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R. Nagarajan
Syracuse University, Syracuse, Negro York, 13210

J. N. Goldberg
Syracuse University, Syracuse, New York 13210

and Institut Henri Poincare, Laboratoire de Physique Theorique, ERA 533, 11 rue Pierre et Marie Curie, Paris 5e
(Received 31 May 1984)

The Hamiltonian for the scalar and electromagnetic fields are set up on an outgoing null cone plus
that portion of W+ which extends back to space-like infinity. The latter portion is just the energy
radiated so that the Hamiltonian is the total energy, a constant of the motion. Because the formal-
ism is set on a characteristic surface, the momenta must satisfy certain constraints in addition to the

gauge constraints. These null-surface constraints form a second-class system in the nomenclature of
Dirac. Therefore, they are eliminated from the theory by the construction of Dirac brackets. With
the Dirac brackets, the Hamiltonian gives the once-integrated field equations for the dynamical field
variables. The usual commutation relations for the field strengths restricted to the domain of in-

tegration for H are i' times the Dirac brackets.

I. INTRODUCTION

The attempt to quantize the Einstein theory of gravity
has been pursued actively for more than thirty years be-
ginning with the important work of Dirac, ' Bergmann,
and Schild and Pirani and further developed by DeWitt
and the work of Arnowitt, " Deser, and Misner. Since
then the field has blossomed out in many directions. A
review of the research can be found in the article by Is-
ham in Quantum Gravity 2. However, the program of
quantization has not yet been successful for two principal
reasons: (I) the intrinsic nonlinearities of the field equa-
tions make it difficult to isolate the independent degrees
of freedom and, more importantly, (2) quantizing the
geometry of space-time means that the stage on which
physical processes take place is part of those processes.

With this paper we begin to study a different formula-
tion of the canonical theory with the expectation that it
will at least bring out the independent degrees of freedom.
The idea is to use a null surface as the initial surface on
which to set up the Hamiltonian. The motivation for do-
ing so comes from the study of the gravitational radiation
field in asymptotically flat space-times. ' Bondi and his
co-workers show explicitly that the specification of the
conforrnal two-geometry" ' for a family of two-surfaces
on an outgoing null cone determines the metric on that
cone up to a specification of the mass aspect and the di-
pole aspect. The latter quantities are specified only on the
two-surface at null infinity and not all over the outgoing
null cone itself. It is the shear of the outgoing null rays
which determines the conformal two-geometry. And the
shear has the further geometrical meaning of the (confor-
mal) extrinsic curvature of the two-surfaces embedded in
the null surface. Furthermore, the propagation of the
geometry requires the specification of the rate of change

of the shear ' of the null rays at future null infinity. An
integral over the square of this rate of change (which is
positive definite) gives the gravitational energy radiated.
It is clear, then, that it is the shear which can be identified
with the independent degrees of freedom of the gravita-
tional field.

This conclusion is reinforced by the analysis of Ashte-
kar' which elucidates the degrees of freedom on Jr+, fu-
ture null infinity. W+ is a null surface with a universal
structure' which is specified by the singular metric on
W+ and the null vector n" which is tangent to the genera-
tors of W+. Since the space-time is asymptotically Min-
kowskian, this universal structure tells us nothing about
the dynamical degrees of freedom. Ashtekar pointed out
that the connection on W+ consists of a part which de-
pends on the universal structure and a part which may be
specified freely. He showed that the part which may be
specified freely is related to the rate of change of the
shear.

Thus, it is suggestive that an analysis which focuses at-
tention on the conformal two-geometry will allow one to
pick out the dynamical degrees of freedom of the gravita-
tional field. This, in turn, may allow one to understand
better the Hamiltonian of general relativity.

