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The generator aspect of observables in classical mechanics leads naturally to a generalized classi-
cal mechanics, of which quantum mechanics is shown to be a particular case. Basic features of
quantum mechanics follow, such as the identification of observables with self-adjoint operators, and
canonical quantization rules. This point of view also gives a new insight on the geometry of quan-
tum theory: Planck's constant is related for instance to the curvature of the quantum-mechanical
space of states, and the uniqueness of quantum mechanics can be proved. Finally, the origin of the
probabilistic interpretation is discussed.

I. INTRODUCTION

The motion of a quantum system is ruled by
Schrodinger's equation i Ad

~ P) /dt =H
~
P) (we use stan-

dard notations and, in order to avoid confusion, we write
a caret over operators). ' Let I ~ pk ) I be an orthonormal
basis of the Hilbert space, and A.k the (complex) com-
ponents of

~
P) in this basis: Schrodinger's equation

reads then as a set of equations for the kk's.
Now decompose A, k in real and imaginary parts, more

precisely, set Xk = (xk+ipk ) /V 2A: We may write
Schrodinger's equation as a set of equations for the xk's
and pk s.

Then define the Hamiltonian function H as the mean
value of H, expressed in terms of the xk's and pk's. As-
suming

~
P) is normalized, we have H = (g

~

H
~
P). It is

easy then to compute BH/Bpk and BH/Bxk, and to show
that Schrodinger's equation may be finally written as a set
of Hamilton's equations,

dXk QH dpk

dt Bpk dt Bxk

This is a striking result, since equations of motion in
Hamiltonian form may be considered as the characteristic
feature of classical mechanics. Thus it suggests the pos-
sibility of a unified formulation for both classical and
quantum mechanics. The purpose of this article is to ex-
hibit such a unified formulation in an elementary way,
and to explore some of its consequences.

The organization of the paper is as follows: In Sec. II,
we propose a generalization of classical mechanics, which
will prove able to include quantum mechanics as a partic-
ular case. In Sec. III, we investigate quantum mechanics
from that point of view; our goal is to recover the essen-
tial features of the quantum-mechanical formalism in a
natural and deductive way. Section IV is devoted to a
more detailed study of the geometric structures involved
in quantum mechanics, culminating with a geometrical
interpretation of Planck's constant and a theorem on the
uniqueness of quantum mechanics. Finally, in Sec. V, we
discuss the origin of the usual probabilistic interpretation.

II. CLASSICAL MECHANICS
AND ITS GENERALIZATION

A. Survey of classical mechanics

We refer for this introductory subsection to our previ-
ous paper;" more specific references are given below.

The evolution of a classical system takes place in its
phase space: It is a space of even dimension, say 2n,
which is in fact the space of states of the system. In
agreement with the experimental point of view, this leads
to defining an observable as a real-valued regular function
on that space.

The space of states is provided with a Poisson bracket,
i.e., with an operation f,g~I f,g I on the observables,
which is linear, antisymmetric, nondegenerate, and satis-
fies the Jacobi identity and a derivation-like product for-
mula. One can prove that there always exists (local) sys-
tems of coordinates on the space of states, say, (xk,pk),

txk Pl I 5k& Ixk x11 Igk PI I
=0, k, l = 1, . . . , n, where 6kI is the Kronecker symbol,
i.e., 6kI ——I for k =l, and 5k~=0 otherwise. Such coordi-
nates are called canonical; they allow the Poisson bracket
to be given the familiar form

&
'

af ag af ag
'

~k~Pk ~Pk ~k (2)

&(If,gI)=[&(f),&(g)I .

The physical meaning of the Poisson bracket structure
on the space of states is that the transformations of the
states which do not modify the nature of the system, but
merely correspond to a change of point of view, e.g., a ro-
tation, a translation, a change of inertial frame, or the
time evolution, preserve the Poisson bracket, i.e., are auto-
morphisms of that structure. More precisely, let 9 be a
transformation of the states; it induces naturally a
transformation f~P(f) of the observables. Then 8 is
an automorphism of the space of states, provided with its
Poisson bracket structure, if and only if, for any two ob-
servables f and g, we have
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A transformation S satisfying this condition is called
canonical.

