and find on general
grounds that f~=0 in the chiral limit, where m is any radially excited pion. The pion satisfies the
expected dispersion law for a Goldstone boson, co(p}~cp (p ~0}.

I. INTRODUCTION

Since the retrospectively impressive work of Nambu
and Jona-Lasinio, ' many papers have appeared on dynam-
ical breaking of chiral symmetry, i.e., spontaneous break-
ing by fermion-pair condensation, without appealing to
elementary scalars.

Although these ideas have been popular for many years,
the more implicit approach of current algebra —using
general symmetry principles or effective Lagrangians real-
izing these ideas —has been the dominant point of view.
The emergence of QCD as the fundamental theory of the
strong interactions has put forward again the problem of
the precise dynamical mechanism responsible for the pair
condensation, either in the continuum or on a lattice.

The studies of chiral-symmetry breaking for QCD on
the lattice are quite interesting in the different versions
(Susskind fermions, Wilson formulation, staggered fer-
mions, SLAC fermions ) but the results reached so far
are not conclusive due to the difficulties linked to the dou-
bling of fermions.

In continuum QCD a number of approaches have been
applied to the problem of chiral-symmetry breaking.
There are asymptotic results that exploit the asymptotic
freedom. of QCD to study the large-Q behavior of quan-
tities such as the dynamical or the current masses. On the
other hand, chiral perturbation theory gets results on de-
viations from the exact chiral limit where M =0. How-
ever, in these works (as well as for the QCD sum rules)'
dynamical chiral-symmetry breaking- is an assumption, a
starting point.

Our approach is closer in spirit to the original one of
Nambu and Jona-Lasinio: given a chiral-invariant in-
teraction between massless quarks, the problem is to see if
there is indeed a lowest-energy solution of the gap equa-
tion (or the equivalent Schwinger-Dyson equation for the
self-mass) noninvariant under chiral symmetry, and then

solve the Bethe-Salpeter (BS) equation to study the light-
meson spectrum. In this spirit, there are also a number of
partial results for QCD. Instability analyses in the Lan-
dau" or Coulomb gauges show indeed that the chiral-
invariant vacuum is unstable for a, &a,'"', with a,'"'-1,
its precise value depending on the approximations adopt-
ed. ' A deeper study of the problem —solving the gap
equation and studying the pion properties' —has been put
forward in a series of papers by Finger, Mandula, and co-
workers, ' which have proposed to work in the Coulomb
gauge. One important advantage of this gauge is that the
renormalization-group corrections can be easily imple-
mented: the Coulomb propagator corrections give the
complete QCD P function. The Coulomb gauge allows
also the extension of the study to confining potentials that
simulate the QCD long-distance effects if the confining
potential is assumed to be a piece of the time component
of a Lorentz-vector exchange.

In QCD, one needs a renormalized form of the gap
equation. Finger, Mandula, and co-workers' propose as a
renormalization prescription taking the Wick ordering in
the chiral-invariant vacuum —thus preserving chiral in-
variance and avoiding infinities in the fermion self-energy.
We have shown' that this prescription leads to a paradox
for confining potentials: for a positive r (a&0) interac-
tion, the chiral-invariant state is stable, a true vacuum.
We have shown that this result is an artifact of the nor-
mal ordering. If one adopts, on the contrary, the original
Hamiltonian without normal ordering, .one is led to com-
pute self energy loops in the variational calculation. The
result is that the massless-fermion self-energy is negative
and infrared singular, behaving like —I/k, and over-.
comes the positive potential energy, destabilizing the vac-
uum by pair condensation. Moreover, the gap equation
has a different form than the one with normal ordering.
Adler and Davis' have recently proved, starting from the
renormalized Dyson equations for the vector and axial-
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vector vertices, and using the %'ard identities, that the
prescription of Finger and Mandula is only. correct for the
case of pure Coulomb exchange. The gap equation of
Adler and Davis agrees with ours in the infrared and both
are identical for a pure confining interaction, as it is ultra-
violet finite.

Moreover, we have solved this gap equation in the par-
ticular case of the harmonic oscillator its Fourier
transform being proportional to b.-5(k), the gap equation

k

(a nonlinear integral equation, in general) reduces to a
second-order differential equation of the sine-Gordon
type. %'e have computed the shift in energy density be-
tween the invariant and the noninvariant vacua, the mass
gap, and (gf ) . In spite of the infrared-singular behavior
of the potential that reflects in the behavior of the self-
energy, all these quantities turn out to be infrared finite,
and we have shown the precise cancellation between the
singularities. ' '

We want to proceed further with our program and
compute the meson spectrum by solving the BS equation.
Although this equation has often been used in the study
of the meson spectrum, ' there are no results to our
knowledge for the meson masses in the case of dynamical
chiral-symmetry breaking (with the main exception of the
original paper by Nambu and Jona-Lasinio). We have
here a very different starting point (or zeroth-order per-
turbation) than in the old naive SU(6) limit': M =M,
M~ ——M~ ——M~ ——Mz . The splittings were then attribut-

ed to short-distance spin-spin and spin-orbit one-gluon-
exchange effects. ' Here we have, on the contrary, as a
starting point, M =0, M&&0, and the 1.=1 mesons
split. We will have M =0, M&&0, independently of a
spin-spin interaction, as a consequence of dynamical sym-
metry breaking. Moreover, this model satisfies the pion
low-energy theorems, unlike the naive quark model.

The interaction that we assume is instantaneous and we
are thus in the simpler case of the Salpeter equation, our
starting point in Sec. III, after a brief review of our previ-
ous results on the gap equation in Sec. II. We will show
that the existence of a chiral-noninvariant lowest-energy
solution of the gap equation implies the existence of a
Goldstone boson. In the Appendices we will detail the
formalism of the BS equation and the deduction of the
Salpeter equation by integration over the relative ener-

gies. In Sec. IV we will make the Dirac analysis of the
Salpeter equation, and particularize to the case of the har-
monic oscillator: the equation reduces then to a system of
second-order linear differential equations. In Sec. V we
make the expansion in partial waves and we identify the
different quantum numbers. In Sec. VI we outline the
method of integration and give the numerical results for
the spectrum. In Sec. VII we come back to the chiral-
invariant vacuum and we see how instability manifests it-
self by the existence of tachyons. Moreover, around this
"vacuum, " the states correspond to chiral doublets; as we
show, this is a1so true for the asymptotic high-energy
spectrum in the broken vacuum. In Sec.. VIII we study in
detail the moving-pion wave function to compute axial-
vector-current matrix elements, we recover well known
current-algebra relations, and we compute the dispersion
law for the Goldstone boson co(p)~cp (p~0), where c is

the pion velocity, c&1 in our noncovariant model. Some
results of this section have been obtained independently by
Govaerts, Mandula, and Weyers ' and by Adler and
Davis. ' We finally conclude in Sec. IX.

II. GAP EQUATION

A = gf (x)( ia—V)g.(x)

+ —, g V(x —y) Pt(x) g(x)

X

hatt(y)

g(y) (2.1)

where V(x)= —Vo+
i
x

~

. The lattice formalism does
not play an essential role here and at the end we wi11 take
the continuum infinite-volume limit:

a'y fdx, ', y f(an ) -„(2m.)

For the sake of simplifying the notations, we consider
only one fermion flavor. The generalization to the realis-
tic case of two massless flavors is straightforward. We
leave aside any discussion of the U(1) problem, which is
beyond our approach.

Let us first perform a BV transformation: it consists in
writing the quark fields no longer in terms of a massless-
spinor base, but in terms of arbitrary spinors u, v,

11(x)=,i, g [u, (k)b, (k)+U, (k)d, ( —k)]e'" " .
k, s

(2.2)
These spinors are not necessarily solutions of the Dirac
equation, but obey the usual normalization conditions,
preserving in this way the canonical anticommutation re-
lations. The BV methods consist. in writing the Hamil-
tonian in terms of the new creation and annihilation
operators of the trial base. What characterizes the BV ap-
proximation is the linear character of the relation between
the old (corresponding to massless fermions) and the new
creation and annihilation operators. The method amounts
to use as a trial state a coherent superposition of pairs of
massless fermions. In the formulation that we adopt here,
the new spinors u, v are trial spinors to be varied to look
for the stationary states of the theory. To obtain a useful
expression, we need to rewrite the Hamiltonian in terms
of normal-ordered operators relatively to the new base.
One obtains applying Wick's theorem

A = 8'+:H, :+:H4. , (2.3)

For the sake of completeness and to make clear the ob-
ject of this paper, let us give a brief summary of our
framework and the formulation of the gap equation
through the Bogoliubov-Valatin (BV) variational method.
All details can be found in Ref. 15.

Let us start from the chiral-invariant Hamiltonian for
massless quark fields interacting through an instantaneous
fourth-component Lorentz-vector color-confining poten-
tial:
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where

5'=3 g Tr[(a.k)A (k)]

"vacuum" energy) and Hq and Hq are the bilinear and
quadrilinear terms in the quark fields. The algebraic fac-
tors come from color, and A+( k ) are the projectors

+4 3
—g V(k —k ') Tr[A~(k)A (k ')],

{an ) k, k'

(2.4)

A+(k)= gu, (k)u, (k),

A (k)= gu, (k)u, (k) .