There are some additional problems, however, which re-
quire preliminary study. Because the field equations of
general relativity are covariant under arbitrary diffeomor-
phisms, data set on an initial Cauchy surface do not have
a unique propagation. This shows up in that four of the
Einstein field equations do not have second time deriva-
tives of field variables. These equations form constraints
on the initial data. In the canonical formalism, these
equations are constraint equations on the phase space
whose points are (g~„,P ") the three-space metric and
their canonical conjugates. ' Linear functionals con-
structed from these constraints generate the symmetry
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transformations of theory. ' '
When the initial surface is a null surface, there are ad-

ditional constraints because a null surface is a characteris-
tic surface along which data is propagated. These addi-
tional constraints, which we shall refer to as null surf-ace
constraints, occur in all theories with hyperbolic differen-
tial equations. In order to understand how to treat these
constraints, we first study the massless scalar field in
Minkowski space. In order to see how the null-surface
constraints interact with constraints arising from a gauge
group, the Maxwell theory is treated next. Treatment of
the Einstein equations is left for a following paper.

The scalar field and the electromagnetic field have been
studied in the infinite-momentum frame which makes use
of null planes as the initial-value surface. ' For the
most part, these papers eliminate the constraints and work
only with the independent field variables from the begin-
ning. Therefore, they are not useful as models for the
treatment of the gravitational field where the elimination
of the constraints is a major problem. However, the work

by Steinhardt ' does work with the canonical formalism
on a null plane and eliminates what we have referred to as
null-surface constraints by use of the Dirac brackets
(Db). He defines the Db by explicitly inverting the matrix
defined by the Poisson brackets (Pb) of the null-surface
constraints which are second class in the nomenclature of
Dirac. The work in the following differs from that of
Steinhardt in two important respects. First of all, we use
null cones rather than null planes as our initial surface.
Therefore, we require significantly different boundary
conditions from those he uses. Second, we eliminate the
second-class constraints by using the "starring process" of
Bergmann and Komar. This procedure seems simpler to
use than that used by Steinhardt because it does not re-
quire the explicit inversion of the matrix of second-class
constraints. The results we obtain for the Dirac brackets,
however, are the same.

That one must pay strict attention to the boundary con-
ditions in the definition of functional derivatives has been
emphasized and utilized by Regge and Teitelboim.
Their work has been extremely important in helping us to
carry out the research reported here.

ds =p ds =p du 2du d—p dB sin B—dg— (2.2)

It is necessary to choose a timelike direction for propaga-
tion, 8/Bt. Although the results of interest do not depend
on the choice, for simplicity we choose the direction for
propagation to be

(2.3a)

From the Lagrangian, one can define momenta conju-
gate to the scalar field P(x)

~ z and then construct a Ham-
iltonian which will propagate the scalar field either into
the future or into the past. The phase space consists of
pairs of functions on X (P(x),m(x)), P(x) being a scalar
and m(x) a scalar density with respect to diffeomorphisms
of X onto itself. If r is the distance of x from the origin
on 2, then for large r, P(x)-1/r and rt(x)-1/r . X may

be distorted into any other surface which is everywhere
spacelike and none of the above discussion changes. How-
ever, in the limit that X is distorted into an outgoing null
cone, the situation changes. In the conformal picture the
initial surface is discontinuous on W+, future null infini-

ty, and the Lagrangian breaks up into two integrals over
the M-shaped surface shown in Fig. 1.

Furthermore, as we are only interested in the radiation
field without interaction with sources, we shall assume
that P goes to zero as rapidly as necessary in the limit of
past or future timelike infinity.

To facilitate working on W+, we shall use in the physi-
cal space null spherical coordinates with the inversion of
the radial coordinate p= 1/r,

ds =p (p du 2du d—p dB sin Bd—g ) . —

We find it particularly convenient to work with the con-
formally related compact space-time' for which

II. MASSLESS SCALAR FIELD

The field equation for the massless scalar field is

( Jg""P„)„=0, (2.1)

where g"' (p, v=O, . . . , 3) is the inverse of the metric
tensor on Minkowski space g&, J=V' —g, and the com-
ma indicates ordinary differentiation. This equation is
derivable from a variational principle by requiring that
the action

S= Jg"" „x
be stationary with fixed values on the boundary of the
domain D. One usually assumes that the past boundary
and the future boundary of D are spacelike Cauchy sur-

faces. Thus, one can define a Lagrangian as an integral
over the past boundary X, for example,

FIG. 1. The Cauchy surface X is replaced by the union of an

outgoing null cone X and the section of W+ extending back to X

at spacelike infinity. M =XUX.
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c)/c)t =c)/c)U+c)/c)u .

