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We have constructed a theory where the metric tensor g„(x) and the connection I „(x)are now
generalized to be matrix-valued instead of scalar functions. Such a theory can combine both
Einstein s general relativity and Yang-Mills gauge theory. Similarly, the usual vierbein field ez(a)
may be assumed to be also matrix-valued. This theory can possess two different kinds of local
gauge transformations. In such a theory, there exists a possibility that gravity may be regarded as a
bound state of a spin- 2 fermion pair in some sense. Also, the torsion tensor does not behave covari-

antly under one of the local gauge symmetries.

I. MATRIX GENERAL RELATIVITY x"~x'", (1.2)

One important problem in high-energy physics is how
to unify the general relativity of Einstein with Yang-Mills
gauge theory. The most popular and the most interesting
approach for this problem is to consider the geometry of a
high-dimensional manifold as in Kaluza-Klein theory.
However, there exists the second possibility which is less
well known and is a generalization of the original idea by
Einstein where we restrict ourselves to consideration of
the ordinary four-dimensional Minkowski manifold. Sup-
pose that the connection I ~~ (x) (A, ,p, v=0, 1,2, 3) is now
an N)&N matrix. The Yang-Mills gauge potential A~(x)
which is an N &N matrix may now be identified with the
Ansatz '

I ~~ (x)=' 'I ~ (x)E+8,'A~(x),

where E is the N&&N unit matrix and ' 'I ~ (x) is the
standard scalar affine connection. Note that for N= I
Eq. (1.1) reproduces the original Ansatz of Einstein, so
that this is the straightforward generalization of the origi-
nal idea of Einstein.

The purpose of this note is to generalize and explore the
second alternative mentioned above, which we call matrix
relativity. As we shall see shortly, Eq. (1.1) corresponds
to a connection in a 4N-dimensional vector bundle 8 over
the Minkowski space-time base. The bundle group Go of
B is a direct product GL(4, R)IIU(N) or its subgroup,
which implies no correlation between the space-time
group GL(4, R ) (or its subgroup) and the internal-
symmetry group U(N) (or its subgroup). If we wish to in-
troduce a possible correlation between the space-time and
the internal symmetry, then we evidently have to extend
the bundle group Go into a larger group G. Temporarily,
we assume it to be the GL(4N, C) group. Then the corre-
sponding general connection I ~ (x) is a general N)&N
matrix, which has in general a more complicated structure
than that given by Eq. (1.1). We here consider only a
purely affine geometry. A generalization of the matrix
metric tensor based upon a generalized vierbein field will
be discussed in the next section.

First, under the coordinate transformation

the connection must transform as

,p, Bx ~ Bx Bx~
r~„(x) r,'~(x )=, r„(x)

Bx Bx Bx

Bx'" 8 x~

Bx Bx Bx
(1.3)

The local gauge transformation can be introduced in a
familiar way as follows. Let S"„(x)and T"„(x)be arbi-
trary N XN matrices for each p, v=0, 1,2, 3, subject to the
constraint

S"~(x)T (x)=T"~(x)S,(x)=P'„E . (1.4)

Then, the local gauge transformation for the connection
I ~„(x) may be defined by

r~.(x) r ~.(x) = T~.(x)r,it(x)St'„(x)

+T" (x)B~S (x) . (1.5)

When we define the N XN curvature matrix tensor
R" att(x) by

R"„it(x) = c) I ~tt„(x)—Bttr" (x)

+rg, (x)r~~,(x)—r$, (x)r'.„(x), (1.6)

then it is straightforward to see the covariant transforma-
tion law

R"„ i3(x)~R "
hatt(x) =T"~( )Rx, tt(x)S'„(x), (1.7)

1

I ~g (x)~r j„"(x')= ~ [ T"a(x)r,tt(x)S~,(x)
Bx

+ T"a(x)t),S,(x)] . (1.8)

under Eq. (1.5). We have to be careful of the order of the
product of two connections in Eq. (1.6) since they are now
matrices.

We may note that both coordinate transformation Eq.
(1.3) and the gauge transformation Eq. (1.5) can be com-
bined into a single form of
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For a pure local gauge transformation, we simply set
x'&=x", while we identify

T~„(x)= E, S"„(x)=()x' ~ „Bx"
Bx

(1.9)

for A, B=1,2, . . . , N and p, v=0, 1,2, 3. Then, Eqs.
(1 4)—(1.7) are rewritten as

S(x)T(x)=T(x)S(x)=I,
r, (x) r,(x)=T(x)r,(x)S(x)+T(x)a,S(x),
R.p(x) =a.rp(x) —Bpr.(x)+[r.(x),r,(x)],
R p(x)~R~p(x) =T(x)R~p(x)S(x),

(1.4')

(1.5')

(1.6')

(1.7')

where I in Eq. (1.4') refers to the 4N&(4N unit matrix.
Since T(x)=S '(x) by Eq. (1.4'), these equations are for-
mally equivalent to the Yang-Mills gauge theory based
upon the gauge group GL(4N, C) with the connection
r~(x). However, the theory is not literally equivalent to
the Yang-Mills theory, since the coordinate transforma-
tion Eq. (1.3) or (1.8) gives the mixing between the inter-
nal and Minkowski components in this 4N-dimensional
matrix notation. Indeed, I ~,(x) consists of Lorentz spin
components with spins 3, 2, and 1, in contrast to the pure
Lorentz spin-one Yang-Mills gauge potential.

Before going into further detail, we note that

Jdx e pTr[R. „„(x)R~p(x)]
32%2

for the pure coordinate transformation Eq. (1.3). The
Riemann curvature tensor R" p(x) transforms, of course,
covariantly also under Eq. (1.8), since it behaves covari-
antly under pure coordinate transforrqations as in the usu-
al theory. Wie also remark that the existence of the local
gauge transformation Eq. (1.5) for the scalar case of
N = 1 has been previously noted by some authors.