(2.7)

(2.g)

+ ggt(x)( —ia. V)g(x), (2.5)

H, =—g V(x —y) y'(x) @(x) f'(y) p(y)

(2.6)

8' is the energy of the trial BV states (we will call it the
I

H =4 ' —' y V(-—-) '&.—
~

3 (an) k, x, y

X Ipt(x)[A+(k) —A (k)]f(y)I

If all the invariances of the original interaction but
chiral invariance are not spontaneously broken, one may
see that A+ must be of the form

A~(k) = —,
' [1+sing(k)P+ cosy(k)a. k], (2.9)

where p(k) is a function of k =
~

k
~

since we assume ro-
tational invariance to be preserved. Notice that although
A+ has a mass term, the Hamiltonian in terms of A+
remains, of course, chiral invariant: the Hamiltonian is
invariant but we allow for possible noninvariant vacua.

The gap equation is just the condition of stationary 8',
the vacuum energy. 8' is a functional of the projector
A ( k ). Differentiating relatively to it, we obtain

55'=3 g Tr 5A (k) a.k+ — —g V(k —k ')[1—2A (k ')]
k

3 (an) k'
(2.10)

with 5A satisfying the projector constraint

(2.11)

The condition of extremum is then that the operator in
brackets in (2.10) must be diagonal by blocks. Then, the
gap equation can be written as the two coupled equations

H(k) =a k+ —
3
—g V(k —k ')[1—2A ( k ')],

3 (an)

(2.12)

[A (k),H(k)]=0 . (2.13)

H(k)=A(k)P+B(k)a k

with

(2.14)

A(k)= —, X —, X 3 g V(k —k')sing(k'),
(an )

(2.15)

B(k)=k+ —,
' X —,X 3 g V(k —k')cosy(k')(k k') .

(an )

The second condition implies then

H(k) corresponds simply to the Hamiltonian of a free
Dirac particle, the bilinear part of (2.3). The second con-
dition means that A and H can be diagonalizable sirnul-
taneously; both operators fix the fermion propagator in
the broken theory, as we explain in Appendix A. Using
the explicit form (2.9) and (2.12), H(k) can be written in
the form

2X3X
(an )3

Xg V( k —k ')[ sing(k') cosy(k)
k'

—cosy(k') sing(k )(k.k ')]
= k sing(k) . (2.17)

The gap equation can be written as a single equation for
qr(k) since the vacuum energy depends only on p through
A+. Once we know a solution of (2.17), A(k) and B(k)
are given by (2.16), and the energy of a fermion is then
given by

E(k) g V(k k')
3 (an ) 2 sin+(k)

(2.18)

As we have seen, ' in the case of a harmonic oscillator,
o.=2, the gap equation reduces to a nonlinear differential
equation, since the Fourier transform of the potential is
just the Laplacian of a delta function. We have establish-
ed in this case the existence of chiral-nonvariant solutions.

Indeed, the Fourier transform of V(r) = —Vo r is

V(k)=VO (2~) 5-„5(k) (2.19)

and the gap equation (2.17) becomes a nonlinear differen-

&(k) =E(k)»nq&(k), B(k)=E(k) cosy(k) . (2.16)

This system (equivalent to the Schwinger-Dyson equation
for the self-mass in the ladder approximation' ) can be re-
duced to a single nonlinear integral equation for y(k)
since A/B = tang.
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tial equation

—, Vo (k p')'=2k sing ——, Vo sin2p . (2.20)

that means a reasonable dynamical quark mass of 250
MeV if we adopt for (gg) the empirical value —(250
MeV) .

For completeness, let us give the fermion energy E(k),
the energy density shift between the chiral-invariant and
the new broken vacuum b.e, and (gg):

III. SALPETER EQUATIGN
AND GOLDSTONE BOSON

E(k)=k cosy ——', Vo cos y ——, X —, Vo (p')

b,e=
z J dk 2k (1—cosy&)

2——', V, ' sin'y — (q')'

(fP) = —
2 J k dk sing .

(2.21)

(2.22)

(2.23)

In the case of an instantaneous interaction like ours, the
integration over the relative energies can be done, and the
BS equation reduces to the simpler Salpeter equation. To
make the reading of this part easier, we will begin setting
this equation for the bound-state wave function. We de-
tail in Appendix B its deduction from the general inhomo-
geneous BS equation.

The Salpeter equation for the qq bound-state wave
function with center-of-mass momentum p, X ( k ),

P
where k is the internal momentum, reads

The lowest-energy solution of the gap equation behaves
like y(k) —+(n./2)+Ck as k~O, and is plotted in Ref. 15.
We found, then, for this solution

If k+ X (k)-X (k)a k-~
P P 2

b,e= — i( —', Vo ) X0.208,
2~2

(gf) = — ( —', Vo )X0.372,

(2.24)

(2.25)

V(k —k ') X (k ')A k—
3 (an) P 2

in terms of the energy scale ( —, Vo )' . Using the value
fitted by Feynman, Kislinger, and Ravndal,

—, V03-—(368 MeV) =co(p)X-„(k) . (3.1)

k+ X (k')
P

we obtain

be= —(155 MeV) = —73 MeV/fm

(gP) = —(178 MeV)
(2.26)

ai(p) is the bound-state energy, and H, A have been de-

fined in Sec. II. X (k) obeys, moreover, the constraints
P

A+ k+ —X (k)A+ k ——
2 I' 2

( &PAL) is to be compared with the phenomenological
value —(250 MeV) (one flavor).

In order to define an effective dynamical quark mass

m& let us expand the projector A+(k) (2.9) for small k
and compare it to the free quark propagator'

=A k+ —X (k)A k—
2

=0,

where the normalized wave functions should verify

A+(k) —= —,
' 1+P— dg7

dk k=o

A'kak = —, 1+@+

Pffft

Q Tr X (k)A k ——X (k)
(an)

since sing(k )~ 1 as k ~0. From

—1/3=C= —2.037' 3 Vp

we obtain

—A k+ X, (k)X, (k) =1

for states such that

( p I p
'

& =(2~)'@p—p ')

(3.3)

4=(—, o)

We obtain mz ——180 MeV for the above-mentioned scale.
Notice that m~ is somewhat small (we would like it to be
about 300 MeV), consistently with the value found for
( gP). We get, however, a nice result for the ratio

mq

(Appendix C).
Let us now see that the gap equation possesses a chiral

invariance that implies the existence, in the broken theory,
of a massless pseudoscalar solution of the Salpeter equa-
tion. Under a chiral transformation

P(x)~e 'P(x),
the projec4ors transform

A+( k )~e 'A+( k )e
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From (2.4) we see that the vacuum energy 8'(A+(k)) is
invariant under this transformation:

8'(A+(k))=$'(e 'A+(k)e ') . (3.4)

This equation expresses the condition of degeneracy of the
chiral-noninvariant BV states: the energy is the same for
all chiral-transformed states, and we will obtain from (3.4)
a condition of chiral invariance of the gap equation. We
will see now that this invariance implies a massless solu-
tion for the equation (3.1).

Let us perform an infinitesimal chiral transformation
on the quark fields. The operators A+(k) and H(k)
transform then in the form

A+(k)~ A+(k)+i58[ys, A+(k)],

H(k) —+H(k)+i58[ys, H(k)] .

The invariance (3.4) reflects on the gap equation under the
orm

IV. DIRAC STRUCTURE
OF THE SALPETER EQUATION

To study the meson spectrum for the different quantum
numbers, let us write the BS wave function at p =0 in a
base of Dirac matrices

3

X(k) =Lo(k )+ g L;(k)p;+M(k) cr+ g N;(k) p; o,

(4.1)

where p&
——y5, p2

——iy5yp, p3
——yp, and o. are 4&4 spin ma-

trices.
We have seen that the projections (3.2} vanish. Using

the relation between H(k) and A (k) via A(k), B(k)
(Sec. II),

H(k)=E(k)[1 —2A (k)]=—E(k)[1—2A+(k)], (4.2)

we can easily see that the conditions (3.2), when p =0, are
equivalent to the vanishing of the anticommutator

[ys,H(k)] ——
s g V(k —k')[ys, A (k')]=0

3 (an) [X(k),H(k)J =0. (4.3)

and the condition (2.13) gives, to first order in 58,

[[ys,H(k }],A+(k)] = —[H(k), [ys, A+(k)]] .

