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The influence of classical gravitation in the symmetry breaking of the SU(5) model at early stages
of the universe is considered. This is achieved by treating the gravitational field as a c-number
external field in the path integral while the remaining particle fields are considered as quantum
fields of the unified model. The symmetry breaking of the SU(5) model locally coupled to gravity is
described through the effective potential of the quantum field theory, which is renormalized by
making use of a zeta-function regularization, and its evolution in the course of the universal time of
the treated standard cosmological model is presented. It is shown that the background gravitational
field has the tendency to enhance the symmetry breaking that is postulated in the zero-temperature,
flat —space-time quantum theory. Although this influence is overcome by the restoration due to the
finite-temperature effects through two orders of magnitude in temperature above the mass scale of
the SU{5) model, there exists a temperature for which the effective potential develops a strong sym-
metry breakdown due to the classical gravitational effects. This temperature is between one and two
orders of magnitude below the Planck mass scale.

I. INTRODUCTION

In recent years great effort has been made in under-
stariding the way in which symmetry breaking occurs in
grand unified theories. ' This effort has been mainly
centered in the minimal SU(5) model while the standard
cosmological vision has been adopted. The existence of a
hot phase after the big bang allows for the possibility that,
at an early stage in the evolution of the universe after the
Planck time —10 sec, the temperature at which in-
teractions are in equilibrium reaches the larger mass scale
of the model —10' GeV. Above this temperature all the
analyses done show that the gauge symmetry remains in-
tact, but at a later moment during the cooling of the
universe symmetry breaking proceeds by SU(5) —+SU(3)
X SU(2) )& U(1) as an intermediate stage to the present-day
observed symmetry SU(3)„~„)&U(1), .

At this point, it must be remarked that the notion of
thermodynamic equilibrium and the assumption that this
equilibrium has been reached are essential. Although we
are not dealing with this problem, we will suppose that
equilibrium is reached at some time after the Planck time
and that processes taking place in a nonstatic space-time
can be considered as statistical processes and studied by
making use of a quantum statistical theory of fields. In
this framework, the two symmetry breakings SU(5)
~SU(3) X SU(2) && U(l) ~SU(3) X U(1) are observed as
phase transitions in which the statistical mean value of
the Higgs field plays the role of order parameter of the
transition. As is well known, the central point of the dis-
cussion lies in the nature of this transition and, conse-
quently, the validity of the perturbative methods em-
ployed in its study. ' It has been shown that the phase
transition may be first or second order depending on the
choice of the parameters of the model, i.e., bare mass of
the Higgs field, scalar, and gauge coupling constants. In
the more attractive case of symmetry breaking due to ra-

diative corrections, i.e., the Coleman-steinberg mode, one
has to face the consequences of a large supercooling. '

This is, perhaps, one of the most important recent prob-
lems in the study of cosmological phase transitions, in re-
lation to the monopole problem' and the baryon-number
generation. "

Although the statistical formulation of the problem is
correct, the influence of gravity considered as a local in-
teraction has been forgotten, at a stage in which classical
gravitation can play a significant role. (There have been,
however, some attempts to deal with the influence that
the curvature may have in the symmetry breaking of
naive scalar models placed in an expanding universe. See
Refs. 14 and 23, in which symmetry breaking is studied
within the framework of Robertson-Walker universes. ) In
fact, after the Planck time gravity decouples as a quantum
interaction from the remaining fundamental forces, and it
is not necessary to include quantum fluctuations in the
study of the symmetry breaking of the SU(5) grand uni-
fied theory as far as the ratio between the mass scale o.
and the Planck mass G '~, 0./G '~ —10,makes their
influence negligible. But after the Planck time we still
need to preserve the general covariance of our theory as
long as we are dealing with a quantum field theory in a
curved space-time. ' First, this implies that the gravita-
tional field acts as a c-number external source in the equa-
tions of motion (or in the path integral) for particle quan-
tum fields and, on the other hand, that this gravitational
field must be solved from the Einstein equations when the
source of these equations is the vacuum expectation value
of the energy-momentum tensor of the quantum field
theory under study. ' In this paper we do not attempt to
solve this problem (the back-reaction problem) and simply
suppose that the cosmological solution of the Einstein
equations takes the form of a cosmological standard
metric. '

We are going to consider the simplest case, the k =0
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Robertson-Walker model with flat three-spatial sections,
and to concentrate on the influence that this classical
gravitational field may have in the symmetry breaking of
the grand unified theory. The influence of this e-number
field may not be negligible as can be shown with the fol-
lowing reasoning. The formulation of the quantum field
theory in curved space-time introduces geometrical objects
in the equations of motion (or in the path integral) which
are related to the curvature of the space-time (Christoffel
symbols, the Ricci tensor). The mass scale which is relat-
ed to these geometrical objects may be seen from those
which have the dimension of inverse length (or squared
inverse length) and that, placed in the quantum Lagrang-
ian, are effective mass couplings. From inspection of
I "„,8&, this mass scale turns out to be g/X, i.e., the in-
verse of the universal time of the model, a scale which
runs from 10' GeV at the Planck time to 10' GeV at the
scale of the transition temperature T, —10' GeV. This
shows that during that interval of time the mass scale in-
troduced by the classical gravitational field may be equal
to or greater than the mass scale of the SU(5) grand uni-
fied theory, which makes us expect a significant inAuence
of classical gravitation during this period of time. This
applies to the k =0 Robertson-Walker metric as weI1 as to
the other two standard cosmological models, because the
order of magnitude of the objects I "„R&„is the same for
the three models, so that we can hope that the conclusions
reached in this paper are not influenced by the choice of a
specific model.

To summarize, we deal with symmetry breaking in the
SU(5) model under the following assumptions: (1) ther-
modynamic equilibrium is reached at some time after the
Planck time and a quantum statistical formulation of the
theory is possible; (2) a complete description of the prob-
lem requires the general covariance of the quantum field
theory, which makes the gravitational field appear in the
path integral as a c-number field coupled to the different
fields in the SU(5) model. The paper is distributed in sec-
tions in the following way. Section II is devoted to com-
pute the one-loop-order contribution to the effective po-
tential of the SU(S) model including the gravitational field
in the above-mentioned form. We only take into account
the scalar and vectorial sectors of the model and disregard
the contribution of the spinors, which is greatly
suppressed because of the weakness of the Yukawa cou-
plings. In See. III the generating functional is redefined
by means of a generalized zeta function and a zeta-
function regularization is made in the usual form. Then,
the effective potential is defined in terms of finite quanti-
ties and explicit results concerning the way in which clas-
sical gravitation modifies the shape of the effective poten-
tial are shown. Finally, in Sec. IV the finite-temperature
contributions to the effective potential are computed with
the same method of regularization. The presented results
support the evidence that classical gravitation tends to
favor the symmetry breaking of the model in the range of
time in which the gravitational mass scale X/X is equal to
or greater than the mass scale cr of the SU(5) model. In
the framework of the given cosmological model, this kind
of effect seems to be negligible when the temperature
reaches the o. mass scale. There exists, however, a period

of time, for temperatures still below the Planck mass, in
which the finite-temperature restoration is overcome by a
stronger symmetry-breaking effect and the symmetry
seems to be broken because of the presence of the classical
gravitational field.