In order to realize that the present theory is related to a
vector bundle with the bundle group GL(4N, C), it is more
convenient to regard Minkowski indices p,v also as matrix
indices as follows. Let A, B (=1,2, . . . , N) be the matrix
indices of the N-dimensional internal space. We now de-
fine 4N X4N matrices I ~(x), and R p(x) as well as S(x)
and T(x) by

r~( ) I» )=(A ir~.( )

(A,p i
R p(x) [B,v) =(A [R"„p(x)

i
B),

(1.10)
(A,p i

S(x) iB,v) =(A iS",(x) iB),

where the traces in these formulas refer to the 4N-
dimensional fiber space. Also, d' p is the completely an-
tisymmetric constant Levi-Civita symbol with e ' = 1.

Suppose for a moment that a Riemannian metric tensor
g& (x) is given, and we raise and/or lower indices by
means of g"'(x) and g&„(x) as usual. We emphasize that
g& (x) is a c-number function but not a matrix. Then, the
Yang-Mills Lagrangian will be given by

I. (x)= —,', Tr[R„,(x)R~ (x)] (1.13)

S",(x)=a",(x)U(x),

T" (x)=b",(x)U '(x),
(1.14a)

which is invariant under 4N-dimensional local gauge
transformation Eqs. (1.5') and (1.7'). In the limit with
the flat metric g& (x) =g&„, Eq. (1.13) is a quadratic func-
tion of 64 NXN matrices 1~~,(x) (A, ,p, v=0, 1,2, 3), whose
spin contents are a mixture of spins 3, 2, and 1. There-
fore, the theory will correspond to a new type of local
gauge theory involving the highest spin 3 with the new lo-
cal gauge transformation Eq. (1.5). Since the transforma-
tion law Eq. (1.5) mixes all spin components of 3, 2, and 1

in a nontrivial way, we cannot construct a pure spin-3 lo-
cal gauge theory. Moreover, the Hamiltonian constructed
from the Lagrangian Eq. (1.13) cannot be made to be posi-
tive definite for any gauge condition. Because of these
facts, the theory described by Eq. (1.13) is rather patho-
logical unless we somehow eliminate the spin-3 com-
ponents of I & (x) as in the classical general relativity.
One way to achieve this end is to assume Eq. (1.1).
Another method is to use a generalization of metric con-
dition to be explained in the next section. In passing, we
note that it is generally believed that consistent theories
with gravity coupled to massless particles of spin greater
than two do not exist.

Returning to the original discussion, we note that the
group of our bundle space is GL(4N, C). However, as we
mentioned in the beginning, the physical group Go lead-
ing to Eq. (1.1) must be GL(4,R)sU(N) or its subgroup.
If we accept this fact from the beginning, then the con-
nection I ~(x) must be an element of the Lie algebra of
GL(4, R)SU(N). In particular, this implies that I ~ (x)
must be written in a special form of Eq. (1.1). Corre-
sponding to this restriction, the local gauge transforma-
tion functions S~ (x) and T",(x) will be restricted to
forms of

gives a topological invariant corresponding to the second
Chem integral of the Chem class. It is straightfor-
ward ' to note

where U(x) is an N&&N unimodular matrix and where
a"(x) and b"„(x) are scalar (i.e., not matrix) functions of
the coordinate, satisfying

PTr[R~„(x)R p(x)]=8~K (x),

K (x)=e" Tr[ I &(x)R~p(x)

(1.12a)
a~~(x)b, (x) =b~~(x)a (x)=8' . (1.14b)

——,
' I „(x)I (x)I p(x)], (1.12b)

The restricted local gauge transformation based upon Eq.
(1.14) is now read as
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I"&„(x) r",„(x)=bg(x)U-'(x)1»(x)U(x)at„'(x)+ U-'(x)a, U(x)e„'+b"(x)a,a„(x)E .

Now, we assume explicitly the Einstein Ansatz Eq. (1.1). Then, Eq. (1.6) becomes

(x) =~O~RI tt(x)E++F tt(x

(1.15)

(1.16a)

F~ft(x) =B~Att(x) BttA—~(x)+ [A~(x),A~(x)], (1.16b)

where ' 'R"„ tt(x) is the classical affine curvature tensor constructed from the scalar affine connection ' 'I ~„(x). Since
the nonzero-trace part of A&(x) can be always absorbed into ' 'I ~„(x),we may assume without loss of generality

TrA~(x) =0 .

Then, Eq. (1.15) with Eq. (1.1) is equivalent to

A„(x)=U-'(x)A„(x) U(x)+ U-'(x)a„U(x),

Fq„(x)~Fp (x)= U '(x)F~„(x)U(x),
'O'I ~„(x)~' 'I ~ (x) =b~(x)' 'I t tt(x)a~(x)+b" (x)8~a„(x),

(1.18a)

(1.18b)

(1.18c)

when we note Tr[U '(x)B~U(x)]=0 because of the uni-
modularity of U(x). Therefore, we may identify A&(x)
as the Yang-Mills field, while the transformation law Eq.
(1.18c) corresponds to the usual affine connection. In-
serting Eq. (1.16a) into Eq. (1.11), we find similarly

J=J)+J, , (1.19a)

J) ——
~ fd x d' @ 'R,p„( )x' 'R'g~p( x), (1.19b)

32~'

Jq —— fd x d"" Tr[F& (x)F &(x)],
Sm

(1.19c)

where the trace here in Eq. (1.19c) and hereafter refer to
the Ã-dimensional internal space. Note that J~ and J2
are proportional to the second Pontrjagin integral and the
familiar winding number of the Yang-Mills gauge field,
respectively. We remark that both J] and J2 are inti-
mately related' to triangle anomalies.