(3.5)

(3.6)

From the Dirac decomposition of H(k), which reads in
the new notation

H(k) =A(k) ps+B(k) p, (7 k,

Taking now the commutator of (3.5) with A (k) and us-
ing (3.6) we obtain

[H(k), [ys, A (k)]]——
s g V(k —k')

3 (an)

the condition (4.3) leads to a number of constraints

L,p
——0, L3 ————N) k,

Ns= — Lik, M= ———(N2Xk),
A

X[[ys,A (k ')],A (k)]=0 . (3.7)
and we get the general form of X(k) satisfying (3.2)

This equation is nothing else but the Salpeter equation for
a inassless bound state at p =0 (3.1):

[H(k),Xo(k)]——
s g V(k —k')

3 (an)

X(k)=Li pi — pso"k +—L2p2+Ni pier ——psk

X[Xo(k'),A (k)]=0 (3.&)
+Nz p2c7+ —cr Xk

A
(4.4)

with the Hermitian wave function

Xo(k) =i[A ys] = sing(k)iysyo (3.9)

corresponding to a pseudoscalar state, the Goldstone pion.
The normalization of (3.9) is impossible-because the norm,
from (3.3), vanishes:

g Tr[[Xo(k) A —(k)]Xo(k)] =0 . (3.10)

This is consistent with the usual covariant normalization
of states,

At p =0, enough to study the meson spectrum, the Sal-
peter equation takes the siinple form

[H(k),X(k)]—— g V(k —k ')[X(k '), A (k)]
3 (an)s

=MX( k ), (4.5)

where M is the meson mass. The commutators in (4.5)
cari be reduced to commutators of a general operator with
K(k) since we have

& p ~ p '& =(2 )'5(p —p ')2 (p), (3.11} [X(k '),A (k)]= [H(k),X(k ')] . (4.6)

and we now have co(p)=0. To normalize the BS pion
wave function we will need to compute it beyond the

p =0 limit. This will be done in Sec. VIII.
The commutator of a generic Dirac matrix with H(k)
writes
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1 —+
H(k), g X;p;+cr Y+ g Z;.p;cr = —X2(A pt —Bp3o k)+(AX] BZ3 k)p2

2l i=1 i=1

+(—AZz —BYXk). pio ——p3k

+(AZ, —BX,k) p, o+ o—Xk (4.7)

From this expression and the expansion (4.4) for the wave function we see that the Salpeter equation for the mesons at
rest decouples in a set of two by two coupled linear integral equations:

—A(k)L2(k)+ — g V(k —k ')L2(k ')= . Li(k),2E(k) 3 ori 3 2i
(4.8a)

L (k) g V(k k') 1 (k k ') L (k') — L (k),
A (k) 2E(k) 3 (ori)3 A(k)A(k') 2i

(4.8b)

8 k 8 k'
A(k) A k) 2E k 3 (ori)3

N2(k)+ [N2(k) k]k — —
3 g V(k —k') —N2(k')+, [N2(k')Xk']Xk

Ni(k),
2E

(4.9a)

8 k ~ A k 4 1 k 8 k'
A(k)Ni(k)+ [Ni(k).k]k — — Q V(k —k ') Ni(k ')+, [Ni(k ').k ']k

A(k) 2E(k) 3 (gri) A(k)A(k')

M
. N2(k) .

2L
(4.9b)

Let us now identify the quantum numbers that corre-
spond to these functions L ,iL2N»N .2To this aim, let
us deduce, from (4.4), the transformation laws of these
functions under P, C, and T. We obtain the following:

L)(k)
L2(k)
Ni(k)
Np(k)

—Lg( —k)
—L2( —k)
—Ni( —k)
—N2( —k )

Li( —k)
L2( —k)
—NF( —k )
—Ng( —k )

L 1( —k)
—L2( —k)
—N)( —k)
N*( —k)

L (ki) =0, L2(k) =—= sing

is a solution for M=O, that gives, from (4.4) the wave
function

We find therefore the usual formulas: P=( —1) +', that
takes into account the opposite parity of particle and an-
tiparticle; C=( —1) + . Li and L2 correspond to S=O
and N~, N2 correspond to S= 1. The time-reversal
transformation laws mean that we can take Li,iL2, Ni,
iN2 as real, as we will do.

The first equations (4.8) coupling Li and L2 corre-
spond thus to mesons with total quark spin S=0
(m, B,m', . . . ) and the second set (4.9) coupling Ni and N2
to mesons with S= 1 (p, 5,A„A2, p', . . . ). From the first
two equations we rediscover the Goldstone-boson solution
discussed in Sec. III. Indeed, we see that

already discovered in Sec. III.
Let us now particularize the integral equations for the

case of the harmonic oscillator, whose Fourier transform
is given by (2.19). Note that y(k) is already determined
by the gap equation, the nonlinear differential equation
(2.20), as we have discussed in Ref. 15.

We will need expressions of the form

V'-„,f(k')
j -„, -„=V-„,f(k')(k k ')

i -„, „=f'(k)k,
k. V -f(k) =f '(k),

(4.10)

6-„,f(k')(k. k ')
~ „, = — f(k)+ —f'(k)+ f"(k) .

Let us rename the variables

k M~k, ~M .
(

4 V. 3)1/3 '
(

4
V 3)1/3

Applying (4.10) to our case, the combination 2k''+k p"
appears often, and can be simplified using the gap equa-
tion (2.20):

2k''+k y"=2k sing —sjn2y .

X( k )= sinpp2 We also need the expression
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b, I coty(k') [N(k ') X k ']
I I

2 cosg7 (,)2 costp
k (N f)sing sin y

and for b, Icotp(k )[N(k ') k ']I we get the same expres-
sion, replacing N( k ) X k by N( k ) k.

After some calculation we get, in the case of the har-
monic oscillator,

+ coty'(NXk) —, (NXk) (4.11)
S~n2y dk

sing(k)&L2( k ) —2E(k ) sing&(k )L2( k ) = iM—L I ( k ), (4.12a)

E(k)+k cosy(k)
sing&(k)

k 1 'k k d
sin y(k) sing&(k) sin2y(k) dk (4;12b)

sing(k)bNI(k)+ . Ih[NI(k) k]Ik — .", [NI(k) k] k —2E(k)sing(k)NI(k)

+2 coty(k) 2 [y'(k)] + —k Ecsoy(k—) [NI(k) k]k =iMN2(k), (4.13a)sin y(k) k

sing (k)&N&(k) — . Ib [N,(k) Xk] I Xk+ [N (k)Xk] Xk — . N (k)
sing&(k

2Ek k
[N2(k) k]k —2coty(k) (tp'(k)) + —k [N2(k) Xk]Xk = —iMNI(k) .

(4.13b)

If we call V. PARTIAL-WAVE EXPANSION

NL ——N.k,
(4.14)

The expansion into states of definite angular momen-
tum makes no problem for the two equations for
L I ( k ),L2 ( k ) (4.12). Defining radial functions

it is easy to see that in the normalization condition (3.3),
for p =0, 1 uI(k)

L,(k)= g Y (k)
sing k LM

(5.1)

(X+ =A+XA, X +=A XA+), IIX+

I IX + I I
are given by

2
E—

2 IIX+ II = LI —iL2 + NIT ——i—N2z.

(4.15)

u2(k)iL2(k)= g Yl (k)
LM

we obtain

d 2E, 2 L(L, +1)+2cos qr
2. +2E+ p + 2 UIg =MU2L

(5.2a)

+ —N 1L —iN d L(L+1)
dk k2

+2E+- U2L ™ (5.2b)

These equations still simplify if we take into account the
expression for E(k) (2.21):

2 E~
2 I I&-+I I

=
~ LI +«2 + N»+ »—

—N IL +iN2r . (4.17)

L(L+ I)
dk

+2k cos++
k

U1L ™2L (5.3a)

The natural variables will therefore be
d L(L+ 1)

dk
+2&+

k
U2L =MU1L (5.3b)

—L I, iL2, NII. , N», IN21. ,—I—N2T . (4.18)

We will expand these functions in partial waves.

These equations correspond to rnesons with total quark
spin S=O, i.e., the Goldstone pion and its radial excita-
tions, the 8 meson (J=L =1),etc.

Let us now expand Nj, N2 in vector spherical harmon-
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ics. We define the radial functions, dependent on J and L
only:

d, 2 J(J+1)+2sin qr

N(k)= g Yslm(k) .
JLM

(5.4) + sing n &+ M——n2, (5.9b)
2[J(2~1)]'~'

n~q(k )
m~g(k) = i-

sing k

and we get

d J(J+1)
dk' k

+2E+ m 1JJ—Mm 2JJ (5.6a)

J(J+1)
dk2 +2E+(q ')'+

k
m2JJ —Mm 1JJ (5.6b)

These equations correspond to mesons with total quark
spin S= 1 and L =J, i.e., for example, the 3

~
meson and

its radial excitations.
From the linear independence of Yqq+~M(k) we obtain

four coupled differential equations involving n;JJ+ ~

(i = 1,2). These equations are rather complicated but they
simplify dramatically if one adopts the variables [cf.
(4.18)]:

We will need a number of formulas involving the vector
spherical harmonics YAM(k) that we give in Appendix
D. From the linear independence of the YJJ~(k) we ob-
tain two coupled equations for the radial functions n;JJ
(i = 1,2). These equations greatly simplify if we adopt the
new variables, analogous to (5.1) [as we can infer from
(4.18)]:

m ]gg(k ) =n j Jg( k )

d' J(J+1)+2
f122 k2

+ 2[J(J+1)]'~'
sinyn z+ M——n

&
(5.9c)

k

d'
+2E+( '}'+J(J+1)

dk
2+

2[J(J+1)]'"+
k

sinyn2 ——Mn1+ . (5.9d)

UI ——U1L+U2L, mi ——m 1JJ+m2JJ

n$+ =n1+ +n2+ nI =n1 +n2
(5.10)

correspond to "large" components, having a nonrelativis-
tic limit. The small components are

These four equations correspond to mesons having total
quark spin S= 1 and orbital angular momentum
L =J+1. For instance, the p (S= 1, L =0, J= 1) and its
radial excitations will correspond to n;~0(k), which is cou-
pled to n;~z(k), i.e., the orbitally excited L =2, 1 state.
The A2 will correspond to n;2&(k), coupled to nf23(k)
The o. or 5 will correspond to n;O1. in this case we have
only two equations, like for S=0.