The approach adopted throughout this article is that of
the path-integral formulation of quantum field theory,
and functional methods are used in the study of the sym-
metry breaking. Henceforth we will suppose that the
quantum theory is defined through a functional generator
Z(J) whose successive derivatives

1 1 5"Z(J)
j" Z(J) 5J(x)) . M(x„)

= (Tg(x) ) . g(x„))p (1)

have the meaning of statistical mean values of time-
ordered products of operators

Tre ~ T[P(x~) P(x„)]
( Ty(x, ) ~ . ~ q(x„)),= Tre-~H

This essentially static approach will allow us to study the
symmetry breaking through the effective potential of
Higgs fields of the theory. For an extensive discussion on
the feasibility of this procedure in a nonstatic space-time
one is led to Refs. 13 and 14, in the latter of which the ef-
fective potential for an interacting A,P theory is computed
within the framework of a Robertson-Walker universe.
Throughout this paper we suppose that the equilibrium
conditions mentioned there are fulfilled in the framework
of our cosmological standard scenario and that the study
of the symmetry breaking may be accomplished through
the computation of the effective potential of the theory,
which is the major result of the next section.

II. THE EFFECTIVE POTENTIAL

The starting point is the assumption that the generating
functional can be expressed in terms of a functional in-
tegral

Z(J) = I &gWg exp i I d x+—g [Wo(g, g)

+~G(g)]

of the matter fields f and the gravitational field g. We
suppose, as 'usual, that after the Planck time quantum
gravitational effects become negligible, as far as the
presumable rate of the quantum gravitational interactions
z~„'„(GT is much lower than the rate of expansion of
the universe ~ ' ~ O' T and quantum gravity decouples
from the remaining interactions. Then, in order to
preserve the general covariance of the functional integral
we have to consider the g~„ field as a classical field satis-
fying the Einstein field equations [equivalently, this can
be seen as if we were taking the zeroth order in an expan-
sion in the functional integral around a background field
g =go (Ref. 15). For the sake of convenience, we are go-
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0 i + i iI
gq

XX——5,J, I oj —— 51—, I JI, ——0,x
and the components of the Ricci tensor are

~ ~

Rpp —3———, R,J. (2X +——XX)5,J .x'

(5)

In the case k =0, the equation governing X(t) reduces to

8mG

3

In the range of time under consideration the universe is
dominated by radiation, pong, which in turn implies
that X(t) has a solution of the form X&xt'~ . Thus, one
obtains the known relation between time and temperature
in the early universe, '

' 1/2 ' 1/2 3
' I/2

A'c'

gg G
45

16m

2.42&10 6 1

g ~~ T(oey)
Afterward this expression will be of major interest to ob-
tain the length scale of the classical gravitational cou-

I

ing to take the simplest cosmological solution for gz, i.e.,
the k =0 Robertson-Walker metric, but, as it has been
said in the Introduction, we hope the final conclusions to
be independent of the choice of a specific standard cosmo-
logical model.

In the coordinate system in which —oo &x' & + oo the
. k =0 Robertson-Walker metric may be put in the form

(go)„„=diag(1,—X'(t), —X'(t), —X'(t)) .

The corresponding Christoffel symbols are

plings.
In a formal sense, the k =0 Robertson-Walker metric

presents two types of advantages. The first lies in the fact
that, since the chosen metric is conformally flat, we do
not need to remark further on the quantization of the
theory, assuming that this can be accomplished defining a
functional integral Zp(J). It is worthwhile commenting,
though, that all quantities with vectorial character will
have to be conveniently rescaled with X(t), in order for
said quantities to acquire physical dimensions. Keeping
this in mind, all the standard techniques can be employed,
in particular the functional representation of the effective
potential. ' The second advantage is concerned with the
fact that for the k =0 Robertson-Walker metric the cur-
vature scalar R =—R& g" vanishes, which makes no dis-
tinction between conformal and minimal scalar fields in
the formulation of our model. Actually, this is strictly
true when the vacuum energy of the quantum theory is
identically zero, i.e., when one is away from any period of
inflationary expansion. ' The study of the influence that
an RP term may have in the symmetry breaking of the
SU(5) model during a period of supercooling after the
transition temperature T, —10' GeV has been carried out
by Abbott. In the present paper and as a first approach
to the problem, we suppose that the range of time in
which the influence of gravitation is considered lies away
from any period of metastability of the universe, which
makes our approach complementary to that adopted by
Abbott in his paper.

As it has been said in the Introduction, we will suppose
the remaining (quantum) interactions to be unified in the
SU(5) model. We will assume that symmetry breaking
takes place by mediation of a 24 representation of Higgs
fields P' ignoring effects due to the existence of lower-
dimensional representations. In this way we take

Zo(J)= f &/exp i f d xV —go nzo(g go)
L

Wo ————,
'

V&„V," +Tr(D&C&D"4) —m Tr@ —V(@)+fermion terms+gauge-fixing terms+ghost terms,

Vz„=V&V'„V„V& gf' V—„bV„, ,—D&@:V&@ ig [T'—V„',@]—, N—:
2
T'p', a =1, . . . , 24 .

The inclusion of gravitation as an external source takes place through covariant derivatives V&V„=B&V,—I z V„which
are needed to make our Lagrangian invariant under general coordinate transformations. As it has been pointed out
above, the appearance of a term R Tr@ is prevented by the vanishing of the curvature scalar in the k =0 cosmological
standard model.

As it follows we will face the case in which the squared gauge coupling constant g is bigger than any other coupling
constant in the scalar or spinorial sectors, whereby we only need to compute the gauge corrections to the one-loop order
to get a reasonable description of the problem. On the other hand, a squared bare mass m &0 is maintained in the La-
grangian in order to avoid infrared instabilities which may appear in the computation of the effective potential, though
at the end we will be interested in the Colema, n-Weinberg mode m =0. The effective potential to the one-loop order can
be represented by'

r

V(g)=Vp(g)+i ln f &/exp i f d x+

gonzo(f,

P)—
where Vo(g) is the "tree" approximation and Wp is the Lagrangian quadratic in the fields after the shift P~P+g.
Since we are only interested in the gauge contributions to the effective potential we take

Wp Tr(V~@ ig [T'V~, 4])——(V"4 ig [—T'V„',@])——m Tr@ ——,
'

V„' V,""— (V„V,") (12)

and make the shift @~@+(N) in order to break the symmetry to SU(3) )& SU(2) &(U(l),
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( @):—8 diag( 1, 1, 1, ——,', ——, ) .

