
PHYSICAL REVIE%" D VOLUME 31, NUMBER 6 15 MARCH 1985

Forced harmonic oscillator with damping and thermal effects
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Nonperturbative quantum-mechanical solutions of the forced harmonic oscillator with radiation-
reaction damping are obtained from a previous analysis based on stochastic electrodynamics. The
transition to excited states is shown to be to coherent states which follows the classical trajectory.
The quantum Wigner distribution in phase space is constructed. All the results are extended to fi-
nite temperatures.

I. INTRODUCTION

In this paper we address ourselves to the quantum prob-
lem of a harmonically bounded charged particle in contact
with a heat bath (blackbody radiation). Since the particle
is charged we also have dissipation effects due to radia-
tion reaction which is always present. We also include an
external electromagnetic force with arbitrary time depen-
dence in order to see how the excited states are generated
by the external disturbance.

For simplicity we restrict the analysis to the one-
dimensional case. The reader will find no difficulty in ex-
tending the results to three-dimensional motion.

We approach the above problem indirectly. We first
analyze the same system within the framework of stochas-
tic electrodynamics (SED) where the problem has a simple
solution. ' As we will see, this analysis will be useful for
solving the problem within the quantum-mechanical (QM)
context.

x(t) =x,(t)+xf(t), (2)

where x, (t) is the deterministic part of x (t) [obtained by
putting E„=O in (I)] and x/(t) is the fluctuating part
generated by the random fields.

The stationary statistical properties of xf are well
known. ' We can consider xf as a random walk with in-

II. STOCHASTIC-ELECTRODYNAMICS APPROACH

The classical equation of motion in SED is

2 e ~~ext
mx = —mcoo x —mcoo rx+eE„(t)

c Bt

where ~= —,e /mc . The term proportional to x is an ap-
proximation of the radiation-reaction force, E„(t) is the
random electromagnetic field of SED, and A,„,(t), is the
vector potential of an external deterministic force turned
on at t =0. The effects of the magnetic random field and
the space dependence of E„(t) and A,„,(t) have been
neglected because the motion is nonrelativistic.

The above linear equation has a simple solution. The
trajectory x (t) can be written as

finite steps and such that the ensemble average of xf,
denoted by (xf ), is zero, but the variance, at temperature
T, is given by'*

~o
(xf )= coth

2%i coo
=(pf')/m' o',

where pf ——mxf.
According to the central-limit theorem the probability

distribution Qr(x, t) in configuration space is given by the
Gaussian function'

QT(x, t) =

(x —x, )

2(xf')
(2~(xf') )'"

exp

Qo(x t)=
exp

(x —x, ) mtoo2

(Mlmcoo)'~

o x —xe

which is valid for any time t & 0.
The above expression will guide us to the solution of'

the quantum problem at T =0.

valid for any temperature.
As was pointed out before, ' QT(x, t) coincides with

the stationary quantum distribution of a harmonic oscilla-
tor at temperature T, when A„,=O and after the tran-
sient, that is, when we can assume that x, =0. In fact, for
this system QM gives for the probability distribution the
following expression

%coo
~
P„(x)

~
exp — ( —,'+n)

n=0

exp( —x /2(xf ))
(2~(xf') )'" (5)

where Z is the partition function and P„(x) are eigenfunc-
tions of the unperturbed harmonic oscillator.

When T=0, but A,„,&0, we have
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III. QUANTUM-MECHANICAL APPROACH

In this case the complete (dissipation included)
Schrodinger equation is

. a@
Bt 2m

a—ih
Bx

2

——A + —,mcpp x
C

(7)

g(x, t)=Pp(x —x, )exp —p, +—A x ——g
C

where A(t)=A, „,(t)+A„d(t) and A„d(t) is the
radiation-reaction vector potential (classically speaking,
since we are not considering quantized electromagnetic
fields). The precise meaning of A„d(t) will be clarified
below when we explicitly connect A„d(t) with the func-
tion x, (t) defined in (2). It will turn out that A„d(t) will
not depend on x so that (7) can be described as a
Schrodinger equation.