Looking back at the Dirac decomposition (4.4), we can
see that the linear combinations

n1+ ——— J
2J+1

1/2 J+1
+1JJ+1+ +

Us U1L U2L~ ms m 1JJ m2JJ ~

n + =n]+ —n2+ n =n1 n2
(5.11)

n1
sj.n+

1/2

+1JJ+1
With these new variables the equations take a rather sym-
metric form:

(1) S=O:

J
2J+1 (5.7)

d
2& ~ (,)2 L(L+1)+cos y

dk2+ +2 9' + k2 'I

i J
712+ =

sing ~ 2J+1

1/2 J+1
+2JJ+1+

1/2

—,'(y') + U, =Mvt ~

k
(5.12a)

712— l

1/2J+I
2J+ I

J
+2JJ+1

1/2

(5.8) d &, 2 L(L+1)+ cos g
dk

S

2

—,(y') + U~ ———MU, .cos @ (5.12b)

We obtain, in terms of these new variables,

d' J(J+1) 2[J(J+1)]'~'+2E+ n1+ + sinyn1

(2) S=1,J=L:

+2E+ —,(q)') ~ m( ——,(q)') m,
d

' i, p J(J+1)

=Mn, +, (5.9a) =Mm), (5.13a}
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d i, q J(J+1)
dk

+2E+ —,(y') + m, ——,(y') mi
k

(3) S=1,J=L+1:
= —Mm, . (5.13b)

2[J(J+I)]'+ sing
k

nS ——~nS (5.14b)

d 2E ~, 2 J(J+1)+1+ sin y+2E+ —, p nI

, 2 cos y . 2[J(J+ I)]'i+ —,
' (p') — n, + sing& n&+k2 k

=MnI, (5.14c)

d ), p J(J+1)
dk , +2E+ , (y') —+, n&+ —, (—~')n, +k

+ sing
2[J(J+1)]'"

k
nI =Mni+, (5.14a)

2d J(J+1)
dk

+2E+ (q ) + n + (q } nl+
k

where R(k) is now a 4 X4 matrix, regular as k ~0, and h

represents the four-component vector.
From the form (6.1) we see that there are regular and

singular solutions as k —+0,

n ~k~+' k

Our problem of finding the eigenvalues and eigenfunc-
tions simplifies considerably because all these equations
satisfy the symmetry: k —+ —k (radial variable). It follows
that the solutions split into even and odd functions of k.
The same argument applies to the system (6.3) where we
have the k~0 behavior

k'+', k-"+"
I J k —(J—1)

To solve the equations we need to fix a number of ini-
tial conditions. Let us consider the case (6.3) to expose
the method. Since we have four second-order differential
equations, we need eight conditions. To choose the regu-
lar behavior as k~0, hi, h2-k +, h3, h4-k fixes four
conditions. We are left with four conditions, to be fixed
by the behavior as k ~ co. Let us consider the four-vector
functions behaving as k —+0 like

d 2E i, 2 J(J+.1)+1+ sin y, +2E+ —, q&' + $—

h "(k)cck + 5; (i=1,2),

(6.4}

cos y . 2[J(J+I)]'~~+ —,
' (y') — . ni + sing z n, +k2 k

(5.14d)

VI. MESON SPECTRUM

We need to solve the three systems of linear second-
order differential equations [(5.3), (5.6), and (5.9)]. The
first two systems, which correspond to mesons S=O,
J=L and S= 1, J=L, are of the form

d' L(L+1) R k
dk2 k2

n1L
=0, (6.1}

where R(k) is a 2&&2 regular matrix as k~0. The sys-
tem (5.9) is more complicated, but we can perform a new
change of variables in order to diagonalize the behavior as
k —+0.

ni+ ——~Jh i —V'J+ lh2,
n i

——&J+ lh i +~Jh3,

np+ vJh2 —VJ+ lh——4,
n2 ——&J+ Ih2+~Jhq .

(6 2)

dk2

J(J—1)I
0

0 1

(J+1)(J+2)1

In terms of these new functions h; (i = 1, . . . , 4), the sys-
tem writes

f (k) = g C, h "(k), (6.5)

where C~ (i= 1, . . . , 4) are independent of k. We solve
then the system by the Runge-Kutta and Numerov
methods for functions of the form (6.5) and we determine
C; by asking the solution f (k)—&0 as k~ 00. This gives
the condition

g Ch "(k ) =0. (6.6)

The four free parameters left are the three independent
coefficients C; and the mass eigenvalue M. A solution
C,&0 to (6.6}will exist if

det[h "(k~ oo )]=0, (6.7)

where the determinant is understood for the matrix h",
where m labels the component function, and i labels the
initial conditions. We look for solutions h~" such that
(6.7) is satisfied. The position of the change in sign in the
determinant fixes the mass eigenvalue M. Once we have
the solutions satisfying (6.7) we go back to the equation
(6.6) and we solve for C;. This gives, from (6.5), the
eigenfunctions.

We give the spectrum for two values of the energy scale
('—, Vo )'~: one that fits the p mass

h~"(k) ~k 5;~ (i =3,4) .

The index 5 labels the vector, and m labels its com-
ponents. It is clear that any solution f to the four dif-
ferential equations can be written as a linear combination
of functions of this type:

+R(k) h =0, (6.3) ( —, Vo )' =289 MeV (6.8)
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and another that gives a better overall fit to the masses,

( —, Vo )'~3=247 MeV . (6.9)

We obtain the spectra of Table I. We have specified the
different J quantum numbers. Since we consider a sin-

gle quark flavor one should compare these results with the
isovector mesons, m, p, 5,A„B,A2, . . . to avoid the contri-
bution of the anomaly for the isosinglets, a phenomenon
beyond the scope of this paper. There are a number of in-

teresting qualitative features in this spectrum. First, we

get M =0 and M& at the right scale, without appeahng to
any spin-spin interaction, merely as a consequence of the
spontaneous breaking of chiral symmetry. Of course, the
one-gluon-exchange short-distance interaction should also
contribute to the spontaneous breaking and may improve
the value of (ff) and the p 'mass. We see also that there
is a radially excited pion at the right scale, and two or
three excited 1 states in the 1—2-GeV region. The low
mass of the first p' seems to point out to the old and con-
troversial p'(1250) seen in some e+e experiments. The
second one is roughly compatible with the conventional
p'(1600). These states are strong mixtures of a radial ex-
citation and of an orbital L =2 excitation.

Another striking feature is the fine structure within the
L, =1 multiplet, which we get nonperturbatively. We ob-
tain the same ordering as the one predicted by the L-S
coupling of the Breit-Fermi one-gluon interaction
M(2++) &M(1+ ) &M(1++)&M(0++). This feature is
not surprising and comes from the vector character of the
confining interaction that we have adopted. This ordering
favors the old classification for the A, at a, mass of 1060
MeV, instead of the currently accepted A &(1270), heavier
than the B(1235). Of course, one should not take our
model's detailed predictions too seriously in view of its
inability to predict a correct pion velocity (see later) and
its too small value for (Pg). It is still worth noting that
the classification with 3 ~ heavier than B also contradicts

L S coupling of one-gluon exchange as well as the order-
ing found in charmonium, where a Lorentz scalar poten-
tial is assumed to correct but not reverse the L, -S ordering
of one-gluon exchange. Our effective L-S splitting is also
too large, and should be corrected by some other interac-
tion, as we have suggested in the Introduction.

For the sake of completeness, let us give the quantities
m~, b,e, and (gg) defined in Sec. II for the two values
(6.8) and (6.9). We obtain, respectively,

mq =142 MeV,

Ae = —28 MeV/fm, ( gP ) = —( 140 MeV)

mq = 121 MeV,

Ae= —15 MeV/fm, (gf) = —(120 MeV)

VII. INSTABILITY
OF THE CHIRAL-INVARIANT VACUUM

AND ASYMPTOTIC SPECTRUM

It will be interesting to go back to the Salpeter equation
and try to look for the form of the spectrum in the
chiral inuariant -"vacuum" (it is a stationary state, but not
a minimum). We expect two phenomena: (1) a tachyon in
the 0 + or 0++ channels (corresponding to the m. or the
0", because of chiral invariance both should be degenerate),
expressing the instability of the invariant vacuum, and (2)
a realization of chiral symmetry through parity doublets
for the different states.

Let us first see that the 0 + (m) and 0++ (o ) states are
degenerate and have imaginary masses. From Eqs. (5.12)
we get, for the chiral-invariant solution of the gap equa-
tion (2.20) @=0 and for the J=0 channel

TABLE I. Meson spectrum in MeV for two values of the harmonic-oscillator strength: ( 3 Vo )' =289 MeV, which fits the p
mass, and 247 MeV, which gives a better overall fit.