Then
2

Wo —,
' g„—V'"P'VP' —P'P'+5g8

2 a =9, . . . , 14
16, . . . , 21

g„„v~y'*'v- ——,
' (v v' —v.v„')(v~ v."—v"v~)

(V„Vg)'+ —", g'8'
a=9, . . . , 14

16, . . . , 21

gq V,"V, , (13)

where ( a, ):—conjugate particle of a.
Disregarding a four-divergence and making use of Vs%'pv =VpV'sv —V'R,ps, this Lagrangian can be transformed

into

2

Wo ———, g„„(b—'V"V"p' —p'p'+ 5g 8
2

gq„v"'V P"+ 2 g~pVggq„V"V"V~ —, 1 ———V,"VqV V,
a=9, . . . , 14 CX

16, . . . , 21

a=9, . . . , 14

Vga Vva (14)

16, . . . , 21

Making explicit use of the Christoffel symbols and rescaling to quantities with dimensions Xx'~x', XV'~ V', we get
I

~,= ——,'y' a„a&+ X a,+m' y'+5g8
a=9, . . . , 14

16, . . . , 21

V"'M' d P + —'V'8 8"V"'——,
'

1 ——V,"B„BV,"
CX

—V.'a, v. ———V.a, v.'+ —4 ———3 X p 1X p; 1 3 X
2(x g 2 g 2 o!

'2 2

&& g2g2
a=9, . . . , 14

16, . . . , 21

V Vga (15)

where M' =0, a, b = 1, . . . , 8, 15,22, . . . , 24,

OI, O 0

0
M = 0 0

0 0
a, b =9, . . . , 14, 16, . . . , 21 .

33

0 0 I3 0

From the way in which the classical field 0 is coupled
to the gauge boson field V' we conclude that the SU(5)
symmetry is actually broken to an SU(3)XSU(2) XU(1)
gauge symmetry, and the only particle fields which get
masses from a vacuum expectation value of the Higgs
field are the X+— ', I'+—'~ ' (corresponding to
V', a =9, . . . , 14, 16, . . . , 21). If we have a look at the
inverse-length-dimensional couplings generated by classi-
cal gravitation we observe that the relevant scale is X/X,
as it was advanced in the Introduction. In fact, this is the
natural scale which is introduced by I "„,and Rz after the
rescaling gV'~V', gx' —+x', and has the character of a
geometrical scale related to the curvature of the space-
time under consideration. In this sense and as a conse-
quence of treating the gravitational field as an unper-
turbed background field, the dynamics of the gravitational
interaction shows up only in an indirect way in the equa-
tions of motion for the quantum fields, as it may be seen

from the fact that, although being responsible for the ex-
pansion of the space-time, the gravitational constant G
does not enter in the geometrical scale X/X. One must
have in mind that this is true to the order of approxima-
tion at which we work but not necessarily in a self-
consistent formulation of the problem, which would in-
clude the semiclassical version of the Einstein equations
and could make corrections arise to the X(t) oc t '~ law.

For the k =0 Robertson-Walker model, X/X is the in-
verse of the universal time. As the only natural mass
scale which appears in the vacuum effective potential for
the SU(5) model is the vacuum expectation value of the
Higgs field o., this is the scale with which X/X must be
compared in order to find out the period of time in which
the effective potential may be different from its
flat —space-time form. We are not going to allow, any-
way, the X/X mass scale to reach the Planck mass, G
as this is the threshold above which quantum gravitation-
al effects can become important. But, as far as we take as
a basic assumption the existence of a grand-unification
mass scale different from the Planck mass, there still
remains a range, o. &g/g&G ', in which relevant ef-
fects due to the presence of the classical gravitational field
may appear.

Now we return to a few technical details of the calcula-
tion. To get a well-defined functional integral analytical
continuation to Euclidean space-time is done in the form
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X4 ——ixp, V4 ——i Vp,

lnX =i ln( i—x4)
X d . d . )g2 l l

dxp dx4 2x4 2'7

The Lagrangian is quadratic in the fields,

~0———,
' P'(x)i (N ')' (x —y)P'(y)+P'(x)P" (x —y) V"'(y)+ —,

' V"'(x)(i&„„')"(x—y) V" (y),

(16)

i (& ')'~(x —y) = CI+ Bg—m 5' 5lx —y),2s

P„' (x —y) =Sg8 —M' 54„+M' 8„5(x—y),

(i~„„)'(x —y) = Z5„.— 1 ——a„a„+— 5„,a 5 „— 5„,a;5;„+ 4—— 5„;a;5 „

+—5„;a 5;„—— 5„5„+ 5„;5;„25g—2825„„5'b5(x —y),

and the functional integral in

Vi(8)=i ln f &/exp i f d"xQ —goWO(8, $)
r

=i ln f WP&Vexp i f d x( 2/i& —'P+VPP+ —,
'

Vib, 'V)

a, b =9, . . . , 14, 16, . . . , 21 (17)

is trivial to compute. If we make the integration in the order

f &/exp i f d x( 2/i& 'P—+ ,'/Pi bPQ)—
det(ib, ')'~

1 1=i ln
det(ib, ')' det(i& '+Pi AP)'

Vi(8)=i ln

we get an effective potential to the one-loop order of the form (Appendix A)

(19)

V(8)= —,m 8 +12Trln k2+25g 8—
2

+6Trln(k +a'k +b'k +c'), (20)

where

a'=25g 0 +m + 3
4

b'=m 50g 8 — 25g 8 + m —
~ + k4

4 4 4r' 4
(21)

c'=625g~8~ m2 — +m 25g 8 + 425g 8 + k~ 25g 8 —m
~ +m k4

4 8v 2 4~ 4

the traces and logarithms being defined in the functional
sense.

This is the formal expression for the effective potential
that we will use henceforth to study the symmetry break-
ing of the SU(5) model during the evolution of the treated
cosmological model. The trace for each one of the opera-
tors has to be defined in accordance with the boundary
conditions imposed by the choice of the vacuum state of
the theory. In our case we are going to suppose, as an a
priori simplification, that the thermodynamic equilibrium
is maintained during the cosmological expansion for tem-

/

peratures under the Planck mass, whereby we are going to
take the statistical mixture of the states of a canonical en-
semble at temperature T as a natural choice for the vacu-
um state of the quantum model. This implies, in turn,
that the trace has to be defined over an ensemble of
discrete frequencies co„=2nnT, that is the stan. dard way
by which finite-temperature effects are introduced. The
outstanding feature of this effective potential is the pres-
ence of the parameter r related to the background gravita-
tional field. This mass scale r is connected with the tem-
perature within the framework of the standard model by
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III. RENORMALIZATION

As a method of renormalization we will choose zeta-
function regularization, "' following the approach adopt-
ed by Hawking to renormalize path integrals of Gaussian
integrand. ' As will be seen, this method demands a rath-
er more tedious calculation than dimensional regulariza-
tion but is deprived of such ambiguities as counterterms
depending on the physical parameter 7

Our purpose is to give a finite expression for a func-
tional integral of the form

Z= f &/exp ——,
' f d xQ —gpPAP (22)

A being a real, positive-definite operator. If we call A,„
the eigenvalues of A and P„ their respective eigenfunc-
tions, then

the relation between universal time and temperature in
early universe (8), and this fact forces us to study the evo-
lution of the effective potential as a function of only a
free mass parameter, that we will choose as the tempera-
ture. %'e will keep in mind, however, that this is an evo-
lution in the course of the cosmological expansion of the
universe, in which the background gravitational field may
play a significant role.