The main result of classical mechanics may then be ex-
pressed as follows: An infinitesimal transformation 8
(Ref. 10) of the space of states is an automorphism, i.e., is
canonical, if and only if there exists some observable g
such that, for any observable f, the transformation
f~S(f) reads f~f'=f + If,gI5a, where 5a is an in-
finitesimal real parameter. In terms of canonical coordi-
nates, we get

Bg
&k ~&k =&k+

~pk
(4)

Bg-
pk~pk =pk-

Bxk

The observable g in (4) is called the generator of the
transformation S. Thus, there is in classical mechanics a
correspondence between observables and infinitesimal au-
tomorphisms of the space of states. This correspondence
is fundamental, since many important observables are de-
fined in fact by the transformation they generate. For in-
stance, the energy H, i.e., the Hamiltonian function, is de-
fined as the generator of time evolution: Eqs. (4) simply
reduce in that case to Hamilton's equations of motion
(1) 11

Poisson bracket and, therefore, any real-valued function
of the state is an observable. This is not true in the gen-
eral case. It can be shown, however, that the set of ob-
servables is closed under addition, product by a scalar,
and the Poisson bracket. ' But the usual product of two
observables, defined by the product of their values, no
longer needs to be an observable.

Notice also that complications may arise in the general
case with the definition of the states: Since not every
real-valued regular function of the state is an observable,
there may not be enough observables to distinguish be-
tween any two states. In such a case, these two states
must of course be considered as identical: This gives rise
to a redefinition of the space of states. '

III. QUANTUM MECHANICS

A. Poisson bracket structure

We now prove that quantum mechanics is a particular
case of the generalized classical mechanics of Sec. II B, by
showing the existence of an intrinsic Poisson bracket
structure on the quantum-mechanical space of states.

Consider a quantum system, and let I I gk&I be an
orthonormal basis of its Hilbert space of states. For any
state vector

I g &, we may write

B. Generalized classical mechanics

The importance of the generator aspect of observables
in classical mechanics is illustrated in Ref. 4. As is well
known, that aspect also exists in quantum mechanics:
This suggests retaining that aspect as the building block
for a generalized classical mechanics which is to include
quantum mechanics as a particular case. Since the
correspondence between observables and infinitesimal au-
tomorphisms of the classical space of states rests on the
properties of the Poisson bracket, we are led to assume the
existence of some underlying Poisson bracket structure on
the space of states of our generalized classical system.
More precisely

(a) The space of states is provided with a structure
whose physical meaning is that the transformations of the
states which correspond to a change of point of view
preserve that structure, i.e., are the automorphisms of the
space of states.

(b) We assume that this structure intrinsically induces a
Poisson bracket structure: The space of states is thus a
classica/ phase space, proUided in the general case with
some comp/emen, tary structure.

(c) The word "intrinsically" in (b) means precisely that
the automorphisms of the space of states preserve the
Poisson bracket, i.e., are canonical transformations. The
converse is not true in general: Not every canonical
transformation is an automorphism, i.e., also preserves the
complementary structure. We define then the observables
as those real Valued regular fun-ctions of the state, whose
canonical transformations they generate are automor
phisms of the whole structure of the space of states.

The usual classical mechanics is characterized by the
fact that there is no complementary structure beside the

IW&= &414k&

where the A,k's are complex numbers. Decompose then A,k
in real and imaginary parts; more precisely, set

A,k ——(xk+ipk )I~26' .

As is well known, the states of the system are not the vec-
tors themselves, but the rays of the Hilbert space, i.e., the
nonzero vectors up to a multiplicative factor. In other
words, a state may be represented by a normalized vector,
which is then fixed up to a phase factor. We shall ignore
for the moment these important features, which will be
discussed in Sec. IV: Thus the xk's and pk's will be con-
sidered as real coordinates of the state, the normalization
condition and the phase arbitrariness being treated as
ad hoc additional requirements.

The result of the Introduction (Sec. I) suggests then that
the xk's and pk's are canonical coordinates. Therefore,
the Poisson bracket of two real-valued regular functions f
and g of these variables will be defined by formula (2).