Oscillator
strength
{MeV) 0—+ 0++ 1 ++ 2++ 2 2 + 4++ 4—— 4—+

289 0 941
1599 1858
2341 2546
2981 3143

778 1183
1434 1988
1740 2644
2185
2433
2817
3033

1348 1729
2095 1877
2727 2367

2531
2941
3114

1772
2433
3019

1859 2202 2208 2269
2502 2263 2805 2851
3079 2791

2860

2577 2580 2618
2618 3'137 3172
3134
3175

0 805
1368 1588
2002 2178
2533 2689

664 1012
1227 1701
1489 2262
1869
2081
2410
2585

1153 1479
1793 1602
2333 2025

2165
2518
2664

1516
2081
2583

1590 1884
2141 1936
2635 2388

2447

1888 1933
2400 2440

2205 2207 2240
2240 2684 2714
2681
2718
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d2 I 1

dk
+2E+ pl+ Us =MUI,

k2 k

d2 1 1
, U, = —MU, .

k k

(7.1)

with

f=(—6-„+2k) '/ w| .

We will have a negative eigenvalue M &0 of this eigen-
value equation if we find a test function

Note that, since now y=O, the fermion energy contains
the infrared-singular self-energy

w=( 6—+2k)'/ f
such that

E(k)=k— (7.2) / —d „+2k — /) (0 .2
(7.9)

in the units that we have adopted. Remember that this in-
frared singularity disappears for the broken solution, since
cosy&(k)/k behaves like a constant for k~0. Equations
(7.1) correspond to the meson with J =0 + quantum
numbers. Let us now look for the equation for the
J =0++ meson, corresponding to the 0.. From Eqs.
(5.14) we obtain for J=0 and y =0 two coupled equations
for nI+ and n, + that are meaningless [since we see in
(5.7) and (5.8) that only n;Jq i survive], and two coupled
equations corresponding to the 0++ meson J=-O,L = 1:

1 1, +2E+
k k

d 1 12+ + 2, — 2ni ———Mn,
k

(7.3)

With the change of variables ni ~n/, n, ~ n, , we-
see that these equations are identical to (7.1): the 0 + (m')

and 0++ (o ) mesons are degenerate.
Let us now see that M & 0, i.e., that there are tachyons,

indicating the instability of the chiral-invariant vacuum.
Let us consider the form (5.2) of the pion equation
(& =0):

We proved precisely in Ref. 15, when studying the insta-
bility of the chiral-invariant vacuum, that the quadratic
form (7.9) can be made negative by conveniently choosing
the test function. This can be seen immediately from the
operator inequality

1

4k
that means that we can approach as much as we want the
right-hand side (RHS) by conveniently choosing the test
function f. We are then led to the quadratic form

r

(7.10)

(/ 2R —,/) (7.11)

that can be made negative as the two terms scale different-
ly. '5 Therefore M &0, i.e., we have a chiral-degenerate
set of tachyon states.

Let us now see that the rest of the spectrum appears in
parity doublets. Consider the first equations (5.12) for
J=L,S=0, for y=O:

I

d J(J+1) 1

dk k k2 +2E+ 2 UI+ 2
U i

(7.12)

Wi0 A
M8 0 M2 w2

(7.4)

d & J(J+1)
dk k

1
vs+ Ut = —MUs

k

with

+2k— 2
k

These states correspond to P=( —1) +', C=( —1)
[0-+ ( ), 1+- (a), . . .].

The second set of equations (5.13) (J=L,S=1) be-
comes, for y=O:

a= —6„~2k,
and w&

——U& /k, w2 ——Uz /k.
The operator 8 is strictly positive; we can therefore de-

fine its inverse and we can write

d J(J+1)
dk

~2E+
k

mi ——Mmi,

d' J(J+1)
dk

+2E+
k

m, = —Mm, .

(7.13)

wi ——( —5 ~2k) 'Mw2 .
k

We have therefore

or

( —b, -„~2k)'/ —b, -„~2k—

2+2k — w| ——( —6 +2k) 'M wik k2 k

(7.6)

(7.7)

Their solutions correspond to the states P=( —1) +',
C=( —1) +' (&i, . . . ) .

Finally, the set (5.14) ( J=L +1, S= 1) becomes, for
y=O:

d2 J(J+1)
dk

~2E~
k

nI+ ——Mni+,

(7.14)

X(—b, „~2k)' f/=M'f (7.8) dk2 I 2 n,-+ ———Mn, +,
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2 I 2

1
ni —

2 ng =Mn)
k

VIII. AXIAL-VECTOR-CURRENT
MATRIX ELEMENTS. PION VELOCITY

(7.15)

d' J(J+1)+2E+ n, —
&

ni ———Mn,
dk k' k'

The solutions of these equations correspond to states with
P=( —1), C=( —1) (p, A2, (T, . . . ). Performing the
'change of variables n( ~n(, n, + n—, —, we see that
the spectrum is degenerate in parity doublets: the two sets
(7.12), (7.15) and (7.13), (7.14) correspond to opposite-
parity states. The states P=( —1) +', C=( —1) [Eqs.
(7.12)] are degenerate with the ones with P=( —1),
C=( —1) [Eqs. (7.15)], and the states with P=( —1)~+',
C=( —1) +' [Eqs. (7.13)] are degenerate with the states
with P= ( —1), C =(—1), solutions of the system (7.14).

When we solve the Salpeter equation in the true vac-
uum we expect also to recover a near degeneracy between
parity doublets for high masses, large compared to the
scale of the spontaneous chiral-symmetry breaking. We
find indeed that the splitting between parity doublets de-
creases as we go to high masses. We have not reached yet
the asymptotic chiral-degenerate limit, as we see from the
table, except for large angular momentum states.

('0(p) ~ cp
p —+0

(8.1)

where c is some constant (different from one in general as
the model is not Lorentz covariant). We will moreover
compute f and investigate how the conservation of the
axial-vector current holds.

A. Wave function for the pion
at nonvanishing momentum

We want to solve the Salpeter equation for the Gold-
stone boson at p&0. This equation (3.1) writes

We have shown the existence of a Goldstone boson and
we have found also the low-lying meson spectrum. We
want here to go further and compute the matrix elements
of the axial-vector curren't involving the pion. To do that
we need to compute the BS wave function of the pion for
center-of-mass momentum p&0 since the (0

i
j~5 i

n. ) ma-
trix elements depend on the mome~turn, being proportion-
al to f p„. The model is not covariant since we have
adopted an instantaneous interaction. However, we will
see, by making an expansion in powers of p, that the
model satisfies the expected properties of a theory with
chiral invariance dynamically broken. We will see also in
this section that we recover the expected dispersion law of
the Goldstone boson

M k+ X (k)-X (k)H k—
P P 2

QV(k —k ') X (k ')A k—
3 (an)'

k+ X (k')
2

=co(p)X (k) (8.2)

with X (k) satisfying the constraint
P

A+ k+ X (k)=X (k)A~ k— (8.3)

We will make an expansion of the relevant quantities in
powers of p:

k+~ =A"'(k)+A"'(k)+ ~ ~

2

[If' '(k) X' '(k)]

3 Q V(k —k')[X' '(k '), A' '(k)]=0,
3 (an)

(8.5)

I

where the upper index means the order in p. For the case
of the Goldstone boson that we are considering, co(p) be-
gins at order one in p since the mass vanishes.

At zero order in p we obtain the equations that we
have considered before:

a k+~ =H'"(k)+H"'(k)+
2

X-(k ) =X' '( k )+X'"(k )+
P

~(p) =~")+~")+. .

(8.4)

A' '(k)X' '(k)A' '(k) =0 .

The solution is, as we have seen, proportional to

X' '( k )=sing(k)iysyo .

At first order in p we get

(8.6)

(8.7)

[~' '(k),X'"(k)]——
3 g V(k —k')[X"'(k'), A' '(k))+ IH''"(k), X' '(k) j3 (an)

V(k k.)IX(o)(k.) A )(k)I co( )X( )(k) (8 8)3 (an)
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with the condition

[A"'(k) X' '(k)]=X"'(k)A'~'(k) —A+'(k)X"'(k) .