Next, if we insert Eq. (1.16a) into Eq. (1.13), then we
find

L (x)= 4NLwY(x)+ 4 Tr[F~~(x)F" (x)]

Lwv(x)= ,'' 'R~„p—(x)' 'R"" ~(x) .

(1.20a)

(1.20b)

gp„(x) =—TrG„„(x) .1
pv (1.21)

We raise and/or lower indices as usual by means of g" (x)
and/or g&„(x). Consider the action integral

Here, Lwv(x) is essentially the Weyl-Yang Lagrangian, "
which gives the Yang-Mills gravity theory. It is now
known' ' that the theory based upon Lwv(x) gives
essentially the same result as the free Einstein relativity at
least at the classical level. In passing, we simply mention
that more complicated Lagrangians containing Lwv(x)
have been studied by many authors both classically' and
quantum mechanically. '

If we wish to work with the linear Hilbert-Palatine ac-
tion rather than quadratic Weyl-Yang form, then we can
do so by introducing the N XN matrix field Gz„(x). The
Reimannian metric gz„(x) may be identified as the trace
part of 6„„(x),i.e., by

A =—fd x[—g(x)]' TrtG&"(x)R &~ (x)+c,[G&"(x)6& (x) 4E]I, — (1.22)

where c& is a constant. Note that Eq. (1.22) is still invari-
ant under Eq. (1.15) restricted to a",(x)=b"„(x)=P' pro-
vided that we assume

6~„(x)~Gp (x)= U '(x)6~„(x)U(x) . (1.23)

Regarding 6& (x), ' 'I ~ (x), and A~(x) to be independent
variational variables, it is easy to see that the variational
principle 5A =0 for 56„„(x)and 5' 'I"~~ (x) gives

l

assuming c,+0. Therefore, the Yang-Mills gauge field
F&„(x) may be regarded as the antisymmetric component
of the generalized matrix-metric tensor 6„(x). Inserting
Eq. (1.24) into Eq. (1.22), we find

r

d4~ g ~ 1 /2 (0)g 4' )

G„„(x)=g„„(x)E Fp„(x)—1

2ci
(1.24)

X Tr[F~„(x)F" (x )], (1.25)
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where '. 'R(x) is the scalar curvature, i.e.,
' 'R(x)=g""(x)' 'R~„q„(x)=' 'R "q„(x) . (1.26)

Therefore, our action is simply an independent sum of the
Hilbert-Palatine action and the Yang-Mills Lagrangian
without any genuine interaction between them. We may
also note that if we did not subtract a term proportional
to 4c,—TrE in Eq. (1.22), then the action Eq. (1.25)
would contain a cosmological term.

In ending this section, consider a special Yang-Mills
type transformation

=(A
l
I„' (x) lB)dx" (2.2)

for A, B=1,2, . . . , M as in the previous section. Then, it
is clear that we are considering a vector bundle with the
bundle group 6 which is a subgroup of GL[( m + 1)M,C].

The curvature two-form R'b is defined then as usual by

For the special case of M =1, this reduces, of course, to
the standard Cartan one-form. ' ' If we wish, we may
define the (m + 1)M X(m +1)M matrix-valued one-form
cu by

(A a ~IB»=(A I~'b IB

r~~„(x) r ~~.(x)= U-'(x)r~„(x) U(x)

+ U-'(x)a, U(x)S„ (1.27)
R y =d co b +co & Aco g

which is rewritten as

(2.3)

in Eq. (1.15) with choice of a"„(x)=b"„(x)=P„'.Then, the
curvature tensor transforms covariantly,

R" ~p(x)~R "„~p(x)~R"„~p(x)= U '(x)R" ~tt(x)U(x) .

(1.28)

R'b ——,'R'b~—p(x)dx &dx

R',.~(x) = a.r~, (x)—at r'.,(x)+r'.,(x)r~, (x)

—I p, (x)r' (x) .

(2.4a)

(2.4b)

Also, setting

Bg(x)= —,
' I ~gq(x), (1.29)

R =dco+coAco (2.3')

In the matrix notation used in Eq. (2.2), we may also
rewrite Eq. (2.3) as

it behaves as the Yang-Mills gauge field with the same
transformation as Eq. (1.18a), even if we do not assume
the Einstein's Ansatz All .nondiagonal elements r~~ (x)
with p&v, as well as all differences of diagonal terms
such as I ~~(x)—I ~2(x), behave covariantly just like
Fz„(x). Nevertheless, for the pure coordinate transforma-
tion B~(x) transforms as

B~(x)~B~(x')=
& B,(x)+

&
E,BX 8 BX

BX BX BX
(1.30)

so that it does not represent a genuine vector field. How-
ever, its traceless part defined by

A~(x) =B~(x)——[TrB~(x)]E1 (1.31)

behaves as a genuine vector, so that Aq(x) rather than
B~(x) represents the real Yang-Mills gauge field.

cia b —I pb(x)dx~ . (2 1)

II. QUASIMETRIC THEORY

We now generalize the formalism of the previous sec-
tion for matrix geometry without assuming the Einstein's
Ansatz Eq. (1.1).

Hereafter, all lower case greek indices p,v, A, , . . . refer to
( n + 1)-dimensional space-time with ( n + 1) values
0, 1,2, ..., n. Similarly, we introduce an auxiliary ( m +.1)-
dimensional space, which is indexed by small latin indices
a, b, . . . , with ( m + 1) values 0, 1,2, . . . , m. Although
we will ultimately restrict ourselves to a special case of
n +1=m +1=4, we will maintain this generality till the
end.