The next section deals with the regularization of the
formal expression (20) at zero temperature, in order to
control its ultraviolet behavior. As is well known, the
finite-temperature contributions do not spoil the pro-
cedure of renormalization at zero temperature, and this
fact allows us to postpone the inclusion of the finite-
teinperature effects until the final discussion of the re-
suits.

By defining the functional measure in the form
P= +„pda„, we get an expression for the functional in-
tegral,

Z= f &/exp ——,
' f d xQ gpss—Ay

(23)

In our case, this expression has a purely formal sense as
far as the determinant +„A,„of the operators. which
enter in our functional integral diverges, and some kind of
regularization procedure has to be devised to give a finite
expression to Z. The zeta-function regularization method
consists in defining a generalized zeta function of the
form

g(s) = g
n ~n

and through this g(s),
—1 /2

lnZ =in det
A

p
= —,

' g'(0)+ —,
'

inP g(0)

(24)

(25)

which is now a finite expression since the zeta function
g(s) and its derivative g (s) have a regular limit s ~0.

Let us now show that for the particular form of our
operators, defined through their representations in.
momentum space as

IP„J being an orthonormal complete set in the space of P
fields

f d'x& gp—4.4

1DI—='k +25g 0—
2

(26)

k 6+ 25g2g2+ +~ 2 k + k 2k 2+ ~ +5Pg2g2~ 2 25g2g2 k 2+ 2k 2

+25g 8 k +625g"8 m — +25g t9 — m —m +25g 6
2H 4r r 4~ 8~

(27)

a zeta-function regularization may be accomplished to give a finite expression to the formal one:

Di D2
V& ( 8)= 12 ln det 2 +6 ln det

p p
(28)

Using zeta-function regularization we define

+ d4k 1
ln det:——g'& (0)—lnp gi(0), gi(s) =

p —"(2n. ) (k2+25g 8 —1/2 )' (29)

D2, , + d4k 1
ln det 6

= —gq(0) —in' $2(0), gq(s) =
p —~ (2n. ) (k +a'k +b'k +c')'

where

(30)
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a'—:25g 0 + +I3

4

5pg 2g2~ 2 25g 202 ~2+ I 25 3

4H 4r
3 1

4~ 4H

c'—:625g 8 m — +25g 8 m —+25g 8
4

—m + m k4 +25g 8 k4
4 8r 4r 4 2

In these expressions p is a parameter with dimensions of mass which has to be thought of as a standard renormalization
mass scale, adjusted so that our theory is in agreement with some experimental parameter. In our case this simply means
that p has to be fixed in order for the flat space-time effective potential to have its minimum at a value of 8 in accor-
dance with the expected grand-unification mass scale

d V(8)
dO g

——0.
X/X~O

(31)

(x+25g 8 —1/2r )'

(32)

In what follows we explicitly show that lndet(D~/p ) is a finite quantity in terms of the zeta function g~(s). As we
know, the generalized zeta function g~(s) admits a regular limit s —+0, but a convenient transformation has to be made in
its integral representation in order to take this limit. This last is defined for s & 2, but after an integration by parts

+ d4k 1 00

g(s) = . . . , =, dx
(2n. ) (k +25g 8 —1/2H)' (4m)

00

1 X Oo x dx 1 X dX
22 + 2'(4~) (x+25g 8 —1/2v )' o (4m, ) o (x+25g 8 1/2v ) (4m) o (x+.25g 8 I/2r ) +

we get an expression

(2—s)g~(s) = —s 25g~8— 1 1

2r (4~) o (x +25g 8 —1/2r )'+ ' (33)

which can be analytically extended for s & 1. By making reiterated use of this procedure we get at the end an expression
in which the limit s —+0 can be taken. %'e have

'3

(2—s)(1—s)g~(s) =(s +2)(s + 1) 25g 8—
27

OO X

(4~) (x +25g 8 —1/2H)'+ (34)

25g 0—22 1

2T'

and finally

00 X

2H (4') (x +25g 8 —1/2r )
r 3

g)(0)=3 25g 8 — dx22 I I X

2H (4m) (x+25g 8 —1/2H)

1 ~ x ln(x+25g 8 —I/2H)
dX

(4m) o (x+25g 8 —I/2r )

(35)

(36)

ln det
1

(4m )

(25g 8 —I/2r )
1

25g 8 —1/2r 3 2 p 1
(37)

This expression is the same that would have been obtained by the method of dimensional regularization, which shows
that this and zeta-function regularization are equivalent in the case of renormalization of an operator quadratic in k.
The nonvanishing imaginary part that at first sight arises for 8 values 25g 8 & 1/2H has no physical meaning and, in
fact, does not survive in the final expression for the effective potential. We have to remember that the r parameter, as it
stands in the previous formulas, is not a physical quantity, and that only if the transformation vair is inverted can it be
identified with the rate of expansion of the cosmological model. We will delay this rotation until we have formed the
complete expression of the renormalized effective potential at the end of this section.

The finite expression for ln det(Dq/p ) is obtained in Appendix B in terms of the three roots P, 5, r (real or complex) of
the polynomial k +a'k +b'k +c'. It is worthwhile remarking that this result for lndet(Dz/p ) not only is not the
same that would have been obtained by dimensional regularization, but even differs from the one which would have been



GRAVITATIONAL VERSUS FINITE-TEMPERATURE EFFECTS. . . 1303

obtained if more than one zeta function, associated to different factors entering D2, had been employed in its definition.
Nevertheless, it seems more natural to carry out the calculation as it has been done here with only a zeta function, as
long as there is only one mass scale p associated to the physical dimension of the P field.