(8.9)
In (8.8), {,I means anticommutator. This equation sim-
plifies considerably, since X' '-p2 anticommutes with
p3=P and p&o=o. , and A'+' and H'" can only contain
these matrices. We get, therefore,

[H' '(k),X'"(k)]

V(k —k ')[X"'(k '), A' '(k)]
3 (an)

=co'"X' '(k) (8.10)

and the constraint can be written, since A+ ' = —,
'

( 1

+H/E), as

We get, therefore, for the commutator in the RHS of
(8.11)

[A X ]=——.(k.p) —p
(&) (0)
+ & 2 E E 1

(k.p) — k

1 8———(p Xk)Xk p3o . (8 16)
k E

Let us try the particular form X'"(k)=o"u(k). We ob-
tain f

{H' '(k),X"'(k)I = —2E[A'+'(k), X' '(k)] . (8.11) {H' '(k),X'"(k)I = —u.p3o. + —(u k)pi .
2E ' E E

A+'(k)X'"(k)A+'(k) =0 (8.13)

and its general solution is, as we have seen in Sec. IV,
~'

X"'(k)= L i pg ——p3o"k +L2p2

Let us first find a solution for the constraint (8.9). The
solution will be equal to the general solution of the homo-
geneous equation

{H'0'(k), X'"(k) I =0 (8.12)

plus a particular solution of the inhomogeneous equation
(8.11). It is easy to see that the homogeneous equation
can be written

(8.17)

(8.18)

The general solution to the constraint will then be

X"'(k)= L& p&
——p3o"k +L,p,

A

+N~ p~ cr ——p3k
A

It is easy to.verify that X'"=u o. satisfies (8..11) with

lu= —' (k.p) — k ———(pxk)xkE k E

+N~ p~o ——p3k +N2 p2o. +—o. )&k +N2 p2o+ —(o Xk) +o"u (8.19)

1 B (pXk)xk p)o . .
J

(8.15)

(8.14)
Let us now look for a particular solution of the inhomo-
geneous equation. Let us first compute A+ (k), the first(&)

order in p in the expansion of A+(k+ p/2):
I

A (k)= — (k.p) —p + (k p) — k+ 4 E 3

with u given by (8.18).
Let us now impose the Salpeter equation (8.10) to this

expression. %e need to compute the commutators
[X'"(k '),A' '( k)] and [H' '( k),X'"(k )] and take into ac-
count the linear independence of the Dirac matrices, along
the same lines as in Sec. IV. We obtain I.z

——NI ——0.
Furthermore, since o appears in the second term of the
bracket multiplying N2, it will be coupled to u. I.j and
Nz satisfy the equations

2E (k) 4 1 ~—,A(k)A(k')+B(k)B(k')(k'k ') E(k'), A(k)
&(k) 3 (an)' „, E(k )E(k') A(k') E(k)

{2'(k)N,(k) —B'(k)[N, (k) xk] xk I

(8.20)

4 1 . —,E(k') A(k)A(k') k, B(k)B(k')
3 an 3 A(k') E(k)E(k') E(k)E(k')

2B(k)u(k) — — g V(k —k')u(k') Xk .E(k) 3 (an)' „,
(8.21)
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It is convenient to parametrize I.] and N2 in the following form:
1ftI. =— a)" ' N =— ( p )& k ) .E k ' E (8.22)

Then, in the case of the harmonic oscillator, both equations [(8.20) and (8.21)] are satisfied provided the functions f~ and

f2 are solutions of the differential equations

dk
+2k cosy f&

——k sing&, (8.23)

d 2slI1 tp f sin g
dk k k~

+2k cosy+ (8.24)

In terms of these functions, the pion wave function up to first order in p then writes

(i)Afi 8 - A 1 i 1 8 Bfz
X-, {k) =—p2+~'"— p) ——p3o k + (f2

——,—)(p X k—).p2o + —— (k.p)k —— (p Xk) X k2 E k 1 g 3 E k 2 2 2

(8.25)

In Sec. VIIID we will compute co'", for the moment un-

determined. As we have seen in Sec. III, the zeroth-order
pion wave function (8.7) is not normalizable. The per-
turbed wave function can, on the contrary, be normalized.
Using the expression (8.25) in (3.3) we obtain, since A
enters only to order A' ' (X' ' anticommutes with A'"):

Tr[X,A'"]X' =24 Im —I, ,

where the factor three comes from color. We get there-
fore,

IIX.II'=- J ', Tr[X-«),A'"(k»X'-(k)
(2m. )

(0 ( j, )
~) =v 2f co, (8.27)

where the normalization of the pion state V&cd~/~ ~X ~ ~

is given by (3.11). We obtain, since jq gty5$=——$ p~p,

(0
~ j, ~

~) = f,Tr[ptX (k)]

12~'"v'2' dk fi«) .

(8.28)

where the factor three comes from color. We get there-
fore from (8.26)

dk fi«) .
24Qp 3

sing
(2~)

(8.26) f = 6 I 3- sing(k)
dk fi(k) .

(2m. )
(8.29)

B. Pion decay constant

Qnce we have the pion wave function for p&0 we can
compute the axia1-vector-current matrix element

f((k) satisfies the differential equation (8.23) in the case
of the harmonic oscillator or, more generally, from (8.20)
and (8.22), f~ (k)/k satisfies the integral equation

fg(k) f(k')
2E(k) =sing(k) +— g V( k —k ') [sing(k )sing(k') +cosy(k)cosy(k')(k k ')]

k 3 (an) k' (8.30)

f&(k)/k is just the function g(k) of Adler and Davis, ' who follow the analysis of Govaerts, Mandula, and Weyers; ' we

agree with them for the expression of f . We get, however, a larger numerical value than Adler and Davis, perhaps be-

cause they use the linear instead of the harmonic-oscillator potential. We obtain f =20 MeV for ( —,Vo )'~ =247 MeV,
a factor two bigger than Adler and Davis. We discuss our result in the conclusion.

C. Dynamical chiral-symmetry breaking
with a current mass H( k ) = c7.k +Pm

Up to now we have assumed chiral symmetry to be ex-
act. To obtain in our model some familiar formulas of
current algebra, let us introduce a small current mass, i.e.,
a term mug in the Hamiltonian, and see how the formal-
ism. is modified. We have to make the replacement
a .k ~a .k +Pm everywhere. For example, the gap equa-
tion is now

[A (k),H(k)]=0,

and we get now the coupled integral equations

(8.32)

+—,—g V(k —k ')[1—2A (1 ')], (8.31)
3 (an)
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1 4 Ig (k ) =m +—— g V( k —k ')sing(k'),
2 3 (an)' -„,

B(k)=k+ —— g V(k —k ')cosy(k')(k. k '),
2 3 (an)3

(8.33)

we get

2m f dk kF2 ——M f dk k sintpF~ . . (8.40)

Using now the expansions (8.38) and (8.39) we obtain,
keeping the lowest order,

2m f dk k siny=M f dk k sinyf ~+O(m ) .
with the same conditions (2.16). The single integral equa-
tion for y(k) now becomes

1 4 1 g V(k —k ')[sing(k')cosy(k)
2 3 (an)

(8.41)

Comparing to our expression for f» (8.29) and (gg)
(2.23) we obtain the well-known expression

—2m(pg)=M f„+O(m ) . (8.42)
—cosy(k')sinter(k)(k. k ')]

but now y is the solution of (8.35) and E(k) is now the
fermion energy in the massive case. At order O(m ),
the solution to the Salpeter equation is M =0,
U q

' ——k sinter(k), as we know. It is useful to call
Mv~ ——F~, v2 ——F2. We get the equations

d2

dk
+2k cosy F& ——F2,

(8.37)
d2

dk2
+2E F2 ——M F] .

We can write for F2 the expansion

F2 Fq '+O(m)=k——sing+0(m) . (8.38)

Therefore, the function F~ will have an expansion in m,

= k sing(k) —m costp(k) . (8.34)

In the harmonic-oscillator case, the gap equation now be-
comes

—, Vo (k y')'=2k sing —2mk cosy ——', Vo sin2p . (8.35)

It is not difficult to see that the Salpeter equation for the
pion [Eqs. (5.3) for L =0] remains of the same form

d2

k
+2k cosy v] ——Mv2,

(8.36)
d2

k
+2E v2 ——Mv»

Here f corresponds to the empirical value f»=95 Me&,
consistent with our definition.

D. Conservation of the axial-vector current;
pron velocity

g V(k —k ')A k ——
3 (an)

p=H k' ——
2

—a k ———Pm/ p
2

——
&&—,g V(k —k ') . (8.43)

3 (an)
k

Using this relation and integrating the Salpeter equation
over k, we obtain

[a k+ pm, X (k)]+ a —,X (k) .

k

The coupling f» that enters in the preceding relations
corresponds to the definition in terms of the time com-
ponent of the axial-vector current jq. Our model is not
covariant; we do not expect therefore this value of f to
be equal to the one defined in terms of the spatial com-
ponents of the current, j z. We will see nevertheless that
the axial-vector current is conserved in the chiral limit
m~0. We will prove indeed that p~(0

~

j~z
~

m. ) =0. To
see this, let us consider the Salpeter equation for any state
X (k) in motion, Eq. (3.1) and the gap equation under

P
the form

F, =FP'+O(m) =f(+O(m), (8.39)
= g co(p)X-(k) . (8.44)

k

f dk k sing
d2

dk
+2E F2 ——M f dkksinq&F& .

0

Integrating by parts and making use of the gap equation
(8.35) under the form (in our usual units)

2Ek sinp=2mk+ (k sing)
dk2

f& being solution of Eq. (8.23).
Let us multiply the second equation (8.37) by k sing

and integrate

Multiplying on the left by y5 and taking the trace we get,
for any state X (k),

P

p.Tr o. gX (k) +.2m Tr y5p+X (k)
k

=co(p)Tr y5+ X (k) . (8.45)
k

Defining the pion decay constants for the time f'" and
spatial f"components,
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QTr[(TX (k)] —(Ol )5 le)=W2f"p,

(8.46)

2f (s) 2( )f(t)

It is clear that if m' is at rest, p =0, we have

(8.51)

In (8.45), Tr[y&N', (k)] will get a nonzero contribution
P

only frpm the pion wave function at p =0, proportional
tp (pg) up tp a factpr (l, lP l

l/Y2co) ', which is itself
proportional to f~", as we have seen in Sec. VIIIB. We
obtain therefore

i.e., f„"'=0. From this result, taking p&0, it also follows
that f~' =0. We see that the matrix elements
(0

l j& l
~') =0. This is consistent with the view that the

corrections to PCAC (partial conservation of axial-vector
current) due to poles of radial excitations of the pion can
at most be of the order of the explicit chiral-symmetry
breaking, as has been emphasized.