We now have to prove that this Poisson bracket is an
intrinsic part of the quantum structure. In fact, we do not
need to know precisely for the moment what this struc-
ture is: It will be sufficient to prove that this Poisson
bracket is invariant under the automorphisms of quantum
mechanics. Recall now that automorphisms represent
changes of point of view: Hence the automorphisms of
quantum mechanics are the unitary transformations of
the Hilbert space. '

So, let U be a unitary transformation, represented by an

operator U,
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The components A,k of
~
f) in the orthonormal basis

I ~ pk ) j change under U according to
But an infinitesimal unitary transformation reads

~k~~k = g Ukl~l ~

l

where Uk! ——(pk ~

U
~ pI ). Let Rk! and Ik! be, respective-

ly, the real and imaginary parts of Uki, i.e.,
Uk! ——Rkt+iIk! Re. placing in (6) and inaking use of (5),
we obtain, when we separate the real and imaginary parts,
the transformation law of the xk's and pk's under U: ~k~~k =~k ggkl~l~~ ~ (9)

where g is a self-adjoint operator: Thus there is in quan-
tum mechanics some correspondence between observables
and self-adjoint operators.

More precisely, the Ak's transform under the unitary
transformation (8) according to

xk ~xk = g «kt» Ikt—p!»
l

Pk ~pk g (RktP! +Ikix! ) ~

l

From (2) and (7), we deduce

I xk,p!' j = I g (RkJxJ Ikjpj )—, g (R! p +I! x ) j

= g«kJR! &J. +IkJIJ 5J )

= g (Rk, RiJ+Ik, IJ, ) .

(7)

gkl +glk .gkl glk
gkl (10)

Replacing in (9) and separating the real and imaginary
parts we get, using (5),

' gkl +glk gkl glk
xk~xk xk+ g pi+ g

x!
l 2sA

where gkJ=(pk ~g ~
pi). From the self-adjointness of g,

we have gk! ——gtk, hence the decomposition of gk! in real

and imaginary parts may be written

But, since U is unitary, we have UU =1 (where the
dagger means Hermitian conjugation), which gives (an as-
terisk denotes complex conjugation)

gkl +glk
Pk~pk =Pk —g Xl—gkl g lk

p, Sa.
2EA

Consider now the function (P
~ g ~

P). ~e have

—y Ukj UJ'! = y UkJ' UiJ'

= g (Rkj+iIkJ )(RJJ iIJJ)—
J

= y (RijRiJ+I!JIij)+(imagiilary part) .
J

Since 5kl is real, the imaginary part is zero, hence

I xpk/ j =5k!. In the same way, using again UU =1 or
U U= 1, we obtain Ix!'„x!'j = Ip!'„p!' j =0: The unitary
transformation U preserves the Poisson brackets of the
xk's and pk's. It is then a standard result' that, more
generally, for any f and g,

Hence,

k, l

&k —~7k &i+~Pl

vZX vie
(xkx!+PkP! )+!(xkP! Pkx! )

2A

gkl glk
Pl

(12)

U(If gj)= I U(f»U(g) j .

This means that U is a canonical transformation [formula
(3)], and hence expresses the intrinsic character of the
Poisson bracket we have defined. Quantum mechanics is

thus a particular case of the generalized classical mechan-
ics of Sec. II B.'

B. Observables in quantum mechanics

Since the set of quantum states is provided with an in-
trinsic Poisson bracket structure, we may apply to quan-
tum mechanics the definition of observables given in Sec.
II B: The observables are those real-valued regular func-
tions of the state whose canonical transformations they
generate are automorphisms of the whole quantum struc-
ture, i.e., are unitary transformations.

Comparing with (11) and with the transformation law (4)
of canonical coordinates under the canonical transforma-
tion generated by an observable g, w'e see that, up to an
additive constant,

g(xk Pk) =(tl g I 0) (13)

This is the desired relation between observables and
self-adjoint operators. Because of the phase arbitrariness,
the operator g in (8) is defined up to an additive constant:

, Thus, it is possible to fix that constant so that (13) holds

exactly. Since
~ g) is normalized, we recover thus, with a

new interpretation, the formula for the mean value of a
quantum observable. Said another way, what we have
shown in this subsection is that a real-Ualued regular func
tion g of the state is an obseruable if and only if there exists

some self-adjoint operator g such that (I3) holds
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C. Algebra of quantum observables

It follows from formula (13) that the correspondence
between the observable g and the self-adjoint operator g is
linear and also, because

~ P& is normalized, that 1 is the
identity operator. Thus the addition and product by a
scalar of observables are represented by the same opera-
tions on operators. But, as anticipated in Sec. II 8, the
product of two observables is not in general an observable:
That operation is not relevant in quantum mechanics. We
shall now express the Poisson bracket in terms of opera-
tors.