We define

(2.3b)

However, because p=0 on X we parametrize incoming
null surfaces by

v =u +2/p

with u =u. Hence on the incoming surface, we have

This contribution is needed in order to make H a constant
of the motion. Differentiability of the Hamiltonian H re
quires that we identify ct with P„onN and that a=a on

N ll N. Since g and g are equal to a and a by the Hamil-

tonian-field equations and on W+ P„-=P, these conditions
are satisfied.

Forming the appropriate Poisson brackets, we find the
canonical equations of motion,

(2.4)

so that g is finite on W+ and zero for ph oo(r =0) (and
goes to zero at timelike and spacelike infinity on W+).
The Lagrangian on N U)N then takes the form (u =u0
denotes the outgoing null surface, N)

/=a,
m =sinO[p(a/p) &+(p g &) &]

—sinO(q g z)„,(2.9a)

(2.9b)

(2.9c)
L =LN+LN

L~= f dpf sinO dO dp , [ 2p—g,~ —pp, ~f—, ~

%.= —sinO[ct„—2g„—„] (2.9d)

on N and N, respectively. On the constraint hypersurface
these equations agree with the Lagrangian equations of
motion on X and N. One finds that the Pb of the null
constraints, Eq. (2.7), with the Hamiltonian, Eq. (2.8),
vatIishes provided a(c7) satisfies the Lagrangian equations
for g. Since a is identified with P by the canonical equa-
tions of motion, it follows that the equations of motion
preserve the constraints.

It is also easy to show that the constraints form a
second-class system in the terminology of Dirac. That
is, the Poisson brackets between constraints with different
weighting functions in general do not vanish:

(2.5)

(2/p)@(—g+p'P, & )],
L-= f du fsinOdgdO(ff„—Q-„')-

q" is the positive-definite inverse of the metric on the
unit sphere. Derivation with respect to I; is denoted by a
dot and the subscript u indicates the in-surface derivative
c)/c)u. Functions with support on N are indicated by the
tilde while those without the tilde have their support on

To simplify the appearance of equations, we shall
place the tilde as a superscript outside a bracket rather
than over each individual term within the brackets.

We define the momentum density conjugate to g by the
functional derivative with respect to P. Thus

IC[co,co],C[v, v]I = f sinO(cov ~
—vco &)dr

+ f sinO[co„v—v~co] dr . (2.10)

The existence of second-class constraints implies that the
constraints involve canonical conjugate pairs of variables.
In principle, the constraints should be solved for these
pairs and the results substituted into the Hamiltonian.
The phase space would thereby be reduced and within this
reduced phase space there would be no constraints. The
task is, in general, very difficult to carry out explicitly,
but Dirac has offered a prescription for modification of
the Poisson brackets so that the constraints may be con-
sidered as strong relations. That is, the constraints would
have an identically vanishing Dirac bracket with all vari-
ables.

This procedure has been extended by Steinhardt ' to the
situation of null constraints on a null plane. His method
could be adapted to the null cones considered here. How-
ever, we find that it is easier to carry out the alternative
construction of the Db given by Bergmann and Komar.
The idea is to define new field variables which differ from
the old by a linear combination of the constraints them-
selves. The appropriate linear combination is determined
by the requirement that the new field variables have van-
ishing Poisson brackets with the constraints. The Poisson
brackets among the new variables are equal to the Dirac
brackets among the old. With this identification we can
use the constraints as strong relations.

Therefore, we introduce [x =(p, 8,$),x HN and
x =(u, 8,$),x EN]

(2.6a)m = —( I/p)(pg), »nO

(2.6b)K=sin8$„- .

Since g is finite on W+ and vanishes for phoo and
u —++ oo, co and co have that behavior. Thus the weight-
ing functions for the constraints [co,co] may be restricted
to functions which vanish for p~ac and u~+oo, but
may be otherwise finite. However, forming the variation-
al derivation of C [co,co] shows that we must have co = —co

on %AN.
The Hamiltonian becomes

H= a~+ sinO p p

+ —,
'

sinO[p 0 (0 )+q" 0 ~0 ~+(pf ) )]I«
+ f [a(rr —sinOP„)+sin8$ ] dr .