2 ( ) 2m '(A'~
2( )

(t)
p J~ — (,) (8.47)

IX. CONCLUSION
which reduces to (8.42) for p =0. When we make m =0,
this expression refiects the conservation of the axial-
vector current.

We see also from this relation that, for m ~0, we get
the typical dispersion law for a Goldstone boson:

(8A8)a)(p) ~ cp,
p -+0

where c=(f"lf~')' . To compute the pion velocity c
we need f"besides f'". Using the pion wave function in
motion (8.25) we find

QTr[oX (k)]

k dk
2 2 1 B B f2

2 E E k
'P .

I k dk (cosy)'+4 cosq)

6 I k dk sin(Iv

Solving Eqs. (8.23) and (8.24) (imposing convergence as
k —+ Oo), we obtain

c=—3. 1 .

We do not attach a particular significance to the fact that
the pion velocity is larger than 1 because the model is not
covariant. This gives a possible hint on the problem that
we have found concerning the value of f'". It is possible
that the noncovariance of the model could be at the origin
of this small value (f~' is nine times bigger), although the
addition of short-distance attraction by one-gluon ex-
change could also enhance f'".

Let us conclude with a comment on the decay coupling
of excited pions. Since relation (8.47) is completely gen-
eral, let us see what happens for a radially excited pion m'

with mass M„&0 in the limit m =0. We have, in this
limit,

(8.49)
In the case of the harmonic oscillator, f2 is the solution of
the differential equation (8.24). We obtain for c,

f(s) I/2

(~)

]./2

We have solved a quark model with chiral symmetry in
the Nambu-Goldstone mode. Although the harmonic os-
cillator can only roughly approximate the long-distance
part of the q qinter-action, and we have neglected the
short-distance piece, the spectrum that we obtain is in-
teresting as a rough and qualitative description of light
mesons in a case of dynamical breaking of chiral symme-
try. We get a spectrum that is very different from the
naive SU(6) limit, as well as from the pattern of chiral
doublets around the invariant vacuum. 8'ithout appealing
to any spin spin inter-action, we find, besides a Goldstone
pion M =0, a p in the right mass range. We obtain also
a radially excited m' at the correct scale and two vector ex-
citations (mixing of orbital L =2 and radial) in the 1—2-
GeV region. The p is somewhat light in the best overall
fit, Mz —-664 MeV, but we must keep in mind that this
large "hyperfine" splitting Me —M =Me has been ob-
tained by the mechanism of dynamical breaking of chiral-
ity alone, without appealing to short-distance spin-spin in-
teractions. Taking into account those and explicit chiral-
symmetry breaking should improve the m. and p masses.
Our light p', M& =1227 MeV, seems to support the old
controversial 1 state in this region. The other p'
should be associated with the well established state
p'(1600). These states are a strong mixture of radial and
orbital I.=2 excitations. Moreover, we obtain a radially
excited m' at the right mass, close to the observed
m'(1300). Notice that the position of the first p', and the
ordering M& ~M ~ could be unstable, it will be sensitive
to spin-spin perturbations.

We obtain a large effective L Ssplitting for th-e L =1
mesons, with the ordering

M(2++) &M(1+ ) &M(1++)&M(0++),

familiar from the one-gluon-exchange perturbative contri-
bution. This ordering is a general feature of our scheme,
we expect it as we adopt a confining Lorentz vector poten--
tial. Our model cannot pretend to give a detailed descrip-
tion of reality due to noncovariance of its potential and
the absence of short-distance interaction. However, since
the Ai classification has known a long period of uncer-
tainty, we feel useful to notice that our predicted ordering,
if taken seriously, would favor the old assignment for the
3] at 1060 MeV, and not the new one at 1270 MeV,
slightly heavier than the 8(1235), in contrast with the
charmonium I.=1 states, where the ordering is that of
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the L.S coupling of one-gluon exchange, somewhat
corrected (but not reversed) by the opposite-sign L S cou-
pling due to an ad hoc Lorentz-scalar potential (we do not
consider it since it would violate chiral invariance). Our
fine splitting is also too large and we would also need a
new Lorentz-scalar contribution to the long-distance in-
teraction that could give a fine structure of the opposite
sign. It is indeed a serious problem to keep to chiral in-
variance and avoid too large I.-S splittings. However, an
effective Lorentz-scalar piece (not present in the original
Hamiltonian for massless quarks since it would break ex-
plicitly chiral invariance) could come from high-order
QCD graphs in the broken vacuum, where chirality is no
longer a symmetry. Another possible origin could be the
diamagnetic interaction between quarks due to the gluon
condensate.

Although the model is not covariant, all the relations of
current algebra are satisfied as long as chirality is con-
cerned. We get f~ ——0 for any radially excited pion in the
chiral limit, as expected. However, f turns out to be too
small for the value of the scale that fits qualitatively the
spectrum and (gP). This drawback could come from the
noncovariance. Also, as emphasized by Adler and Davis,
the short-distance gluon interaction could improve f~, as
this is a quantity testing the short-distance part of the
pion wave function.

Finally, let us emphasize that the result f~ =0, where
m' is any radially excited pion, shows, at the level of the
wave functions, a situation radically different from the
nonrelativistic quark model concerning the wave func-
tions at the origin g(0). It is a very dramatic constraint
from dynamical breaking of chiral symmetry to get
f~=0 for any radially excited state. The detailed study
of the wave functions that accomplish this fact is now in
progress.

(A2)

The temporal evolution of g(x, t) will be determined by
the equation

d
lf'r(x, t) =i[:H2, i/J(X, t)],dr

where:Hz. is the bilinear piece of the Hamiltonian in
(2.3), normal ordered relative to the new broken vacuum.
From this equation we obtain for the temporal evolution
of the fermion field:

(A3)

wIth the cond1tlon

[H(k), A (k)]=0 (A5)

and [A (k)] =A (k). The Fourier-transformed field in
(A4) is defined by

f(k, t)= g P(x, t)e (A6)

From these equations one obtains then the fermion propa-
gator

D (k, t, —t, )=(T(f,(k, t, )f (k, t, )))

i P(k, t)=H(k)ll(k, t),dt
(A4)

H(k)=a. k+ —X — , g I'(k —k')[1 —2A (k')]
3 2 (an)
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APPENDIX A: I'ERMION PROPAGATOR

i.e., finally,

D ~ (k,co)=i A+(k)
co —H(k)+ie

A (k)

(A7)

(A8)
Let us write down the fermion propagator in the broken

theory:

D~,~ (xi —x2, t, —tz)

= ( T(g, (X i, ti )g (x2, t2)) )

'D, ,(k, t, —t, ) (Al)
k

with

co —H(k) ie—
or, in a more compact form,

D,~, (k, co) =i (A9)
a) —H(k)+ieA(k) a,a,

with A=A+ —A . All these quantities refer to the bro-
ken theory, where A+(k) and H(k) are given by (2.9) and
(2.14) and y(k), A(k), and B(k) satisfy the gap equation
(2.15) and (2.16).

APPENDIX B: BETHE-SALPETER EQUATION

1. Inhomogeneous BS equation

We are looking for fermion-antifermion bound states in the new broken vacuum, but before writing the homogeneous
BS equation for the bound states, it will be useful to consider the more general inhomogeneous BS equation for the ir-
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reducible four-particle Green's function

' (kl 2 k 1 k 2 ~l ~2 ~l ~2) f dtld 2dtld 2 xp(t~oltl 1~2t2 l~lt1 +1~2t2 )

X[ (T(fa (kl&tl)fa (k2&t2)f, (k', &t', )f, (k 2, t2)))

—(T(l( (kl, tl)g" (k2, t2)))(T(lt&, (k'l, tl )g, (k2, t2)))] . (Bl)

To write the BS equation we can omit s-channel exchange because our interaction is color octet and we are restricting to
color singlet mesons. We will use the following Feynman rules. For the fermion propagator

2+5(a) —a)')5-„-„,[D(k, to)] (82a)

where D( k, m) is given by (A9). Vector exchange:
r

4 ~ +—i2n5(col+co2 coI —co2)5-——-, -, —, V(k 1
—k2) gk)+ kg, k l+ k 2 ", 2

El JJ

(82b)

kl and —k2 (col and co2) —refer, respectively, to quark and antiquark momenta (energies). Defining new variables

p~ k~E~co:

k (+kg co)+cog
p = k~ —kp co=A)~ —Q)p k = E=

2 ' 2
(83)

p and e will be the center-of-mass momentum and energy, and k,E the relative variables. The Green's function can be
written in terms of a reduced function

' (kl k2 k 1 k 2 F01 ~2 ~1 ~2)=2lr5(~ t0 )5 G (to, p;E, k,E', k ') (84)

and the BS equation then reads

G, , (co& p;E, k,E', k ') = 2~5(E—E')5„„,[D(col& k,)],[D(co2& k2)]

Etl
+—1 f 3 g g I [D(~l, kl)] „[D(co2&k2)] „V(k—k")

k "a"a"

X6 ~ „, , (co, p;E",k ",E', k ')
I .