Let g be an observable, and g the corresponding self-
adjoint operator. From (5) and (10) we have

gkl +glk gkl glk
Re( gkl~l )

2 2R 2i 2'+l . I 1

(
gkl +glk gkl glk

2v 2' 2iv 2R

Bg
Bxk

' 1/2
2

Re
fi

' 1/2
2

Im

g gkl~l

g gkl~l

This allows us to write

where Re and Im mean, respectively, the real and imagi-
nary parts. Comparing with (12) and making use of (13),
we get

df Bg df Bg

~7k ~&k

R Xfklk Im ggkj&, —« 'ggkjk, 'Im 'gfkp, ,
k j . j lV

2 l=—X —.
k 2i gfkl4 ' g gkj~j —(comPlex conjugate)

l l

1 X (flk~l gkj ~j fkl~lgjk~j )
k, l j

+ g [(fg )lj ~l ~q (gf )jl A A l]-i+ l„.

= .~ g[f g]t 4~j
Sfi l.

= «4 I [fg ]j't &
~ g &,

where [f,g]=fg gf is the commuta—tor. This proves
that the operator version of the Poisson bracket is

If gI =[fg] j'i&. (14)

IV. GEOMETRY OF QUANTUM MECHANICS

Thus, [, ]/iver is not only the quantum analog of the Pois-
son bracket: It is in fact a true Poisson bracket. This re-
sult strongly supports the so-called "canonical quantiza-
tion rules. "

phase arbitrariness. We now study these two require-
ments.

The normalization condition means that part of the
complementary structure of the space of states (in the
sense of Sec. II B) consists of a constraint. More precise-

ly, using (5), we have

and the normalization condition (P ~ f & = 1 is

A. Normalization and phase arbitrariness
g(xk +Pk )=2A'.
k

(15)

Up to now, the structure of the quantum-mechanical
space of states has not been explicit: It has been present
only through its automorphisms, i.e., unitary transforma-
tions, and through the requirements of normalization and

Let g be an observable. Since (15) is part of the structure
of the space of states, it must be preserved under the in-
finitesimal automorphism generated by g. Now, using (4),
we obtain the transformation law



31 QUANTUM MECHANICS AS A CLASSICAL THEORY 134S

g(Xk +Pk )~ g (Xk +Pk
k k

= g (xk'+Pk')
k

+2+ xk — pk 5a .Bg Bg

BPk BXk

Thus, g may be an observable only if

~g ~g
xk — Pk

~1k ~&k

This condition means the following: Consider the infini-
tesimal phase transformation

~ g) ~ ~

f') =exp(i5a)
j f), (17)

1.e.,

Ak~kk =exp(i5a)Ak =(1+l5a)Ak .

B. Intrinsic formulation

The normalization condition and its consequence, the
phase arbitrariness, means that the true space of states is
not the Hilbert space itself, but its space of rays, which
can be identified with what mathematicians call a corn-
plex projective space.

Under this transformation, the xk's and pk's transform
according to

Xk ~Xk =Xk —Pk5A,

Pk ~7k =Pk+&k& .

Hence, to first order in 5a,

g (xk Pk ) g(xk Pk5a Pk+xk5a)

=g(xk Pk)+ g
&

xk —
&

Pk 5aBg Bg

Pk &k

Equation (16) is thus equivalent to g(xk,pk)=g(xk, pk):
The value of an observable is invariant under the infini-
tesimal transformation (17), hence, under any finite phase
transformation. In other words, any observable has the
same value on state vectors which differ from a phase fac-
tor. Therefore, two such state vectors must be considered
as representations of the same state: This is just the re-
quirement of phase arbitrariness.