N
(2.8)

We see that on the constraint hypersurface, the contribu-
tion of the integral over iV is just the energy radiated.

These relations are constraints on the phase space
and give the constraint functional (dr:dp d 8 dP, —
dr=du dOdg)

C[~,a]= f ~[a.+(sinO/p)(pP) &]d'i

+ f co[a —sin8$„] dr . (2.7)
N
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g*(x)=p(x)+ f K(x,x') n.(x')+ m, [p'p(x')] i dr',
X p

g*(x)=g(x)+ J K(x,x')[m(x') —sinO'g„-,(x')] d7'' .

From

(2.11)

[P'(x), C[ro, co] j = [P'( x), C[~, ro]j =0
we obtain

K(x,x ') = ——,
' S(p —p')5(8 —8')5(p —p') /sinO',

K(x,x') = ——,S(u ' —u )5(8—8')5(p —p')/sinO',

where

(2.12a)

(2.12b)

S(p) = ~

1, p&0 (2.13)

5A 5B 5A 5B 5a 5B 5A 5B
5g 5rr &r 5$ J~~~ 5P 5~ &- 5g

In the integrals over X and N only the variation in the interior occurs while in the boundary term only the variations on
the boundary occur. We then find for (x,x') EN or N

dOdg .

Note that we have chosen the solution for K(x,x') and K(x,x'), which as functions of x' for fixed x belong to the class
of functions selected for the constraints. However, because K(x,x') (K(x,x')) vanishes for x~N (N) the solution for
g*(x) e»sts only for constraints constructed with weight functions which in fact vanish on N ZN. Furthermore, be
cause K (K) does not vanish on N RN, the variation of 1t' (g*) will have a boundary contribution which affects the def-
inition of the functional derivative. In forming Poisson brackets we shall first consider the contribution coming from
N (N ) and then that coming from the boundary:

j Wx 1 ) Wx2) j [ 4 (xi ) P( 2x) j — (Pl P2)5(81 82)/ I 81

[ P(x1)~4(x2) j [ [ P (x1)ri 0 (x2) j ] — T&(pl P2)5(81 82)5(41 02)/slI18i

(2.14a)

(2.14b)

&(p) =
1 p(0

Y~ p&0. (2.15)

Because only the constraints with weight functions which vanish on XR X may be considered to be strong, we cannot
eliminate the constraints from the Hamiltonian because in general a=cY&D on N AN. The Poisson brackets of f'(P')
with such constraints will contribute only a term on X f1N. Thus

[g*(x),C[a,a] j =(u/2)(0, 8,$)=(a/2)(uo, 8,$) .

Furthermore, if one constructs m*(x) in the same manner, one can show that

[g'(x), vr'(x') j = —(sinO'/p')[(8/Bp')p'[P" (x),g*(x') j ] .

(2.16)

Therefore, in all functionals except the constraint functional, one can treat the constraints as strong relations and thereby
substitute for m(x) from the constraints. To get the correct equations of motion, it is necessary to keep the constraint in
the Hamiltonian.

From Eqs. (2.8), (2.14), and (2.16) we find field equations for g' to be

[f*(x),Hj*=g*(x)= ——,
' J [(p' P i ) i+(sinO) '(sinOq" g~) „]dp'+—,'n(0, 8,$)

+ 4 f [(p'q, .), +(sinO) '(sinOq g, ) ~]dp' (x EN), (2.17a)

[[g(x),H j']=/=/„(x&N) . - (2.17b)

Equations (2.17) are just the once-integrated Lagrangian equations (2.1) on N and ¹ Note that in the absence of
sources, a(0, 8,$) is not independent of the data on N. Indeed, we find

8 4) 2 (p g ~ p=o) —
~ J (sinO) (s'nOq g,a) wdp (2.18)
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Looking at the Dirac brackets for 1'(x), the transition to the quantized field theory appears to be direct. The quantum
field theory for a massless scalar field P(x) leads to the commutation relations

[P(x),P(y)] =iD(x —y),
D(x —y) =(1/2n)e(x y—)5((x —y) ),

for x and y any pair of points in Minkowski space. On X and % these relations reduce to

[P(x),P(y)] =t [P(x),P(y) I* .