Let I „'b(x) for each a, b =0, 1,2, . . . , m and

p =0, 1,2, . . . , n be an M &M matrix and define an
M &M matrix-valued one-form co'~ by

U', (x) W'b(x) = W', (x)U'b(x) =5bEbt . (2.6)

Here E~ is the M &M identity matrix. The correspond-
ing transformation property for I &b(x) is then given by

I &b(x)~I &b(x) = U', (x)I &d(x) W"b(x)

+ U', (x)dpW'b(x) . (2.7)

Under this transformation, R'~ transforms covariantly,
i.e.,

R'b~R 'b ——U', (x)R'd W'"b(x) . (2.8)

Next, we introduce a generalization of the vierbein
field. Let L„'(x) be the M XIV matrix for each
a =0, 1,2, . . . , m and p=0, 1,2, . . . , n, and define the
M )&N matrix-valued one-form cl by

co'=L„'(x)dx" . (2.9)

For the special case of %=M =1 and n =I =3, then it.
reduces to the standard canonical one-form. ' We define
the M)&S matrix-valued two-form T' by

by defining the ( m + 1)M X (m + 1)M matrix-valued
two-form R in the similar way. If we choose m =n =3
with identification a =p, and b =v corresponding to the
so-called coordinate basis, ' then Eq. (2.4b) reproduces of
course Eq. (1.6). However, for reasons which will be ap-
parent, we will not consider such a special identification
in this paper.

The local gauge transformation is defined by

'„——U', ( ) 'd W b( )+U', ( )agW'b( )d

(2.5)

where MXM matrices U'b(x) and W", (x) are assumed
to satisfy
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T'=du'+m' A~b (2.10)

co'~co'= U'
b( x)co" (2.11a)

which is clearly a generalization of the usual torsion two-
form. Assuming the transformation law

group with p+q=(m+1)M for some non-negative in-
tegers p and q. However, we will often refer the
GL[( m +1)M,C] group as the local gauge group for sim-
plicity instead of the correct U(p, q) group. From Eqs.
(2.6) and (2.19), we find

or W'b(x) =(I ')"[U",(x)]tIdb, (2.20)

L~(x)~L p(x) = U'b(x)L„"(x),

we easily see that T' behaves covariantly as

T' +T'=—U'b(x) T

In terms of the component, we have of course

(2.11b)

(2.12)
(I ') 'I,b Ib, (I—')"=5bE (2.21)

If we choose Eq. (2.17) for explicit form of I,b, then
(I ')'b is clearly given by

where we assumed the existence of the inverse constant
M &&M matrix (I ')' satisfying

(I,b) =Ib, . (2.14)

T'= , T& (x—)dx"Adx (2.13a)

T„'.(x)= a„L'„(x)—a,L„'(x)+r„',(x)L„'(x)

I '„b(x—)L„(x) . (2.13b)

Now, we will introduce a generalization of the metric
tensor g& (x). With this in mind, let the MXM matrix
I,b (a,b, =0, 1,2, . . . , m) be a coordinate-independent
Hermitian flat matrix, in a sense that it satisfies

(I ')"=-q"E (2.22)

G„(x)~G„„(x)=G„(x). (2.23)

It is often more convenient to regard indices a, b, . . . ,
etc. , also as ( m + 1)& (m + 1) matrix indices, and intro-
duce ( m + 1)M &((m + 1)M matrices U, U, I, and R just
like co of Eq. (2.2) by

Assuming the validity of Eq. (2.19), it is apparent that
G„(x) remains invariant under the local gauge transfor-
mation Eq. (2.11), i.e.,

We introduce a quasimetric tensor G&„(x) by

G„„(x)=[L„'(x)]tI,bL"„(x) (2.15)

&a ~
I

U
I

~ ~ & =&~
I
U'b(x)

&a,a
i
U'iS, a&=&&

[
[U'.(x)]'ia&,

(2.16)

which is clearly an X&N matrix satisfying

[G„„(x)]t=G„„(x).
If n + 1 =m + 1 =4, then the most natural choice for I,b
will be

&a,~ ir ~s,a&=&~ iI.b ia&,
&a ~ IR I

~ ~ &=&~
I
R b I&

(2.24)

for a, b =0, 1,2, . . . , m and A,B= 1,2, . . . , M. Then,
Eqs. (2.8), (2.14), and (2.19) may be rewritten as

I~b ='g~bEM

where g,b is the flat Minkowski metric. '

When we define g& (x) by

gp (x)=—TrGp„(x),
1

then Eq. (2.16) gives

g„' (x)=g,„(x) .

(2.17)

(2.18a)

(2.18b)

R —+R = UR W = UR (I ' UtI ),
I =I,
U~IU=I,

in addition to the validity of Eq. (2.3').
Therefore, Q defined by

Q = I 'RtI—

(2.8')

(2.14')

(2.19')

(2.25)

We simply note that a theory satisfying the condition Eq.
(2.18b) for the special case of N =M =1 and n =m =3
has been previously considered by Kunstatter et al. ' and
its possible physical consequences on somewhat related
theory have been extensively studied by Moffat. ' If we
assume in addition the reality of Lz(x), then g&„(x) is
real and symmetric so that it may be identified with the
usual Riemannian metric. This is the reason why we call
G„(x) a quasimetric tensor here. We may call our space
also a quasi-Riemannian space.