Of course this requirement could have been deduced
directly, starting from the characterization of observables
obtained in Sec. III B [formula (13)]. The interesting
point in the above derivation is that it shows clearly that
the phase arbitrariness is related to the normalization con-
dition. This derivation also shows that the normaliza-
tion condition is not the whole complementary structure
of the space of states, since not any function satisfying
(16) is an observable: For instance, the product of two
functions satisfying (16) has the same property, whereas
we know that the product of two observables is not an ob-
servable in general. Thus there exists a remaining struc-
ture on the space of states, which we shall now show to be
a Riemannian metric.

Suppose the Hilbert space has finite (complex) dimen-
sion n. As a real space, it has then even dimension 2n.
The normalization condition reduces this dimension by 1.
Because of the phase arbitrariness, the dimension is again
reduced by 1. Thus the complex projective space also has
even dimension, a necessary condition for itself to carry a
Poisson bracket structure. The question then naturally
arises whether it is possible to work directly on the com-
plex projective space, getting rid of normalization and
phase arbitrariness.

The answer is positive: All the results of Sec. III, main-
ly formulas (13) and (14), may be recovered as well by
working on the projective space only. Details are given in
Ref. 21: we just present here a brief outline.

The automorphisms of the (true) space of states, i.e., of
the complex projective space, are the transformations of
that space which are induced by the unitary transforma-
tions of the Hilbert space. But the unitary transforma-
tions may be defined as those transformations which
preserve the Hermitian scalar product (

~
) (Ref. 22).

Thus we may say that the structure of the space of states
is induced by that scalar product.

Because of the Hermiticity, the imaginary part of the
scalar product is antisymmetric. As part of the geometry
of the complex projective space, it may be considered as
an antisymmetric covariant tensor ~,

co= g co~pdx Sdx
a,P

where the x 's are coordinates on the complex projective
space. Alternatively, co can be identified with a Poisson
bracket structure, through the formula

IygI y ap ~f
ax axe' '

where co ~ is the inverse of cg~p. This is the starting
point for a derivation of formulas (13) and (14) within the
intrinsic approach.

The complementary structure of the space of states is
then clearly the real part of the scalar product. It is a
symmetric covariant tensor g,

g = gg~pdx sdx
a, P

more precisely, g is shown to be a Riemannian metric.
Formula (15) suggests then a simple geometrical interpre-
tation of Planck's constant, which is confirmed by calcu-
lation: Up to numerical factors, it is the squared radius of
curvature of the space of states, i.e., the inverse of the
Riemannian scalar curvature.

C. Uniqueness of quantum mechanics

We just saw that quantum mechanics is a generalized
classical mechanics, in which the complementary struc-
ture of the space of states is a Riemannian metric. Con-
versely, one may ask whether any such generalized
mechanics necessarily coincides with quantum mechanics,

The answer is positive, under the adchtional assump-
tions that the space of states is connected, simply connect-
ed, homogeneous, isotropic, and that its scalar curvature
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(which is constant by homogeneity) is strictly positive.
We just give here an idea of the proof. 2

Because of homogeneity and isotropy, the Riemannian
and Poisson bracket structures of the space of states are
not independent: One can prove that they are, respective-
ly, something like the real and imaginary parts of a corn-
plex Riemannian metric; more precisely, the space of
states is what mathematicians call a Kahlerian manifold.

The desired result follows then from the fact that any
connected, simply connected, homogeneous, and isotropic
Kihlerian manifold with strictly positive scalar curvature
is a complex projective space. The theorem invoked
here is the Kahlerian analog of that intuitive result of
Riemannian geometry which states that, under suitable
additional requirements (mainly of symmetry) a Rieman-
nian manifold with strictly positive scalar curvature is a
sphere.

Thus we may conclude that the only difference between
classical and quantum mechanics lies in the existence, in
the quantum case, of a Riemannian structure on the space
of states. In other words, there exists between quantum
states a distance which is intrinsic, i.e., invariant under
changes of point of view, whereas there is only the weaker
notion of neighborhood between classical states. It is not
surprising that Planck's constant is related to the specific
feature of quantum mechanics, i.e., to the Riemannian
metric.

Notice also that the linear character of quantum
mechanics, despite its practical importance, may be con-
sidered as an accident: It is only a consequence of the fact
that a complex projective space happens to be the space of
rays of some Hilbert space.