The previous result, (6) of SED suggests that we look
for a solution of (7) in the form

where x, is the same as before, p, =—mx„and g (t) is a
function to be determined by substituting P(x, t) into (7).
After a short calculation we find that (g) satisfies (7) only
1f

e
mx, = —mcop x, —— {A,„,+A„,d)c Bt

and

ficop ~ P, (t')
g(t)= t+ f dt' mcop x, (t')

2
(10)

Equation (9) is the Abraham-Lorentz equation (1) in the
absence of the random field. Therefore dissipation is in-
cluded in our QM approach. If we approximate the
radiation-reaction force by —mcpp rx, [note that here
x(t)& x which is the actual position of the particle], then

( e Ic)A d(t) =
m happ Tx (t) and Eq. (9) has a general solu-

tion:

x, (t) = m Pxp +2Pp ptsin(co
&
t) +xpcos(co

&
t) exp — + dg

'"
sin[cot(t —g)]exp — (t —g—)2' co ) 2 mcco) p Bg 2

Here P=mcop Tco~ ='cop —P l4, and xp and Pp are free
parameters representing the initial position and kinetic
momentum, respectively, of a particle following the classi-
cal trajectory x, (t).

For each pair of parameters xo and po we can construct
functions f„z (x, t) which are different exact solutions of
the Schrodinger equation (7).

These functions are usually called coherent states of
the harmonic oscillator and can be expanded using the
basis P„(x) as

' 2 & 2 2~Og =
2 mXc + 2 m&0 +c ~ (12c)

f dxp f dppP ~ (y, t)P„* z (x, t)

= g P„(x)P"„(y)=&(x —y).
n=o

(13)

If &=p=0, that is, when the radiation-reaction force is
neglected, one can show that the set of states g„z (x, t) is

complete. The completeness relation in this case is writ-
ten as

P„,p, (x,t)= g a„(t)P„(x),
n=o

where

n!

1/2
O. i Pc&c

exp ——+— —
+ Any —g2 h 2

(12)

(12a)

When v+0 the set g„z (x, t) is complete only at t =0.
The reason for this is that for t ~ 0 the damping factors
exp( ptl2) in (11) cause—the terms which depend on the
arbitrary initial conditions to disappear from x, (t).

The propagator of an arbitrary solution g„z (x, t),
denoted by K(x,x'

~
t), and defined as

g„ z,(x,t)= f dx'IC(x, x'it)g„ z, (x',0), (14)

tang= p, + (e/c)A, „,
N1 COOXc

(12b)
can be easily obtained since we know the analytical ex-
pressions of the infinite set of solutions g„z (x, t) of the
Schrodinger equation. We can express IC(x,x'~ t) in a
closed form, namely

2Pl CO(glO
IC(x,x'

i
t)

2M(y, —yp )

where

—1/2 2
ig (t) m ~py. , yp=exp (y, —yp+xp —x, ) — + 2 z

x' —x
2A XO —X.

p, (t)+ (e jc)A,„,(t)
y, (t) =x, (t)+i

Pl COO

with analogous expression for yp [xp and pp replaces x, and p„respectively, and A,„,{0)=0].
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IV. PHASE-SPACE DISTRIBUTION AT FINITE TEMPERATURES

The Wigner ' distribution associated with the coherent state g„,z,(x, t) has a simple form:

OO

Wo(x,p, t): — dy P*„z (x+y, t)f„z (x —y, t)exp 2ipy 1 m~0, (P —P. )'
exp — (x —x, )—

fg AP71 C00
(16)

This distribution coincides exactly with the phase-space
probability distribution of SED (Refs. 1 and 3) at zero
temperature, because in this case the variances of the fluc-
tuating coordinate x~ and fluctuating kinetic momentum

pf =mxf are &xf & =A'/2mcoo and &pf & =time)0/2,
respectively, as can be seen from (3).

The continuity equation9 for Wo(x,p, t) can be written

Qo(x,y, t) =

[x x,—(t)] +[y —y, (t)]
2'/m roti

2rtfilm coti
(21)

I

random motion of this system in the (x,y) plane by means
of SED we conclude that'

8 8'0
Bt

+L(t)W, =O,

where the operator

L(t) —=x;(t) +p, (t)
Bx Bp

(17)

(22)

is the probability distribution at zero temperature because
now &xf & —&yf & —A/moline Here cori

——eB/mc. As be-
fore x, (t) and y, (t) are the projections of the classical
deterministic trajectories on the x and y axes.