Returning to the general case, it is necessary to impose
an extra condition

transforms also covariantly as

(2.26)

Ico+co I=0 (2.27a)

or equivalently

I„co'b+(co', ) I,b
——0, (2.27b)

or

For a reason which will be explained shortly, it is tempt-
ing to assume

[ U;(x)]'I., U'„(x)=I,„ (2.19)

in order to maintain a covariant transformation law for
G&„(x). Therefore, our local gauge group is a U(p, q)

I.,r„'„(x)+[I„'.(x)]'I,„=o .

Then, it is easy to see that we have

(2.27c)

(2.28a)
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M,"(x)L',(x)=o"E~, (2.38)
(Rb )t= I„—R' (I ')" (2.28b)

~ab lac~ b

Eq. (2.27b) gives

(2.29)

It is convenient to lower and raise the small latin indices
a, b, . . . by means of I,b and (I ')', respectively. Then,
setting

L~ (x)Mg(x) =5bE~,
unless we have a special condition

(n+l)X=(m+1)M .

(2.39)

(2.40a)

so that M,"(x) is the left inverse of L'„(x). We note that
we need not, in general, have the right inverse relation

co b+(cob ) —0 (2.30)
Note that the validity of Eq. (2.38) requires only a weaker
condition

Therefore, for the special case of N =M = 1 and
n =m =3 with real co,b, Eq. (2.30) is recognized as the
condition that the bundle under consideration is now the
orthonormal frame bundle, ' leading to existence of a
Riemannian geometry. Because of this, we call the condi-
tion Eq. (2.27) the quasimetric (or quasi-Riemannian) con-
dition. Similarly, we may define R and R,b by

(n+1)X((m+1)M . (2.40b)

To maintain a generality, we will not assume hereafter the
condition Eq. (2.39) unless it is stated otherwise. Note
that if Eq. (2.40a) is assumed, then Eq. (2.39) follows
from Eq. (2.38).

We may now define co" and R" by

Rab IacR b

Rah Ra (I—1)cb

(2.31a)

(2.3 lb)

co",=M",(x)co'I,L „(x)+M,"(x)dgL'„(x)dx

R& =M~ (x)R bL (x),
(2.41)

Then, Eq. (2.28b) gives

(R~b) = Rb, , —
(R') = —R'

(2.32a)

(2.32b) R" =d~" +co"gA~, . (2.42)

which are XgN matrix-valued differential forms. We
readily derive the familiar Cartan structure equation

which is clearly a generalization of the standard formula
for the special case of M =1 with real R,b. Also, the lo-
cal gauge transformation Eq. (2.5) leads to

Defining the KXK matrix I ~q,(x) by

co" =I ~g,(x)dx (2.43a)

R~b ~R~b = [W'~(x)] R,d W"p(x),

(x)R«[Ub (x)]t

(2.33a)

(2.33b)

cop„+(co p)t=d Gp, (x) (2.35)

which is recognized as a generalization of the Cartan
equation' ' for the Riemannian metric. In order to sim-
plify Eq. (2.34), we assume hereafter that the quasimetric
tensor G„„(x) has its inverse matrix H" (x) in a sense
that it satisfies

We are now in a position to derive a generalization of
the Cartan equation. Let us define an N&X matrix-
valued one-form co& by

co„„=[L„'(x)]I, [co,L'( )x+8 L,(x)dx ] . (2.34)

Then, it is straightforward to verify the identity

m»+ (m» ) [Lz {x )] [I«~——'b +(~', ) I,b ]L,(x )

+B~G»(x)dx

Therefore, if the quasimetric condition Eq. (2.27b) is
valid, then this gives

or

I ~„(x)=M,"(x)I ~& (x)L „(x)+M,"(x)B~L'(x),

Eq. (2.42) reproduces Eq. (1.6) when we set

R",= ,'R", ~(x)dx —Adx~.

(2.43b)

(2.44)

Now, the relation between co„ introduced by Eq. (2.34)
and co", is easily found to be

co„,=G„~(x)co,=G„g(x)r (x)dx (2.45)

as in the usual Riemannian space. The Cartan equation
Eq. (2.35) is rewritten as

a,G„.(x)=G„.(x)r,„(x)+[r,„(x)]'G.„(x) . (2.46)

The general solution of Eq. (2.46) for I ~~ (x) when G& (x)
is given is found to be

r„',(x)= —,
' H "(x)[ a„G..(x)+a„G.„(x)

—8 G„,(x)]+X„,(x) (2.47)

where Xz„(x) is an arbitrary %&&N matrix, subject to con-
straint

H" (x)Gq„(x)=G,q(x)H "(x)=5",E~, (2.36)

we see readily a relation

where E& is the NXX unit matrix. Then, defining an
N)&M matrix M,"(x) by

M"(x)=HI' (x)[L„(x)]tIb (2.37)

G„~(x)Xg (x)+ [Xgp(x)] G (x)=0 .

Similarly, when we define a two-form R& by

R»=G„g(x)R „,
then the condition Eq. (2.32a) leads to

Rp, +(R„„)=0

(2.48)

(2.49)

(2.50)
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which is again a generalization of the familiar antisym-
metric property of R„„for the exchange of p and v in the
standard theory. In passing, we note that Eq. (2.50) is the
Frobenius integrability condition for Eq. (2.35), i.e., the
relation dd =0 gives Eq. (2.50), when we operate d to Eq.
(2.35). Also, our Rz is a two-form and has nothing to do
with R p introduced in the previous section in spite of the
same notation. Similarly, we can define an N XN
matrix-valued torsion tensor T&„(x) by

T~„(x)=Mg (x)Tp„(x)

which is rewritten in the familiar form of

T„'.(x)= r„".(x)—r„',(x) .