V. PROBABILISTIC INTERPRETATION

A. Nonseparability and indeterminism

Let g be an observable, and g the corresponding self-
adjoint operator. From (13), the value of g when the sys-
tem is in the state described by the normalized vector

l g)
is (g l g l

g). The point of view of Sec. II B suggests that
this value has the same objective character as in ordinary
classical mechanics. We shall now explain the origin of
the usual probabilistic interpretation of quantum mechan-
ics, according to which (g l g l f) is only the mean value
of measurements of g (Ref. 27).

Consider an ensemble of two systems. A pair of states
of these systems defines a state of the ensemble. There-
fore, the Cartesian product of the spaces of states of the
two systems is included in the space of states of the en-
semble.

In classical mechanics, the Poisson bracket structures
on the spaces of states of the two systems induce naturally
a Poisson bracket structure on their Cartesian product.
Hence this Cartesian product may be taken as the space of
states of the ensemble, i.e., the inclusion is in fact an
equality. This means that any state of the ensemble can
be decomposed in states of the two systems.

The situation is very different in quantum mechanics,
because then the spaces of states are complex projective
spaces. The Cartesian product of two such spaces is not
itself a complex projective space and, therefore, the in-

elusion is now strict. This means that there exist states of
the ensemble which are not decomposable in states of the
two systems, a feature of quantum mechanics called non-
separability.

More precisely, it is well known that the Hilbert space
of the ensemble is the tensorial product of the Hilbert
spaces of the two systems: Let

l P) and
l
P ) be the state

vectors of the two systems. Then the state vector of the
ensemble is the tensorial product

l P)S lX). Any state
vector of the ensemble can be written as a linear combina-
tion of such tensorial products, and is not decomposable
unless it is itself a tensorial product.

A particular case is that in which one of the systems is
a measuring apparatus operating on the other system. Let

l g) and lXo) be, respectively, the states of the system
and of the apparatus before the measurement. The state
of the ensemble is then

l P)S
l
Xp) but the state after the

measurement, say, U(
l f)s lXp)), takes in general the

fol m

U(
I 0& I

&o&)= +4t I @k &
I
&i &

i.e., is not decomposable in a state of the measured system
and a state of the apparatus. Thus the notion of a state of
the apparatus after the measurement is not defined in gen-
eral. This shows that the nonseparability of quantum
mechanics implies some kind of indeterminism in the re-
sults of measurements.

This analysis leads to the following definition: We
shall say that an observable g of the system has a deter-
mined value in the state

l
P) if and only if the state of the

ensemble after a measurement of g is decomposable, i.e.,
takes the form

U(lq)elXo&)=lq&e lX &.

B. Deterministic measUrements

It seems natural to impose on the transformation U,
which describes the measurement of g, the following re-
quirements:

(a) U represents the time evolution of the ensemble dur-
ing the measurement process. Hence it is a unitary
transformation, with operator U.

(b) An ideal measurement should disturb the system as
little as possible. This leads us to impose that U preserve
the value of g. Since U is unitary, this reads, with

l
@) =state of the ensemble,

&@
I g I

c'& =(Uc
l g l

O@&

=&@IU'gUl~'&=&C lU 'gUla &

for any
l
@),hence g=U 'gU, i.e., [U,g]=0.

(c) A good apparatus should discriminate between dis-
tinct values of g: If

l p~ ) and
l g2) are states of the sys-

tem in which g has determined and distinct values, i.e.,
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then IX& ) and
I X2) represent distinct states of the ap-

paratus, and are therefore linearly independent.
For the sake of simplicity, we now assume that g has a

purely discrete and nondegenerate spectrum. Let gk and

I pk ) be, respectively, its eigenvalues and normalized
eigenvectors: g I pk) =gk

I pk), and I I pk) I is an ortho-
normal basis of the Hilbert space of the system.

From condition (b), it follows that

gU
I 4k & I Xo& = Ug

I 4 &
I Xo&

= &gk I A &
I
xo&

=gkUI(tk& lxo&

U
I pk) IXo) is thus an eigenvector of g, with eigen-

value gk. Since the spectrum of g is nondegenerate, this
implies the existence of states

I Xk ) of the apparatus such
that

U
I

tt'k &
I
xo &

= 14'k &
I xk & .

Thus g has in the state
I pk ) the determined value

&Pk I g I lk & gk

Now let
I g) be any state of the system. We may write

I
&&= g~k l(t'k& .