The final expression for the renormalized zero-temperature part of the effective potential is

)s 282 12 (25g 8 —1/2v ) 25g 8 —I/2r 3
25 282 1

(4~)
T

+ ,'(p +—5+r ) ln +ln +ln
(4~)2 p2 p2 p2 , (p —+5 +r ) p5—5r —pr ——( —,' p +—,' 5 )J(1,1,0)

—( —,p + —,r )J(1,0, 1)—( —,'5 + —,
' r )J(0, 1, 1)—( 6 p ——,

'
p 5 )J(2, 1,0)—( —,'5 ——,'5 p )J(1,2,0)

—( ,'r , P—r—)J—(1,0,2) —( ,'r ——,'5—2r2)J(0, 1,2)

—( ,'O' —,'—Pr —)J(2,0, 1)—( —,'5 ——,'5 r')J(0, 2, 1)

(38)

J(a,bc)= f dx
(x —p)'(x —5)s(x r)'—

This expression contains the parameters g2, m, p, which naturally appear in the description of the quantum effective
potential, and a parameter w which is related to the classical background gravitational field. By inverting the Wick rota-
tion r~i~, we can identify this parameter with the universal time of the k =0 Robertson-Walker model, while I/2r be-
comes the rate of expansion of this cosmological model. Once this transformation has been done, the effective potential
turns out to be

V(8)= —,m 8 +15

(4m )

(25g 8 +I/2r ) 25g 8 +1/22 3 2 2 1 D2
+6ln det

p

D2=k +a'k +b'k +c',
a'=—25g 8 — +m22 13

16

g I
5Og 282m 2 +258 282 9 13 2 3

162 4r

(39)

c'—:625g 8 m + —25g 8 m —+25g 8 —m

d V(8)
d8

2
e=o =mz

7/X —+0

(40)

we are going to set the bare mass in the Lagrangian equal
to zero, i.e., we are going to deal in what follows with the
effective potential in the Coleman-Weinberg mode m =0.

which is a real definite quantity as long as the J integrals
are defined through their principal values. In this sense,
the zero-temperature effective potential does not introduce
any kind of singularity even when one of the three roots
p, 5,r, gets a negative value.

On dealing with the definition of the renormalized pa-
rameters of the quantum model, we are going to take the
flat —space-time limit X/X —+0, in which these quantities
can be related to observable magnitudes, as it is usually
done in flat —space-time quantum field theory. For the
purpose of circumventing the arbitrariness on the value of
the renormalized mass mx of the Higgs field

I

The remaining free mass parameter, the renormalization
mass scale p, must be adjusted in order to fix the
minimum o of the effective potential

dV(8)
g

——0
X/X~O

(41)

1 25 8V(8) ~
2 9(25g 282) lni' o (4m) p2

m2~0

(25 282)2

(42)

at the point which gives the desired values for the renor-
malized masses of the X'-+ ~ ', Y'+-'~ '. It is to be noticed
that the limit X/X~O, m ~0, is a regular limit in the
above expression for the effective potential. It can be ex-
plicitly taken in the form 5~0,r~O,p~25g28 . The re-

sulting expression



31NZALEZ1304

form of the effec-s ace-time
orma»-

h th naive flat p
h mes of reno

the relation p =
coupling const

f the model,
the gauge co

ar sector o
parameter,

'
jn the sca arrmalizatio»

e renorma ized gauge
the «no

f it arith
f tion of

ws Us to identi y
in the uni ica

which allows u
h h show~ up in

t ns at the
onstant w ic

'c interactions

~t this Po
~ahzed paras of renor

'
n the stan ardard valuesing to assignthe following

ical gravitation 1 b 14nl if the classicad
does not a f

'f'cation sca e
d onehasod

of th diff t
ff tdbconstants is no

if the stan ar
coupling con

it might modi y
ing to obtain

in such a iway that i m'

t we are going
i the stan-

scale. e
a ostenori,p

b
'nflu-1 1own that c ass'

en the Plane k scale and

f t o (39)
h

tation o c i
0. 12X 10 o. to

(x 0)II

(x O 4)

art of the effective part o otential
hfor temperatures T =

logical model.

~.O (x 0)0.5
I II II II I

=1021'

(xg)

(~&04O4)

{x04)

f the effective potentialro-temperature p t e otenFIG. 1. The zero- e
res T = 1o. anfor temperatures

model.

art of the effective potential
ical

FIG. 3. The zero- e
res T =80o. anfor temperatures

model.



GRAVITATIONAL VERSUS FINITE- TEMPERATURE EFFECTS. . .

(+1012 g 4
)

T =1000@
below T=lo. On the other hand, the presence of the
background gravitational field leads to a stronger symme-
try breakdown than that present in the flat —space-time
grand unified model. As can be seen in Figs. 2—4, this is
reflected in the shift of the 8 value of the minimum for
the zero-temperature effective potential, and in the lower-
ing of its effective potential value for several orders of
magnitude. Having in mind that the finite-temperature
contributions that have to be added to the vacuum effec-
tive potential are going to favor the restoration of the
gauge symmetry for temperatures above T =1o., we may
expect a confrontation between these finite-temperature
effects and the classical gravitational effects which, as we
have shown in the previous figures, work in the opposite
direction to the restoration of the gauge symmetry.

In the following section we accomplish the computation
of the finite-temperature contributions to the effective po-
tential that, as has been pointed out, do not need further
renormalization. We match these two kinds of effects in
the final expression for the effective potential at the one-
loop level, and, lying in the range of temperatures between
T = lo and T =800o., try to show what picture arises for
the evolution of the effective potential when the restora-
tion due to the finite-temperature effects and the enhanc-
ing of the symmetry breaking due to the classical gravita-
tional field are taken into account.

FICi. 4. The zero-temperature part of the effective potential
for temperatures T=800cr and T=1000cr in the cosmological
model.

which display the evolution of the zero-temperature part
of the effective potential for respective temperatures in
the cosmological model from T = lo. to T =800o.. Al-
though this is the evolution of the part of the effective po-
tential that does not take into account the finite tempera-
ture contributions, it has two features that are worth
thinking about before the computation of the finite-
temperature effects. First, it can be seen from Fig. 1 that
the gravitational effects that we have introduced in the
grand unified model do not appreciably modify the effec-
tive potential for temperatures of the cosmological model
below T = lo., as long as for this temperature the vacuum
contribution to the effective potential is superposed to
that for T =0, i.e., X/X=O. In this way, even though we
have not computed the finite-temperature effects that
presumably lead to the restoration of the gauge symmetry,
we are in conditions to assure that the background gravi-
tational field effects do not affect the mechanism of the
transition from the symmetric vacuum state 8=0 to the
asymmetric one 8&0, if this takes place for a temperature

IV. FINITE-TEMPERATURE EFFECTS

In this section we deal with the computation of the
finite-temperature contributions to the effective potential
of the model. In the preceding section we have made use
of specific boundary conditions in the definition of
lndet(Di/p ) and lndet(Dz/p ), which have allowed us
to proceed to the renormalization of these determinants.
Returning to the physical aspect of the problem, we have
to remember that these boundary conditions are, in fact,
determined by the hypothesis of thermodynamic equilibri-
um at temperature T of the system of e1ementary
particles —a hypothesis that we have adopted as a first ap-
proximation to the problem from the start.