However, there remains the interesting question of what role, if any, the constraints in the Hamiltonian will play.

III. ELECTROMAGNETIC THEORY

The electromagnetic field differs in two important
respects from the scalar field: (1) it is a vector field, and
(2) it has the gauge group as a local symmetry. Both as-
pects are of particular importance to us in preparation for
the study of the gravitational field. In this section we
shall focus on the new properties and pass over those
parts which are similar to those discussed in the previous
section.

First of all, the electromagnetic field is conformally in-
variant and therefore the Lagrangian has the same form
in the nonphysical space as in the physical space-time,

L = ——,I F&„F""sin8dr~3~

1 I'p I' " sinOd+(3) .pv (3 1)

k =du, ko ——a„+—,'P ap,

k'= —,'p du —dp, k, = —ap,

v 2k =W2k =d8+i sin8dp,

W2kz ——W2k3 ——a& —(i/sin8)a~ .

The tetrad components are then given by

(3.2)

However, in order to have better control over the asymp-
totic behavior of the field, it is useful to introduce a null

tetrad in the nonphysical space and to work with the
tetrad components. Therefore, we define

0 1 0
l 0 0

ggb g —0 0 0

0
0

(3.5)

0 0 —1 0

One can show that the tetrad components have the fol-
lowing behavior:
For p~O (r —+Do) For p~ao (r~O)

so=o(p)
Az ——O(1)
A~ ——0 (1)

Ao ——O(1)
Ai ——O(1/p )

&g =O(1/p)

(3.6)

a/at =ko+ —,p k i (3.7)

and all physical components are to be expressed in terms
of vectors which are in the direction of propagation and
those which are tangent to the surfaces X and X. In par-
ticular, since k& lies in X, we write on N

k, =a/at ——,
' pzk, ;

on the other hand, k0 lies in X so we write

k, =(2/p') [(a/at) —k, ]

(3.8a)

(3.8b)

on N. The space-time derivatives have to be broken up in
the same way. Therefore, on % we have

Variations of these quantities are assumed to have the
same behavior. As for the scalar field, all relevant quanti-
ties and derivatives vanish in the limit of spacelike
infinity —p —+0, p —+ —oo and timelike infinity, u ~+ oo.

The direction of propagation a/at is given by

(1) W. =W„k.~ (~=0, . . . , 3) 230——A, ——,p 3), (3.9a)

and differentiation is indicated by a slash or double slash
as follows:

F0) ——A,
~

) —3],
FOA +t~A +A 2p (~I~A ~A ~1) ~

(3.9b)

(3.9c)

ka "Vi,g —P ~, ,

~b ~a ~@~V +b~ ~a ~b~a Vb a~C

(3.3)
while on N we have

(3.9d)

For the tetrad chosen, the only rotation coefficients dif-
ferent from zero are

1'oio= 'Y ioo=P 'Yz33 ———l'3zz ——cot8/V 2 . (3.4)

Raising and lowering of tetrad indices is carried out with
the matrix

Ai ——(2/p )(A(, —Ao)

Foi =(2/p') [~o —~( ~ ol

FiA=(2/p )[~(~A —A(A —~o~A+~A ~ol

FOA [~0~A ~A ~o]

(3.10a)

(3.10b)

(3.10c)

(3.10d)
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In these equations we have indicated the component in the direction of 8/Bt by the subscript t and differentiation with
respect to time (t) by a dot. The Lagrangian now takes the form

2 f„I— I
i

I
—AI )'+2'" FIII[Al ~~

—A~ —
z p'(A I ~~

—A~
~

I)]+ zF~IIF"I»nO«(3)

I[—(1/p )(Ao —A, ~o) —p" Foll(A&+Foz)] sinOIdv'(3)
N

(3.11)

Any terms whose variation does not have a finite limit on N have been dropped.
We find for the momenta (x EN)

5L/5A, =IT=O,

5L /5A I =I7' ——s—inO(A1 —A,
~

I),
5L /5A„=m"=sinOTI" FIII,

(3.12)

and (x HN)

5L/5AO=—m =(2/p )sinO(AO —A, ~0) (3.13)

5L/5A~ =I7"=slnOTi"~FOII .