Since U is unitary [condition (a)], U is a linear operator,
hence

U
I @&

I
xo& = U g 4 I kk &

I
xo&

k

= +4Uldk) IXo&

Thus we have shown that g has a determined value in
state

I g) if and only if
I
g) is an eigenvector of g, the

eigenvalue being the value of g.
C. Nondeterministic measurements

The vector
I Xk ) represents the state of the apparatus

when the result of the measurement is the determined
value gk. In the general case, where the state

I
tp) of the

system is not an eigenvector of g, the state of the ensem-
ble after the measurement is given by (18), and the state of
the apparatus alone is no longer defined.

To understand what this means, consider an observable

f of the apparatus, and let f be the corresponding self-
adjoint operator. The value of f after the measurement,
say, (f), is

&f & = g ~t ~k( &(t)t
I

&Xt
I
»( I &k &

I
Xk & )

k, l

= gk~k&A leak&&Xt lf IXk&

= & ~t ~k&kt &Xt
I f I Xk &

k, l

= X I4 I'&Xk lf IX &

(Xk
I f I Xk ) is the value of fwhen the apparatus is in the

state
I
Xk). Thus this formula shows that, after the mea-

surement, the apparatus may be described as a statistical
mixture of the states

I
Xk ), with probabilities

I
A,k I

. In
that sense, we may say that the result of the measurement
of g is gk with probability

I
Ak I, in agreement with the

usual probabilistic interpretation of quantum mechanics.
In particular, since

2 I4 I'«=&@lg
I @&

= X~kl@k& IXk& . (18) what we called the (objective) value of g appears experi-
mentally as the mean value of measurements of g.

Suppose g has a determined value in state
I
p). Then

U
I @& IXo& takes the form

I
p'&e IX'&, i.e.,

X~k Idk& IXk&=
I
@'& IX'& .

Take the (partial) scalar product with
I Pt). Making use

o«pl I pk & 5kt, we get

At Ixt)=(gt lf') lx'),
i.e., whenever A.t is nonzero, IXt) is proportional to the
fixed vector

I
X'). But, from condition (c), the

I Xk )'s are
linearly independent, hence this implies that all A, t s are
zero except one (I P) being nonzero). Therefore,

I g) is
one of the

I pk )'s, i.e., it is one of the eigenvectors of g.

VI. CONCLUDING REMARKS

Most textbooks introduce quantum mechanics in an ax-
iomatic way, and insist on its departure from classical
mechanics whose foundations, considered as intuitive, do
not need to be questioned.

We have shown in this paper how a deeper study of
classical mechanics (Poisson bracket structure and the
generator aspect of observables) results in a natural gen-
eralization of the classical scheme, which allows us to
deduce the quantum axioms, including those dealing with
the probabilistic interpretation: Quantum mechanics may
be considered as a classical theory, in which a distance be-
tween states is defined, the natural unit of distance being
fixed by the magnitude of Planck's constant.

A11 features of quantum mechanics needed in this paper can be
found, for instance, in A. Messiah, Quantum Mechanics (Wi-
ley, New York, 1958).

The calculation is carried out in more detail and in a broader
context in Sec. III B. Notice that the Hamiltonian function
H is quadratic in the xk's and pk's. To reduce it to a simple

form, take for I I pk ) ) a proper basis of H. Then
H =QEk

I

A.k I =QEk(pk +xk )/2A, where the Ek's are the
energy levels. H appears thus as a sum of Hamiltonian func-
tions of harmonic oscillators with pulsations cok ——Ek/A.

Hamilton's equations express the existence of an underlying
Poisson bracket I,

'or symplectic) structure. See Sec. II A and
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references therein.
~A. Heslot, Am. J. Phys. 51, 1096 (1983).
5More precisely, the space'of states is a smooth manifold, and

regular means smooth. Notice that we exclude the case of ex-
plicitly time-dependent observables.

Such a structure is called symplectic by mathematicians. The
even dimension of the space of states is a necessary condition
for that structure to exist. For details on the Poisson bracket,
see, for instance, R. J. Finkelstein, Xonrelativistic Mechanics
(Benjamin, New York, 1973), Chap. 1.