As is well known, the hypothesis of thermodynamic
equilibrium implies the periodicity, , of the configurations
for the bosonic fields in the Euclidean variable x4, with
period P=—1/T (Ref. 20). This, in turn, provides the
boundary conditions needed for the calculation of
1ndet(Di/p ) and 1ndet(D2/p ), under the form that the
determinants of these operators must include only the
product over discrete frequencies k4=—co„=2m.n/P. Al-
ternatively, the definition of the zeta functions gi(s), gz(s),
turns out to be

and

(co„+k +25g 8 +1/2r )'

1 1 + 1$2(s)= —g I d k
~ n= —m (co„+k +c )'(co +k +d )'(co +k +d )'

(x+c )(x+d )(x+d )=x+a'x +b'x+c' —.

(43)

(44)
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Qur first purpose is to relate these g&(s) and $2(s} with the zero-temperature zeta functions of the preceding section, that
we will call in what follows g~ „«(s),$2»,(s).

As an illustration, we deal with g&(s). After the set of transformations

(2m) P „(rp 2+k 2+~2)s 13 (2m)3 I'(s) „
1 1 1 ~d s —) y ~dk~k~2 (k +tan +a )x

P 2n' l (s)

1 1 1 + & ~
~ 5/2 —(~„2+a2)x

dXX e
P 2m 1(s) „„4
1 1

p g 3/2

I"(s —3/2) +

I (s)
1

2+ & 2)s —3/2 (45)

we are able to express g~(s) in terms of one series alone. By means of a Sommerfeld-Watson transformation we can
rewrite

+ 00 1 1 i Pe "Pl(e"P 1)—
dz ~(2+t22)s3/22rrt cp(z2 +t22)s —3/2

n= —w ~n
(46)

where Co (Fig. 5) is a contour that only contains the poles ro„= 2m n/P in the real axis. If we restrict the s variable in the
form —, &s &2, the Cp contour can be deformed to follow the branch cuts drawn from z =+t'a (Fig. 6). The integral be-

comes Bow

+ 00 1 tP/2+ —tP/2 1

( 2+~ 2)s —3/2 2 cosmos dt
etP/2 e tP/2

~

r t2
~

s——3/2
~

t +tt
~

s —3/2

and the expression for gt(s):

I (s ——', )1 tP/2+ —tP/2 1
g)(s) =

g~s/2 I (s)

cosmos

dh
a etp/2 e tp/2

~

t —
t2

s —3/2
~

t +tt
~

s —3/2

After decomposing it into a zero-temperature part and a finite-temperature contribution,

(47)

(48)

S/2
1

8 5/2

I (s ——,') I (s ——,') —tp 1
cosmos dt+ costsI (s) ( t 2 2)s —3/2 4 S/2 a 1 e tP (t2 &2)s ——3/2

= g) „,(s) +g) T(s) (49)

we recognize all the divergences concentrated in the part that survives in the limit T~O, from what follows that only
the vacuum contribution has to be conveniently regularized. By the same procedure of the preceding section, we can ex-
tend this contribution, after an integration by parts, to an expression which has a regular limit s~O. The two first or-
ders of the zeta function are

g)(s) = a'
+S

a", 3a'
1na + e

—tp
s f dt (t2 —2)3/2+0( 2)

3~2 a ] ~
—tp (50)

from which we can obtain

s
I
l

\

Flay. S. The Cp contour contains all the poles tp„=2rtn IP in
the z plane.

FIG. 6. The z integration
shown in the figure.

I

l& 1& f"2
I

is done along the two branch cuts
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gi(0) = a
32%2 4, 3 4 1 - e-'~

g'1(0)= — a lna + a + (t2 a 2)3/2
32~ 64~2 3~2 a 1

(51)

(52)

Both expressions agree in the limit T~O with those obtained in the preceding section for the zero-temperature part of
the effective potential. The renormalized expression

1n det
D) 4 a'

2
———g'1(0) —ln p gi(0) = a ln

p 3277 ' p
3

—tp——a' + dt (t a)—
2 1

—tP

1 4 a 3 4a ln ——a + T dxx ln(1 —e(" +'p' l )
00 2 2 1/2

32m p
(53)

also reproduces the standard form for the trace of the logarithm obtained by other methods of renormalization.
The zeta function associated to the second operator

1 1 1$2(s)= —g f d k
(2~)3 P ( 2+ k 2+ 2)s( 2+ k 2+d2)s(~ 2+ k 2+d 2)s

(54)

admits a similar additive decomposition into a zero-temperature part and a finite-temperature contribution. The easiest
way to show it begins with making a Sommerfeld-Watson transformation

1 1 f d3k 1

g
i j3[ep/(ep 1)]dz—

(2~)3 p 2ni co (z +k +c2)s(z2+k2+d2)s(z2+k2+d 2)s
(55)

where Co is the same contour as in the above. In the present sltuatlon, there are six branch cuts 1n the complex z plane
which are characterized through the definitions

z +k +c—:(z iy)(z+iy), z—+ k +d =(z co i5)(—z+c—o+i5),

z +k +d =—(z co+i5)—(z+co i5) . —
(56)

In this case, a restriction must be done in the s variable 1 ~ s & —, in order to deform the contour of integration along the
branch cuts (Fig. 7). When this is accomplished, the integral representation of the zeta function $2(s) takes the form

$2(s) =
~ d k 2sinms dt

1

(2m. )
~

t —y ~'[((t+5) +co')((t —5)'+co')]'

tP( 1 tP)
+4 sinus Ct

I

t' —y'
~

'[((t +5)'+~')((t —5)'+~')]'
00 1+2 sinus dt

~

[(co it +iy )(co—it —i y )(2—co it i 5)(2—co it +—i5)]—
00 1+2 sin/Ts dt

~

[(co+&'t i y)(co+it +—i y)(2co+it +i 5)(2co+it i 5)]—
00 (e itoPe tP 1 )

—1

+4sinm. s f dt
I

t' —5'
I

[(~—it +1y)(~ —it 1 y )(2co it i5)(2—co ——it +i—5)]

00
—icoP tP 1 )

—1

+4sinms f dt
I

t' —5'
I

[(~+it t y)(~+& t+iy—)(2co+it+'i5)(2co+it i5)]—
—=k-.(s)+AT(s) . (57)

For the definition of the renormalized expression lndet(D2/p ) we need to know the first two orders in s in the expan-
»on «$2(s). The only contribution to the zeta function which has to be conveniently regularized is $2„„(s),whose first
two orders in s have already been calculated in the preceding section. At this point we only need to take care of the
finite-temperature contribution
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r