The Hamiltonian takes the form

H =f I aI7+a„(m"—sin871" FIII)+ —,
' sinO(77') —A, (~' ~1+IT"

~

~ )——,
'
p sinOTI" F,~FIII

I

+ 4sinOFgIIF" Idr(3)+ f [(x77+(xg(m."—sinOTi" Foz) —A, (~ ~o+m" ~~
—Ti" sinOFOIIFO~)] dV(3) . (3.14)

A total divergence

C[COg, COg ]= COg(17 SlnOTI FIII )dT(3—)

+ co& [77 sinOTi FOII ] W7—(3),
N

(3.15)

has been subtracted from the integrand .on N and
I(A,w ) ~0+(A,u")

~

~ I on ¹ The functions a, a~, cY,

az are weighting functions for the constraints and take
the values A„Az—A,

~

~ on N and N, respectively, when
the canonical field equations are satisfied. Therefore, they
satisfy the same boundary conditions as these quantities.
Differentiability of the Hamiltonian requires that a„=cY&
on N AN, which is to be expected from the considerations
of the scalar field.

The null-surface constraints now take the form

vanish on N. On the other hand, G~ generates the gauge
transformations of A 1, A~, Ao, and A~. Therefore, o
and o are finite on N, but IT~o=O. Since m'= I7 on—
N AN, differentiability of G1[o,o ] requires that IT=IT on
N AN. This is an important consistency condition if we
are to maintain Az ——Az on N AN.

Adding the divergence to the Hamiltonian density had
the effect of separating the gauge constraints from the
null-surface constraints. The gauge constraints are first
class, whereas the null-surface constraints, as before, form
a second-class system which are to be removed by the in-
troduction of the Dirac brackets.

The canonical equations of motion are the following.
(i) on ¹

while the gauge constraints are

G, [g,g ]=f g~dT(3)+ f g ~dT(3) (3.16a)

GI [ITy(T ]—f (T(77
i

I +77
i
g )d7(3)

+ -IT [~ ~o+m" ~a] dT(3} . (3.16b)
N

The weight functions (co~,7oz ) belong to the same class
of functions as (az, az ). Go generates the gauge change
in A, which should vanish on JT+. Therefore, g and g

A I ——(sinO) 'ITI+A,
~

I,
+~~ l&

A
7T —'7l

i

+'7T
i
g =0

. 1
77 = —[slnO'g (IIII +p F ~ II)],
77 = [sinOIi" (a& +p2F

~
II )] sinOF "~

~

—
~
~ .

(ll) OII N:

(3.17)
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~0=~~ ~O

Ag —(xg ++g
i
g

(3.18)

F0= —[sin8g" (ag+2Eog) j

8 "=[sin8g (ag+2Fog)] Ip .

Together with the constraints, these equations are
equivalent to the Lagrangian equations of motion. The

K (x)=m (x) —sin8rj (A
&

I
c—Ac

I
~)(x),

B(x)=~8(x) sin8—mac(AOI c Ac
I

—0)-(x) . (3.19b)

(3.19a)

We define

constraint G&[cr,o ] follows from the requirement that
r) =0 and no further conditions are required to propagate
G&. The propagation of the null-surface constraints re-
quires that az (c7& ) satisfy the Lagrangian equations for
Az —A, &z. This requirement is consistent with the
canonical equation of motion as was true for the scalar
field.

%'e may proceed immediately to the construction of the
starred quantities and the Dirac brackets. To simplify the
writing we introduce

(3.20a)

(3.20b)

(3.20c)

A*~(x)=A„(x)+f E»(x,x)K (x')dr+ f K»(x,x')K (x'id',
N

~ *(x)=~"(x)+f P"~(x,x')4(x')d'r+ f P "z(x,x')K (x')dY. ,

n' (x)=n'(x)+ Pz(x, x')K (x')dr, x CX only,
N

(x)=8- (x)+fP~(x,x')K (x')dr, x&X only .