(2.51)

(2.52)

L„'(x)~L„'(x)=Lg(x)S „(x),
a -a a

CO b~Q) b=CO b

(2.54a)

(2.54b)

where S"&(x) and its inverse [S '(x)] z are N XN matrix
functions satisfying

[S '(x)]"gS „(x)=S"g(x)[S '(x)]"„=5„'E~. (2.55)

Then, it is easy to see that co" and R" now transform as

M„~co&„=[S '(x)]"~co pS~ (x)+[S '(x)]l'~d S „(x),
(2.56a)

R"„~R"„=[S '(x)]"~R g~„(x) . (2.56b)

Note that Eq. (2.56a) is equivalent to Eq. (1.5) of the pre-
vious section with T" (x)=[S '(x)]l'„, while Eq. (2.56b)
gives Eq. (1.7). Similarly, we find

Gp„(x)~Gp (x)=[S p(x)] G~p(x)S~„(x),

R»(x)~R»(x) =[S „(x)]tR pS~„(x),

(2.57a)

(2.57b)

which generalize Eqs. (1.23) and (1.28). Therefore, the
new local gauge transformation defined by Eqs. (2.54) and
(2.55) is a subgroup of GL[(n+1)N, C] while the old
transformation based upon Eq. (2.11) is a subgroup of
GL[( m + 1)M,C]. We call these two local gauge
transformations as external and internal ones, respective-
ly. We have seen that both R"„and G&„(x) transform co-
variantly under the new external gauge transformation.
However, the torsion tensor T&„(x) does not transform
covariantly under Eq. (2.54) even for a special restriction
of S"„(x)=P„'U(x) as in Eq. (1.27). This is due to the
fact that the canonical one-farm co' does not possess a
consistent transformation law into itself under the exter-
nal transformation. Therefore, we should not consider the

Under the local gauge transformation Eq. (2.5) with Eq.
(2.11), all R& and T&„(x) are invariant, i.e.,

Rpv~R pv =Rpv,
(2.53)

T„„(x)~T„„(x)=T„(x),
just as G& (x). These facts appear to be at variance with
the result of the previous section. However, this is not ac-
tually the case, since there exists another local gauge
transformation involving only greek indices. Consider the
transformation

torsion tensor T»(x), if we insist invariance of theory
under some form of the external local gauge symmetry.

We briefly mention that the Bianchi identities can be
readily derived as usual by operating the differential
operator d, for example, to Eqs. (2.42) and (2.10) to find

dRI' =R"gAco „—co"gAR

d Ta Ra g~b ~a ~Tb

(2.58a)

(2.58b)

etc., when we note dd =0.
So far, we did not discuss the notion of the covariant

derivatives. It is well known ' that the differential
geometry can be equally well discussed in terms of covari-
ant derivatives. To this end, we note that internal indices
a,b, . . . are related to the internal group
GL[(m + 1)M,C] while the external greek indices p, v, . . .
are concerned with the external gauge group
GL[(n+1)N, C] First. , let g&(x) be either an NXN ma-
trix or an ¹ ow vector, or more generally, any X'&X
matrix for some positive integer X'. Then, under the lo-
cal external group GL[(n + 1 )N, C], it may be assumed to
transform as

gp(x)~g~(x) =g,(x)S"p(x) .

We may define a external covariant derivative V'& by

V„g„(x)=a„g (x)—gg(x)l „(x) .

(2.59)

(2.60)

g"(x)~g I"(x)= [S '(x)]"gq (x) .

Then, defining its covariant derivative by

V„~~(x)=a,q~(x)+ r~, (x)~'(x),

it transforms covariantly as

V„rt"(x)~[S '(x)]1'qV ri (x) .

(2.62)

(2.63)

(2.64)

We can define the covariant derivative of Gz (x) by

V,G„„(x)= a,G„.(x)—[r,„(x)]'G..(x)—G„.(x)r,.(x)

(2.65)

which transforms covariantly as G& (x) as in Eq. (2.57a).
Then, the metric condition Eq. (2.46) can be reinterpreted
in the familiar form of

VgG»(x) =0 . (2.66)

We may define the covariant derivatives for quantities
involving internal space indices a, b, . . . . Let g, (x) and
rt'(x) be any M'XM and M XM' matrices, respectively,
which transform as

g, (x)~g, (x) =gb(x) W, (x),
g'(x)~g'(x)= U's(x)rl (x),

t. en their covariant derivatives defined by

(2.67a)

(2.67b)

Then, it is readily computed to behave covariantly as

Vqg (x)~V~/„( )x= [Vpgg(x) ]S„(x), (2.61)

under Eqs. (2.56a) and (2.59).
Similarly, let g"(x ) be an N XN' matrix, which

transforms as
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V„g', (x) =B„g,(x) —gb(x)I „,(x),
V„q'(x) =a„q'(x)+ r„',(x)qb(x),

(2.68a)

(2.68b)

We can verify easily that it transforms covariantly exactly
the same as L„'(x). Moreover, we calculate

VqL„'(x) = [5bEM —L q(x)Mb (x)]

)& [B„L,(x)+I „,(x)L'(x)] (2.71)

so that we find

VgL„'(x) =0 (2.72)

if we have the validity of the extra condition Eq. (2.39).
So far, everything goes smoothly in our theory. How-

ever, we encounter the following complicatio~ in contrast
to the usual theory. Consider the covariant derivative Eq.
(2.60). It will be tempting to define the higher-order co-
variant derivative V„VQ~(x) as usual by

V„V+g(x)= B„[V+g(x)]—[V gg(x)]l „(x)
—[Vg.(x)]r„,(x) (2.73)

which transforms as a third-rank tensor under the pure
coordinate transformation. However, it can be readily
shown that V&V+g(x) does not transform covariantly
under the external local gauge group. Nevertheless, we
find the familiar identity

[V~, V ]g'g(x) = g~(x)R gp (x—) [V~gg(x)]Tp —(x) .