I

(85)

2. Homogeneous BS equation for the bound states

Let us rewrite the reduced greens function (84) in terlns of time-ordered vacuum expectation values. Calling
t, —t2 t, tl t2————t', T=(tl+t2)—I2 we obtain

r

5 G (co p'E k,E', k')= f dtdt'dTe'" e' ' '' ~T g T+—k lt(& T —k—
—,k 1 f, ——,k2

r

—vacuum contribution (86)

The singularities in E are related to the large- T behavior. We have for T»0
r r

( T 1)'1 T+—4 T——412 2 2 ' 2

(87)

and for T&(0
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(
T 4( T+ —42 T——4) —02

t g t y
t' t'

2 2 2

and we have, on the other hand,

=g)0 T gz ——P) — n((n T @2 T ——@) T+—
2 )I

' 2 ' 2
0 i (88)

]0 T g, T+ q, —T —n—(=e/

) n T Pq T —f(—T+ — 0l(=e " I/n
2 ' 2 ]

If we now define the bound-state amplitudes by

5 g~("~ (E,k)= f dte' ']0 T f~ —,k)

r

T g2 2

gp2t ——
n)(

2

n(,
J

(89)

(810)

P

5 X'",',(E,k)= f dte '
'((n T Q, —,k)

we obtain, integrating over T,

loj, (811)

G, , (co, p;E, k, E', k ') =i g 5
n

X(") (E k)X(") (E' k')

CO —CO„+ l E'
—6

n

X'"' (E k)X'",', (E' k')a' a'
2 1

CO+ CO~ —l E
(812)

The equation satisfied by the four-fermion Green s function G(to) (86) can be written symbohcally as

G(co)=G( '(co)+G' '(~)J (to)G(to) .

We have assumed that G(to) has a pole at

x'"'x'"'
G(to) = +(regular terms at to =co„) .

CO —CO n

The bound-state amplitude satisfies therefore the homogeneous BS equation

y(n) G(0)(~ )I( (~ )y(n)

or, more precisely,

g" (E,k)=( i) f — —g V(k —k ')D k+,E+—X "(&,k ')D
(~n) 3 2 2 2 2

(813)

(814)

(815)

(816)

This equation determines also the possible values of co„.
We see also that for any solution co„, p„, X~"~ (E,k) there

is another solution X '"~ (E,k ) for —to„, —p„, as we seea&a2

from (812).
Let us now look for the relation between g and X. Con-

sider the simplifying notations
h(to)= —f dte '~f (t) f dte ' 'g"(t), —
which can be written in terms of

(818)

I

It is then easy to see that Eqs. (810) and (Bl1) can be
written as

h(to)= f dte'"'f(t)+ f dte' 'g(t),

'h(E) =X~",~,(E,k)5

h(E) =X '",',(E,k)5

f(io)= f dr f(t)e'"', g(co)= f dtg(t)e'"'

in the form

(819)

f(t)=]0 g

g(t)=IO @

—,k) g~ ——,k2

t——
, kq c/' , ki nl .

(817)

h( )
. dco f (co )

2'lT CO —CO + l E,

g'(to')
p ~

CO —CO —l 6'

. f de' f(to') g(to')
2' CO —CO + l E' CO —CO —E 6'

(820)
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We see then that X'"~ (E,k) is equal to X~",',(E,k) up to

the i e prescription (e—+ e—):

(821)

, , (c0, p;k, k ')
tx(cx2C( cx2

3. Salpeter equation

Since the potential is instantaneous, we can integrate
over the relative energies in our equations. Let us call

(822)

We obtain, from (85), for the inhomogeneous equations,

[A+(ki)], [A (kp)],6, , (co, p; k, k ') = i 5 „—„,'

to E(k()——E(kg)+ie

[A (ki)], [A+(kp)],

co+E(k&)+E(kz) —ie

+i —
3 g g i V(k —k ") '

(an)
k "~~ ~2

[A+(k))] „[A (kp)] „

co E(k )) E—(kp)+ie—

[A (k()] „[A+(kp)] „

co+E(k~)+E(kz) —i e

XG ts u r t (coyp&k&k )G) cd cE) 2 (823)

and from (816), for the homogeneous equation,
r

X~"~ (k)=i— pi V(k —k ') ~

i 2 3 (an)3
k '

k- Pn

2

Pn
co —E k+

2
Pn—E k — +i@
2

k+ P" X'"&(k )A
2

k+ " X'"'(k )A

co+E k+—
2 . 2

The product of the Dirac matrices A+,A,g'"' js understood in (824).
Let us call (o ~, oz ——+ )

T

A '', , = A~ k+~
2 1 2 cx(txI

A k-
a2a2

(825)

From the preceding equations we see that

(826)

Therefore, all the physics happens in the null space of A++ and A . We can write finally from this last observation
the homogeneous equation in the form

+ A k+ X'"'(k ')A k-+

=co(p„) A+ k+ X'"'(k)A k—
2 2

T

—A k+ X'"'(A)A k—
2

f

(827)
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with the condition, following from (826),
r ~ r

A k+ X'"'(k)A k — =A k+ X'"'(k)A k — =0. (828)

This equation is the Salpeter equation, which we can also write in a siinpler form, using the one-fermion Hamiltonian
H(k):

H k+ X'"'(k) —X'"'(k)H k—
2 2 , +V(k —k') X'"'(k )A

3 (an)' -„,

APPENDIX C: NORMALIZATION
OF THE BS %PAVE FUNCTION

k+ X'"'(k ') =co(p )X'"'(k) .n

6(co)[6' '(co) ' —E'(co)]6(co)=6(co) .

(829)

(C2)
The equation satisfied by the bound-state amplitude, be-

ing homogeneous, cannot determine the normalization.
This normalization must be fixed by the inhomogeneous
equation. The method is the following, as sketched by
Llewellyn Smith. ' Equation (813) can be written in the
orm

I [6' '(co)] ' —IC'(co) J 6(co)= jl

and we therefore get

X'"' [6' '(co) ' —&(co)]
~

„„X'"'=1.
dN

(C3)

We must now apply this equation to 6'0'( ) in equation
(823). In the space (826),

Using now (814) we make equal the residues at the poles
in both sides of this equation, and we have

6' ', , (co, p;k)=i
cx )Q2Q ) Q2

A k+-p+ 2 Q(a(
A k ———p

2 I
a2a2

—+ p ~ pco —E k+ ——E k ——+i@2 2

k+ — A+ k ——
2 aia& 2

r'

co+E k+ —+E k ——+i ep p
2 2

(C4)

admits an inverse

G(0)-, i, (s,p;k)= l s E k+-L E k L A+-, , (s, p;k)
a&a&a2Q2 2 Q~Q2ai az

One has, in fact,

co+E k+~ +E k —~
2 2

A +, , (co, p;k) . .
)a2Q) a2 (C5)

We need to compute

6' ' '(co, p;k)= —i[A+ (co, p;k) —A +(co, p;k)], K=O.
CO

We obtain, therefore, from (C3) and (C7), the condition of normalization
/

Pn
~', Q)CX)

3 g g X~~(k)' A+ k+
an ' + 2

CX )CX2 cx2 Q2
t t

a& a2

g G' ' '„„(co,p;k)6', ', „, , (co, p;k)=A+, , (co, p;k)+A +, , (co p k) .
tt tt

a& a2
(C6)

(C7)

which can also be written

— A k+ '"
2

Pn
A+ k— 'X'",', ( k )= 1 (C8)

1 2
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r

+QTr A k+ X'"'(k)A k — X'"'t(k) —A k+ X'"'(k)A k — X'"' (k) =1+ (C9)

or, using (B28)

QTr X'"'(k)A k — X'"'(k) —A k+ X'"'(k)X'"'(k) (C10)

APPENDIX D: VECTOR SPHERICAL HARMONICS

Let us first expand N( k) in a spherical base:

N(k) = g ( 1 )qNq(k)e q
q

Nq(k)= QNql (k) Yl (k),

(Dl)

(D2)

Yp(k)e = g (L, l;m, q i
JM—)Y,&M(k) ~

JM

Yg (k),

We need a number of formulas involving YJLM(k ):
1/2

Y&MI (k) k=(L, I;0,0i J,O) 2J+1

(D3)

L I

[Ygl,~(k)Xk]=~&g ( —1) + '

1 1 L 'YgL, M(k)[(2L+ 1) &1,', L, +i —~&&L,', L, i],
2

(D5)

1/2

[YJLM(k ) 'k ]k =
2J+1

1/2

(L, 1;0,0
i
J,O) g 2J+ 1

(L', 1;0,0
i
J,O)YgL, st(k), (D6)

I. +1 J 1 I +2 J 1

[Y~LM(k) Xk]Xk =6 [(L+1)(L+2)]'
1 1 L 1 1 L 1 YiL+~sq(k)

1.—1 J 1

+ [L,(L, —1)]'" L —2 J
&L —&M(k)

I —j. J 1 L, J 1
L

1 1 L 1 1 L 1 YAM(k)

2+1 J 1'L+"
1 1 I.

I- J 1

1 1 L+1 YJLM(k)
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