$2T(s)= s f dkk f dt, &+ s f dkk f dt . &,& +, &,& +O(s )0 ] e —tP ~2 0

= —s T f dk k ln(1 —e r ) —s T f dk k ln(1 —2cosco'e +e )+O(s ),

2 1/2

k
T

2 i1/2

co'+i 5'= k
T

(S8)

From this expression one can easily read

$2T(0)=0,

AT(0) = —
2

T f dk k ln(l —e r') — T f dk k ln(1 —2cosco'e s'+e 2s'),

(59)

(60)

and the renormalized ln det(D2/p ) with the finite-temperature contributions explicitly shown takes the form

lndet
6

———$2„„(0)—in@ $2„„(0)—/AT(0) —in@ $2r(0)
D2 6 6

p

+ T f dk k ln(1 —e r )+ T f dk k ln(1 —2cosru'e +e ), (61)
T=O 77'

+ T4 f d& &21n(1 e
—[» +(25g 6 +I/2H)/T ] )

P T 0 1T
6 2 0

V(8)=12lndet

D2=ln det
p

where ln det(Dz/p )
~ T 0 stands for the renormalized expression (B8) from Appendix B.

At this point we possess an expression for the effective potential to the one-loop order which takes into account the ef-
fects due to the presence of the classical gravitation field as well as the finite-temperature effects

Di
+6ln det

T=O

+ T f dk k ln(1 —e r )+ T f dk k ln(1 —2cosco'e +e ), (62)

where 1ndet(Di/p )
~ T 0 and 1ndet(D2/p )

~ T 0 stand,
respectively, for the formulas (37) and (B8). We have
learned from the representation of the zero-temperature
part V(8)

~ T o that the classical gravitational effects give
rise to a stronger symmetry breaking than that present in
the flat —space-time quantum field theory, whereby we
can infer that in the above expression for the effective po-
tential the tendency to restore the symmetry by the finite-
temperature effects is going to contend with the enhanc-
ing of the symmetry breaking that the classical gravita-
tional field generates. These two opposite effects have a
strength that monotonically increases for the universal

21 I

F 2

Z1Ji iZ 2
2 Q )I 1)Q2

FIG. 7. The z integration is done along the six branch cuts
shown in the figure.

time reaching the Planck time scale or, equivalently, for
the range of temperature from 10' GeV to 10' GeV.
But, as long as the effective potential is insensitive to the
background field effects at the mass scale of the grand un-
ified model T=lo, the balance in the competition be-
tween the two effects, if attained, can only take place at a
higher temperature.

In what follows we present the graphic representation
of the V(8) function (62) in order to show the evolution
of the effective potential as the temperature of the cosmo-
logical scenario changes. For the sake of convenience, we
are going to study this evolution in the direction of in-
creasing temperatures, i.e., the direction opposite to the
evolution of the universal time of the model, but this
choice has no significance as long as we are not interested
in the phase transitions that -can take place in the quan-
tum statistical model. In the above expression, the pa-
rameters of the quantum model are set equal to their
flat —space-time values, as conceded in the preceding sec-
tion, g /4m= 4~,a=10 GeV, while the two remaining
mass parameters are constrained by the relation between
temperature and universal time (X/X) cc G'/ T . In Figs.
8—11, the evolution of the effective potential is given in
terms of the temperature of the cosmological model from
T =la. to T=800cr. As could be expected, for a tem-
perature T=lcr, the symmetry is restored due to the
finite-temperature effects, and from inspection of Figs. 2,



GRAVITATIONAL VERSUS FINITE-TEMPERATURE EFFECTS. . . 1309

Ix O-4) - (x10 3Q)

FIG. 8. The finite-temperature effective potential at T = lo. FIG. 9. The finite-temperature effective potential at
T =20o.

3, 9, and 10, one can conclude that these effects are more
efficient in their role for the symmetry restoration than
the classical gravitational effects in the opposite direction.
Figure 11 shows, however, that there must be a point be-
tween T =100o. and T =800o in which the two tenden-
cies balance, giving rise to a situation for higher tempera-
tures in which the effective potential is dominated by the
symmetry-breaking effects associated with the presence of
the background gravitational field. We do not follow the
description of the effective potential for temperatures
higher than T =800o, for which the mass scale
X/7=1. 1X10' GeV is only one order of magnitude
below the Planck scale, since there must exist a point as
the X/X parameter rises to the Planck mass in which the
fluctuations of the quantum gravitational field become
important and his description as a classical background
field does not make sense. However, although we do not
know in what direction these fluctuations operate, we can
assert the existence of a period of time after the Planck
time in which the configuration 8=0 is not a vacuum
configuration of the grand unified model, not even a
metastable vacuum configuration. This period of time
corresponds with a temperature two orders of magnitude
below the Planck mass, and the symmetry breaking that
characterizes it appears to be completely washed out for
temperatures of the order of the grand-unification mass
scale a=10' GeV. Although all these considerations
suggest the existence of a transition from a broken phase
8+0 to the restored one 8=0 by finite-temperature ef-

(x I 0~04)

-'IO.

-5.

FIG. 10. The finite-temperature effective potential at
T =100o.
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T:8000

5.0 108 (x10 c)

Ix]Q"~ Q4I

fects, we are not going, for the time being, into the conse-
quences of such a phase transition nor the existence of a
primordial period of time with superheavy massive parti-
cles.

V. CONCLUSION

The main part of this paper has been devoted to work-
ing out the features that a classical background gravita-
tional field can induce in the symmetry breaking of the
SU(5) model. The importance of such an influence is re-
vealed by the naive dimensional argument of Sec. II, that
shows up X/X as the mass scale introduced by the classi-
cal gravitational couplings in the quantum model. The
preceding section has ended with the explicit computation
of these gravitational effects by representing the effective
potential as a function of the temperature in the standard
cosmological scenario. When the k =0 Robertson-Walker
model is adopted as the metric of the space-time, the
background gravitational field has the tendency to
enhance the symmetry breaking that is postulated in the
zero-temperature, flat —space-time quantum theory. Al-
though this influence is overcome by the restoration due
to the finite-temperature effects through two orders of
magnitude in temperature above the mass scale of the
SU(5) model, there exists a temperature for which the ef-

FIG. 11. The finite-temperature effective potential at
T =800o.. The strong symmetry breakdown shown in the figure
develops through classical gravitational effects for an expansion
rate below the Planck mass, g/+=1. 1&& 10"GeV.

fective potential develops a strong symmetry breakdown
due to the classical gravitational effects. This tempera-
ture is between one and two orders of magnitude below
the Planck mass scale.