(2.74)

The reason why V&VQ&(x) is no longer covariant is due to
noncommutativity of matrices, I ~„(x), S"(x), and Sp(x).
This fact is also connected with the noncovariance of the
torsion tensor T„„(x)as we may see from Eq. (2.74). If
we redefine V&VQ~(x) by Eq. (2.73) but without the
second term on its right-hand side, it transforms covari-
antly under Eqs. (2.56a) and (2.59), but not then under the
pure coordinate transformation.

Our covariant derivative is related to the algebra-valued
tangent-space formulation of Mann. ' He introduces a
notion of quaternion-valued or more generally any
algebra-valued tangent space, and of the related covariant
derivative of the tangent vectors. However, if we note the
well-known isomorphism of any associative algebra with
the unit element to a subalgebra of a (square) matrix alge-
bra, then the relation between the present theory and the
one given in Ref. 19 will become clear. In particular, the
quaternion case corresponds to X =2. Let V be a vector
space over a noncommutative skew field E such as quater-

transform exactly in the same way as g, (x) and 7) (x),
respectively, under the internal local gauge transformation
Eqs. (2.67). Since Lz(x) transforms as

Lp(x)~L „'(x)= U'b(x)L (x)S"„(x) (2.69)

under the combined external and internal local gauge
symmetries, its covariant derivative should be defined by

V~L~(x) =d~L~(x)+I ~b(x)L~(x) —I, '„(x)I ~~(

(2.70)

nion division algebra. We may define the covariant
derivative V&X for any F-valued tangent vectors X and Y
as usual. ' However, since a construction of the tensor
product V(3 V is no longer straightforward for any non-
commutative skew field F, we will have in general a diffi-
culty of extending' the definition of the covariant deriva-
tives for higher-order tensors. Note that we have in gen-
eral

(~)g Y~Xe(A, Y)

for A, &F because of the noncommutativity of the field F.
This is another reason why we have a problem of con-
sistently defining covariant derivatives for higher-order
tensors such as V&VQ~(x).

Up to now, we did not explicitly discuss the pure coor-
dinate transformation. Both one-forms cu, and co'b must
be invariant under it, so that both L„'(x) and I &b(x)
behave as vectors with respect to the greek index p. Then,
G„(x) and Vg„(x) are clearly second-order tensors. It is
not difficult to see that I ~q (x) defined by Eq. (2.43b)
transforms as in Eq. (1.3) under the coordinate transfor-
mation. In this paper, we have made an implicit distinc-
tion between the coordinate transformation and local
gauge transformation. This distinction is logical, if the
local gauge group has nothing to do with the underlying
space-time just as the usual Yang-Mills case. However,
for discussions of general relativity, we have to consider
either the Lorentz or Poincare group as a part of the local
gauge symmetry. For such a case, we have to make a dis-
tinction of two types of coordinate transformations which
we may call passive and active. In the differential
geometry, we make a coordinate transformation between
two coordinate patches' covering a given open domain of
the space-time. However by this transformation, the real
physical points remain unmoved, but only their coordi-
nates are differently labeled in each coordinate patch. We
call this kind of transformation as the passive one. On
the other hand, either local Lorentz or Poincare group
will map the physical space-time point into another point.
We may call this as the active transformation. Therefore
for gauge theories involving Lorentz or Poincare group,
we have to consider two types of co-ordinate transforma-
tions, strictly speaking. It so turns out that both active
and passive transformations are not necessarily indepen-
dent of each other, although the former must be con-
sidered in association with the local Lorentz or Poincare
transformation. However, such a complication will be
discussed elsewhere, since the present formalism in this
paper is essentially unaffected by this subtlety of the inter-
pretation on the two kinds of coordinate transformations,
if proper care is taken.

III. DISCUSSION

In the previous section, we succeeded in constructing a
matrix geometry having a quasimetric tensor G„,(x). As
we have emphasized in Sec. I, the spin-3 component of
I „„(x)must be eliminated in order to make a consistent
theory. We could do this by assuming either the Einstein
Ansatz Eq. (1.1) or the quasimetric condition Eq. (2.46).
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~ —~abed Tr co AR Ado (3.2)

which is real in view of Eq. (2.32b). However, this is not
invariant under the general internal GL(4M, C) local

gauge transformation. For this reason, we may consider
the following modified Trautman action:

—g Tr c/ A RabAw (3.3)

where 'R,b is the dual of R,b defined by

'R, t, ,' *R, t( )dx———xAdx',
*Rggp„(x) = ,

'
e„„g,g" (x)g~'(x)—R,g~p(x) .

(3.4a)

(3.4b)

Note that we need not assume m =3 and that 2 given by
Eq. (3.3) is real in view of Eq. (2.32a). Moreover, it is
clearly invariant under the full internal local gauge
transformation GL[(m+ 1)M,C]. We can rewrite Eq.
(3.3) as

A= fd x[ g( )]'x~ Tr[R t3
~(x—)],

R & &(x)=g" (x)g&"(x)R &„„(x).

(3.5a)

(3.5b)

Moreover, the identification of the Yang-Mills gauge field
through Eq. (1.24) is quite tempting. Unfortunately, how-
ever, the validity of all these Ansatze Eqs. (1.1), (1.24),
and (2.46) leads to unacceptable identity V~F„„(x)=0.
Hence, we must abandon or modify at least one of these
conditions. In this section, we will consider the possibility
that the quasimetric condition Eq. (2.46) as well as possi-
bly Eq. (1.24) is valid but not Eq. (1.1).