In QM the corresponding Schrodinger equation is
2

1 .
&&

e Bxr eA
2m c 2 c

can be used in order to compute the time evolution of the
probability distribution in phase space. This can be done
by means of the formula

where

A(t) = A,„,(t)+ A„q(t)

Wo(x p t) =exp — Ct L(t') Wo(x p 0)
0

(18)

This result is general since it follows from the local con-
servation of matter.

This general law of local conservation of the probability
distribution will help us to extend formula (16) for
nonzero temperatures. First, we recall previous results ob-
tained by some authors' for the Wigner distribution of
the free harmonic oscillator at temperature T, namely

T

Wz. (,x,p, O) =
exp

X

2& f'& 2&pf'&

2ir(&x '&&p '&)' '
which is valid when A,„,(t) =0 ( t (0). Second, we propa-
gate Wr(x,p, O) according to the general law (18). The re-
sult is

Wr(x,p, t) =
exp

(x —x, ) (p —p, )

2&xfz& 2&pf'&

(& '&&p '&)' '

which is, as it should be, exactly the phase-space distribu-
tion which is obtained in SED directly from (1), (2), (3),
and the central-limit theorem.

V. ANOTHER EXAMPLE

Before passing to our final comments let us briefly dis-
cuss another example which is the motion of the charged
particle in a constant magnetic field 8, but also subjected
to an external force —(e/c)BA, „,/dt with arbitrary time
dependence. If 8 is parallel to the z direction we have
free motion along this axis when I; &0. By studying the

includes the dissipation through the action of the
radiation-reaction potential A„o(t).

Comparison with the SED result (21) suggests that we
look for an exact solution in the form

g(r, t) =uo(x x, (t),y —y,—(t))
I,g l

Xexp ——+—r p,

(24)

We have checked that (23) is solution of (22) provided
that p, is the deterministic vector function defined by

e &Xrc e
p, =mr, +— + A(t)—

c 2 c
(25)

which must be constructed by integrating the Abraham-
Lorentz equation of motion

c' cBt (26)

The function g must be such that
2

g(t) = + p, (t) ——A(t) +,(&Xr, )' .
2m c Smc

(27)

The above results are valid at zero temperature. The

where uo(x, y) is the ground-state wave function of a
charged particle in a constant magnetic field 8, namely, "

(x +y )mcoii
exp

u, (x,y) =
(2iriii/men )'
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fi %cog
(xf ) = coth

Pg Q)g 2kT (y 2) (28)

We do not intend to discuss the details of such extension
in QM for this particular example because of the great
analogy with the preceding case of a one-dimensional har-
monic oscillator.

VI. CONCLUSIONS

We want to finish our discussion with a few remarks.
First, we note the strong similarity between SED and QM
for those two simple examples. This has been known
since 1963 from the work by Marshall' on the free har-
monic oscillator. Another important point concerning the
similarity between SED and QM is the transitions, to the
excited states of the harmonic oscillator, induced by the
external field. We have found that it is not possible to ex-
cite the particle to a pure state t()„(x) (n ~0), if we start
from the ground state and disturb the system with a con-
trollable deterministic external force, despite its arbitrary
time dependence. What we have found is that a coherent
state is generated and all the excited states are instantane-

extension to T & 0 can be easily done within the realm of
SED (Refs. 1 and 3) by replacing (xf ) =R/mcatt at
T=Oby

ously populated according to the Poisson distribution
P„=tr"exp( —cr)/n! as can be seen from (12a). This ob-
servation raises again an interesting question concerning a
fundamental difference between SED and QM. In SED
there are no excited states, with discrete and sharp energy
levels, as there are in time-independent QM. The energy
is continuously distributed. Despite this fundamental
difference both theories are up to now indistinguish-
able ' from the experimental point of view as far as the
harmonic oscillator is concerned. In our QM theoretical
analysis of the forced harmonic oscillator we have not
been able to decide affirmatively about the real existence
of pure excited states. We have concluded that any time-
dependent deterministic external disturbance excites quan-
tum coherent states out of the ground state. This is en-
tirely consistent with SED as far as probability distribu-
tions are concerned.
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