7This is the Darboux theorem. See for a proof V. I. Arnold,
Mathematical Methods in Classical Mechanics (Mir, Moskow,
1975) [Also published as Springer Graduate Texts in
Mathematics, No. 60 (Springer, New York, 1978)], Chap. 8.

We exclude the case of time-dependent canonical transforma-
tions. For a proof of the equivalence with the usual definition
of canonical transformations (also called symplectomor-
phisms), see Arnold (Ref. 7).

See, for instance, Finkelstein (Ref. 6), Chap. 3 ~

'oThe reason for this restriction to infinitesimal transformations
is that the set of canonical transformations is a Lie group:
Up to topological details, such a group is characterized by its
Lie algebra, i.e., by its infinitesimal elements.

Other important examples are the components of the linear
(angular} momentum, defined as the generators of translations
(rotations).

A. Heslot, in Dynamical Systems and Microphysics: Geometry
and Mechanics, edited by A. Avez, A. Blaquiere, and A. Mar-
zollo (Academic, New York, 1982).
This is a consequence of the fact that the set of observables is
a Lie algebra under the Poisson bracket, closely related to the
Lie algebra of the group of automorphisms of the space of
states. See Heslot (Ref. 12).
This happens, for instance, in the Hamiltonian description of
the classical electromagnetic field, starting from a Lagrangian
description in terms of potentials, with no choice of gauge.
The conjugate variables of the potentials obey, then, con-
straint relations, which play the role of a complementary
structure on the space of states. Our definition identifies ob-
servables with gauge-invariant quantities, and states which
differ from a gauge transformation are thus equivalent. See
for details, A. Heslot, These, de troisieme cycle, Universite
Paris VE, 1979.
We do not consider antiunitary transformations which
describe, for instance, time reversal as true automorphisrns.
The situation is very similar to that of ordinary classical

mechanics, where time reversal changes the sign of the Pois-
son bracket, and hence is not a true canonical transformation.
See, for instance, Arnold (Ref. 7).
The tool used in Sec. IIE A, i.e., decomposition in real and

imaginary parts, "explains" the occurrence of complex num-

bers in quantum mechanics: They ensure the even real di-

mension of the space of states which is necessary for it to car-

ry a Poisson bracket structure.
The result of the Introduction (Sec. I) is recovered with g =H.

' An observable is thus necessarily quadratic in the xk's and

pk's: For instance, these canonical variables are not them-

selves observables. Compared to classical mechanics, there
are very few observables in quantum mechanics. This ex-

plains why the description of most physical systems requires
an infinite-dimensional Hilbert space.

~ The phase arbitrariness is thus very similar to the gauge in-

variance of classical electromagnetism. See Ref. 14.
~ Heslot (Ref. 12). Concerning formula (14), see also V. Can-

toni, Rend. Acad. Nat. Lincei 62, 628 (1977). This formula

also occurs in D. J. Rowe, A. Ryman, and G. Rosensteel,

Phys. Rev. A 22, 2362 (1980).
The linearity of unitary transformations need not be assumed:

It is a consequence of the fact that they preserve (
~

).
In mathematical terms, ~ is a nondegenerate closed two-form,

and defines what is properly called a symplectic structure

(mathematicians usually consider the Poisson bracket as a de-

rived notion).
It can be shown that a classical phase space is necessarily

homogeneous and isotropic: See Y. Hatakeyama, Tohoku
Math. J. 18, 338 (1966): Our assumptions of homogeneity

and isotropy are natural extensions to the general case. The
assumption of positiveness of the curvature is a physical re-

quirement on Planck's constant. The connexity and simple

connexity are technical requirements.
25See for the detailed proof, A. Heslot, C. R. Acad. Sci. Paris

298, 95 (1984). This result has been obtained independently

by V. Cantoni (private communication).
See, for instance, S. Kobayashi and K. Nornizu, Foundations

of Differential Geometry (Wiley, New York, 1963), Vol. 2,
Chap. 9. The result holds at least when the space of states

has finite dimension. Extension to the more realistic case of
infinite dimension is now under investigation.
Heslot (Ref. 14).
Let [, ] ~ and [, ] 2 be the Poisson brackets on the two spaces
of states. Then the Poisson bracket on their Cartesian prod-

uct is. [, ] = [, ],+ [, ] p.