To be definite, we assume hereafter n =3 so that we
have the usual four-dimensional space-time. Also, the
reality condition Eq. (2.16) requires A&(x) to be purely
anti-Hermitian with c~ being real in Eq. (1.24). First con-
sider the action given by Eq. ('1.22), but not Eq. (1.1). It is
invariant under the full internal local gauge group
GL[(m +1)M,C] as well as a suitable physical subgroup
of the external symmetry GL(4N, C). Assuming Eq.
(1.24) for G„„(x)and Eq. (2.47) for I'~ (x), the action Eq.
(1.22) may be regarded now as a quadratic function of
BqG&„(x). Choosing G„„(x) and possibly X~z (x) in Eq.
(2.47) as independent variational variables, we can. find
again a generalization of the Einstein-Yang-Mills equa-
tion. In this formalism, the quasimetric condition Eq.
(2.46) is automatically satisfied but not the Einstein An
satz Eq. (1.1). However, the resulting Lagrangian is a
very complicated nonpolynomial function of F&„(x),
which will be perhaps not of any great physical interest.
A better method is either the Palatine formulation in
which both G&„(x) and I ~~,(x) are independent variational
variables or to introduce a Lagrangian-multiplier field
H ""(x)and add an additional Lagrangian of form

L'=H "'(x) [ BgG„(x)—G„~(x)I g„(x)

—[I ~&(x)]tG~ (x) j+H.c. (3.1)

Then, regarding all G~„(x), I ~~,(x), and H ~'(x) to be
now independent variational variables, the quasimetric
condition Eq. (2.46) will. result automatically from the
variation of H "'(x).

Next, let us consider a generalization of Trautman's ac-
tion with m =3 of form g( x)~g(x) =S(x)P(x),

V„g(x)~V„P(x)=S(x)V„P(x),
(3.7)

for some matrix S(x) belonging to a suitable but yet un-
specified class. This requires the validity of

I „(x)~I„(x)=S '(x)I „(x)S(x)+S '(x)g„S(x) .

(3.8)

However, the problem is that a group generated by all
S(x) will not in general coincide with the internal local
gauge group discussed in the previous section. Moreover,
the existence of I &(x) compatible with the SO(m, 1) spi-
nor character of g(x) is by no means self-evident except
for the usual case of N =M =1 and M'=M"=1. One
way of circumventing these problems is to assume that
g(x) is a spinor of a noncompact form of the larger
SO[( m +. 1)M] group, since then the construction of
I „(x) is straightforward. '

Concluding this paper, we may generalize the choice of
the internal indices a, b, . . . , etc., to include the
Grassmann degree of freedom. Then, we may be able to
construct a generalization of supergravity theory. Howev-

For N =1, this reduces of course to the standard Hilbert-
Palatine action. We can express I „,(x) in terms of
G„„(x)as in Eq. (2.47), and choose G„„(x)to be indepen-
dent variational variable. Or we may add the Lagrange-
multiplier term Eq. (3.1). Another method is to regard
L„'(x) and I „'q(x) as variational variables with constraint
Eq. (2.27c). However, the details of calculations will be
given elsewhere.

%e would like to make the following speculation.
First, there appears to be no compelling necessity why we
must assume that L&(x) corresponds to a generalization
of the basis for the fiber of the orthonormal frame bun-
dle. ' Especially, the internal latin indices a, b, . . . , etc.,
may be chosen to represent Dirac spinor indices rather
than the Lorentz vector ones for the case of
n+1=m+1=4 even with iV =M = I. In that, case,
L„'(x) may be regarded as a spin- —', spinor of Rarita-
Schwinger type. Then, the gravity field g&,(x) as well as
possibly Yang-Mills field F& (x) associated with G„(x)
may be viewed, in a sense, to be bound-states of spin- —,

'
fermion pair. Note that we have to choose I,t, ——(yo),~E~
for this case in contrast to Eq. (2.17), where

yz (p=0, 1,2, 3) are usual 4&&4 Dirac matrices. Also,
g, (x) and g'(x) introduced in the previous sections are re-
garded as spinors, whose covariant derivatives are simply
defined by Eq. (2.67) with spin connection coefficient
I &, (x). In contrast, the covariant derivative of a spinor
field will be somewhat more involved, if the internal latin
indices a, b, . . . , etc., are now considered to be vector in-
dices of, say, the SO(m, l) group as in the orthonormal
frame. For such a case, let g(x) be an M'&&M" matrix-
valued spinor of the SO(m, 1) group. Then, the covariant
derivative Vzg(x) may be defined by

V„y(x)=~„q(x)—r„(x)y(x) (3.6)

for some matrix spin connection I &(x). The explicit form
of I „(x) must be determined by requiring the covariant
transformation law
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er, these possibilities and speculations will be left for fu-
ture investigations. Also, we noted that in our theory the
torsion tensor T&„(x) as well as higher-order covariant
derivatives such as V'&V+~(x) do not behave covariantly
even under the restricted transformation Eq. (1.27). This
may imply that these quantities should not enter in
theory, especially in construction of the Lagrangian. This
will impose some restrictions in contrast to those con-
sidered in Refs. 13 and 14. Hence, the noncovariance may
be viewed as a welcome addition to the theory rather than
a defect.

Rote added. After this paper was written, it came to our
attention that the subject matter of Ref. 19 has also been
discussed by J. W. Moffat, J. Math. Phys. 2S, 347 (1984)
and lectures given at the Sir Arthur Eddington Centenary

Symposium, Nagpur, India (to be published by World
Scientific, Singapore). Also, gravity as a gauge theory is
discussed in a paper by S. J. Gates and J. A. Shapiro,
Phys. Rev. D 18, 2768 (1978). The authors would like to
express their gratitude to Professor Moffat and Professor
Shapiro for calling our attention to these references.
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