For x HN the kernels with the tilde vanish and for x EX those without the tilde vanish. The remaining variables do not
require starring to have vanishing Poisson brackets with the constraints.

The kernels are determined by the conditions

(i) I0'(x), C[co~,co~] j =0, (3.21)

where 0 (x) represents the variables defined in (3.20), and (ii) for fixed x, the kernels should belong to the same class of
functions as the (az, az ). As in the scalar case, a solution of Eqs. (3.21) exists only if the class of functions (co&,co& ) is
restricted to those which vanish on XAX. %'e find then

K»(x,x')sin8'=g»( —,
'

)e(p —p')5(8 —8')5(P —P'),

X»(x,x')sin8'=( —,)g»e(u ' —u )5(8—8')5(P —P'),

P"z(x,x') = —,
' 5"z5' '(x ——x'),

P ~(x,x') = ——,
' 5"~5' '(x —x'),

P~(x,x') = —,'S(p —p')[5(8 —8')5(P —P')] g,
P~ (x,x') = —,

' S(u
' —u )[5(8—8 )5(p —f ) j

I
g

(3.22a)

(3.22b)

(3.22c)

(3.22d)

(3.22e)

(3.22f)

s before the Dirac brackets are defined to be the Poisson brackets among the starred quantities. Therefore, we have

IA ( ),A~(x') j*=—,
'

rI [e(p' —p)5(8 —8')5(p —p')]&»n8

IA„(x),m (x') j*=—,'5 g5'(x —x'),

I A„(x),m'(x') j"= ,' E(p p'—)[5(8—8')5(p —p') ]
I
g»—

I~"(x),H(x') j'= —,
' g" [5"'(x —x')]

I

I m "(x),~'(x') j*= ——,
' g" [sin8'5' '(x —x')]

I
c,

{n'(x),m'(x') j = ,' e(p p')g" I [5—(8——8')5(P —P')]
I
~ sin8' j ~

on the X surface and,

[I Ag(x), Ag(x') j*] =
2 g»[e(u u') ( 588')5—(p p')]i i 8s,n—

[I A, (x),~( ) j*]-=-,'5'„5(')(x—x ),

(3.23a)

(3.23b)

(3.23c)

(3.23d)

(3.23e)

(3.23f)

(3.23g)

(3.23h)
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[{A„(x),+(x') j'] = —,
' e(u' —u)[5(8—8')5(P —P')]

~

z

[{~"(x),n (x') j*] = —,
' rl" [5"'(x—x')]

~

~,

[{~"(x),m. (x') j'] = ——,
' q" [sin85'3'(x —x)]

~

[{~0(x),~o(x ) j*]-=-,'e(u —u){[S(8—8)n(y —y )]„.sine j,„g"

(3.23i)

(3.23j)

(3.23k)

(3.231)

on the N surface. The Db (a)—(fl are consistent with those obtained by Steinhardt ' using his extension of the method of
Dirac. The brackets with constraints defined with functions (a, cY) which are finite on N AX are

{A~(x),C[a„,o.„]j'= —,'az(0, 8,$), x HX

= —,'a„(uo,8,0), x&X

{n'(x),C[a„,a„]j*=——,
' g" ac

~ ~

zsin8,

(x),C[az,a„j= ——,
'

vy az
~ ~

„sin8.

(3.24a)

(3.24b)

(3.24c)

In Eqs. (3.23) we could have omitted n."(x) from consideration and used the constraints to substitute for m "(x) every-
where except in the constraint appearing in the Hamiltonian. However, there is a considerable savings in computation by
working directly with n"( x) as it appears in the gauge constraints as well as in the Hamiltonian.

Therefore, the Hamiltonian itself may be used in the form given in Eq. (3.14). Using the Dirac brackets, Eqs. (3.23),
we find for the canonical field equations on ¹

{A,(x),H j*=A,=o.',
{n(x),H j =n= —(ir

i

i+@
i
~ ) =0,

(3.25a)

(3.25b)

(3.25c){A,(x),H j'=A, (x)=(sin8) 'm'+&,
~

i,
{~'(x)Hj*=~ (x)= —,

' f +f dP'({sin8[(n'/sin8)+A, ~, ] ~ii j ~goal )+ —,
' [sin8(A, ~~il —P n. /sin8)] ~c,

(3.25d)

{&g(x)Hj'=&g(x)= ——,
' f, + f &p{~i~g —alga+

~
(cj+ p [~~ ~~=p (~i~~ —~~

~

i)]+ 2~~~(0 8 0')

(3.25e)

and on N:

[{A, (x),H j*] =A, (x)=a(x),

[{77(x),H j*] =fr(x)=[rr ~Q+7r (g] =0,

[{A ( 0)xHj ] =AD(x)=Ay ~0(x)

[{m- (x),H j*] =%. = n"
~
g, —

[{A~(x),Hj'] =A~(x)=A~ ~0(x) .

(3.26a)

(3.26b)

(3.26c)

(3.26d)

(3.26e)

We note that Eqs. (3.25) and (3.26), with

a~(0, 8,$)=Aq(0, 8,$), are the once-integrated I.agrang-
ian equations for A„(x). In the absence of sources
a~ (0,8,$) is determined by the field on ¹

c~(08 0')= 2 f, ~p[~i~~ n~aI"
~

~cl—.

On the other hand, on %, cY& ——Az ——A~ ~o which, of
course, is data given on W+, the only condition being that
a~(u0, 8,$)=a&(0,8,$). This data is required in order to
determine the solution in the past.

From Eq. (3.25c) we substitute A i into the integrand on
the right-hand side of (3.25d) and then use (3.25e) to ob-
tain

which agrees with the corresponding equation in Eqs.
(3.17).

Thus we have demonstrated that by the introduction of
the Dirac brackets the momenta m (x) are effectively el-
iminated from the theory. Qne may also argue that since
Az appears only in the form I'~~, I'0~, and F~~, any fur-
ther developments toward a quantum theory should
proceed only with these gauge-invariant quantities. To be
sure A, appears undifferentiated in the Hamiltonian, but
there it is the coefficient of the gauge constraint. This, to-
gether with its equation of motion in Eqs. (3.25) and
(3.26), indicate that it does not play a role in the dynamics
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of the field. Furthermore, up to now the gauge con-
straints, Eqs. (3.16), have not been taken into account.
These may be used to determine m' and %. in terms of ~
and %.". A& and Ao are then fixed by Eqs. (3.25c) and
(3.26c). This leaves only Az or ~ as the independent
dynamical degrees of freedom on AUX. However, the
results we have obtained for the Dirac brackets do not de-
pend on any choice of gauge, although the propagation
equations do. %'e need not be concerned about this point
here.

The passage to a quantum theory is made by identify-
ing the commutators of variables with i times the Dirac
brackets. In the usual formulation of the quantum elec-
tromagnetic field, the commutation relations among field
variables are gauge dependent. However, the commuta-
tion relations among gauge-invariant quantities can be
shown to reduce on N and X to those we would obtain
with the Dirac brackets in Eqs. (3.25) and (3.26).

IV. CONCLUSION

We have shown that for a massless scalar field and for
the electromagnetic field a Hamiltonian formalism can be
constructed on a null cone extending out to W+, null in-
finity, provided one includes in the domain of definition
of the Hamiltonian that portion of W+ which extends
back to i, spacelike infinity. The null-surface con-

straints, which arise because the null surface is a charac-
teristic surface, can be eliminated by introduction of the
Dirac brackets. In a transition to a quantum theory the
Dirac brackets go over to commutators which are con-
sistent with the usual results. The quantum theory in this
formalism will not be pursued because this study has been
initiated in order to understand problems which may arise
in the canonical formulation of the gravitational field on a
null surface. This study is also underway by d'Inverno
and Smallwood. ' However, to set the gravitational equa-
tions on a null surface requires an algebraic coordinate
condition, g =0. In the electromagnetic field the corre-
sponding gauge condition in the electromagnetic field is
A

&

——0. The introduction of this gauge condition into the
Lagrangian leads to some interesting results which will be
described in a subsequent paper.
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