Although the features that are present in the evolution
of the effective potential are rather surprising, the ex-
istence of such a strong symmetry breakdown can be ex-
plained once it is known that the background gravitation-
al field tends to enhance the symmetry breaking of the
model. The mass scales associated to the two opposite ef-

fects, X/g and T, tend to reach the Planck mass scale at
the same time, and this explains why in the evolution of
the effective potential the restoration due to the finite-
temperature effects is balanced by the classical gravita-
tional effects for sufficiently high temperature. From
these considerations, it is also obvious that the results that
are obtained for the effective potential strongly depend on
the relation between universal time and temperature in the
early universe, and that the strong symmetry breakdown
which is present in the above picture for a temperature
two orders of magnitude below the Planck mass could ex-
ist for a wider range of temperatures if the cosmological
scenario were comparatively colder. This kind of ar-
gumentation implies, however, rejection of the standard
scale factor X(t) cct', and we are not going to look at
this possibility for the moment. Another more realistic
situation in which the role of the background gravitation-
al field is stressed comes out from the consideration of a
grand-unification mass scale greater than 10'5 GeV.
Keeping in mind that the scale of the transition approxi-
mately coincides with the mass scale of the grand unified
model, a greater o. mass scale would raise the transition
temperature to a region in which the influence of the clas-
sical gravitational field could modify the mechanism of
the transition.

The purpose of the present paper has been to show up
the influence that gravity can have in the symmetry
breaking of the SU(5) model at early stages of the
universe. In this sense, the study has been centered in this
grand unified model but, since we have not made use of
any specific feature of the same, we can hope that the in-
fluence of gravity, considered at a classical level, would
play the same role that has been shown in the above in
other grand unified models. Finally, it has to be remarked
that the approach adopted in this paper has been that of
studying the influence of the classical gravitational field
locally coupled to the grand unified model disregarding
all kinds of topological effects. These have been the ob-
ject of attention of some papers ' and, although they
seem to support the conclusion that their influence tends
to restore the symmetry, an analysis on grand unified
theories is needed. As long as the local approach is con-
sistent with our choice of the k =0 Robertson-Walker
model, which has a trivial spatial topology, this kind of
effect could have significance under a different choice of
cosmological model, in which case its influence would
have to be set up.
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APPENDIX A: CALCULATION OF THE UNRENORMALIZED Vi ( 8) PART

In this appendix we give the details of the computation of the order-one loop corrections to the effective potential

VI(8)=iln f &P&Vexp i f d x[ —,'P'(i& ')' P +V"'P& P + —,
' V"'(ib, ')z„V" ] (Al)

where, in momentum space,
r

(i& ')' (k) = —k — k~ —m 5'", P„'"(k)=Sg8 —M' 54„iM—' k„

(A2)

(i 5 ')'„„(k)= —5„jc + 1 ——k„k„+ 5„g5;P;—4—— 5p&48& —— 5I 45484n " 2v. " ' '
o, 2~ "' ' a2~"

——5„;5;Jcq —— 5„454„+ 5„;5;„—25g 8 5~„5'~ a,b =9, . . . , 14, 16, . . . , 21 .

The easiest way to compute the functional integral in V& (8) is to make the integrations in the following order:

VI(8)=i ln f &$&Vexp i f d x( 2/i W— 'P+VPP+ —,
'

Vib, 'V)

=i ln f &/exp i f d x( —,'Pi & 'P+ 2 /Pic, PQ)
1

( Q
—I)1/2

1 1= t'ln
det(ib. ')' det(i& '+Pi bP)'

(A3)

The main problem now is the computation of the determinant and inverse of i b, because it cannot be decomposed in
diagonal and transverse projectors in momentum space. In the particular case a = l, ib. takes the form

0 —x

where

0
x y z p

(A4)

a= —k ——k4+ —25g 8, p= —k — k4 — —25g 82l 1 2 2 -= 2 3l 3 2 2

7. 2r' 2r 2H
l l lx= k1, y= k2, z= k3.

27- ' 27. ' 2~

En this gauge we have

det(i b,&„')=a a P— k
4

Pib.P= —5'" a ak4, +pk + k +a
det(i 5 ') 2r 4r

a, b =9, . . . , 14, 16, . . . , 21 (A5)

1 1VI(8)=i ln +i ln
det(ib, ')' det(i& '+Pi b,P)

12

= —,
' Trln a aP—

4
1

k

and the effective potential to the one-loop order is

2+ I + 2

2v

12

12
25 0+ —, Trln k + kq+m + ak4 +pk + k +a

a p (1/42)k 2 4

k2+ k +25g2g2 + I2 Tr1n k2+ k +~2
2H 2v

+ —, Trln k + k4+m ap — k +25g 8 ak4 +pk + k +a
2X 4 2 4

(A6)
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The second term being independent of 8, the relevant contribution of V&(8) to the effective potential proceeds from the
first and third terms of the last expression. On the other hand, the (i /r)kq terms in the inverse propagators can be put
aside by introducing fictitious particles F propagating the 84 part of the boson gauge interactions, i.e., by introducing
terms in the functional integral

& FPa(g )
—1Fa FIJa( )1/2Vva

4 p pv (A7)

with a„=diag(3/2r, 2/r, 2/r, 2/r). If the order of integration in the functional integral is the same as in the above, we

get contributions of F particles

f &Fexp f d"x( —2Fr) 'F+ ,'Fa'~—ha'~F) (A8)

to the effective potential. We will not evaluate this contribution, assuming that it is a purely gravitational effect and that
the main features are contained in the terms that recover the flat —space-time effective potential in the limit ~~ ~.

Bearing these considerations in mind, we get at the end a V~ (8) part of the effective potential of the form

V, (8)= 12Tr ln k +25g 8—2 Z

2
+6Trln(k +a'k +b'k +c'), (A9)

where

25g2g2+ 2+ g~ 5Og g m 25g2g2 + 2 + k 2

4H' 4H 4r' 4' 4H
' '

c'=—625g 0 m — +25g 0 —m +25g 0 ——m + m k +25g 8 k

We begin with the definition

APPENDIX 8: RENORMALIZATION OF ln det(D2/p )

D2 6In det 6
———gz(0) —in@ $2(0),

p

where

(B1)

+- d"k 1
$2(s) =

(2~)' (k'+a'k4+b'k'+c')'
(B2)

and the coefficients a', b', c', are defined as in Appendix A.
First, let us note that, if we want to carry out an analytic calculation of $2(0) and $2(0), we must replace k4 by —„' k

in the anisotropic terms of a', b', c'. This is a procedure which is obviously exact only up to the first order in an expan-
sion of g2(s) in the parameter I/r . However, it can be shown that, in fact, it does not appreciably influence the final re-
sults. Then we can replace

a'—=25g2g2+m 2+ 13
16

, b'—= 50g282m2 —25g282 + " m2 — '4
8

(B3)

c'—=625g 0 m — +25g 02 —--m +25g 0 —m
9

4r r 8v' 4r

If we call P,6,r, the three roots (real or complex) of the polynomial x +a'x +h'x +c',

x +a'x +b'x+c'=(x —P)(x —5)(x r)— (B4)

and apply the technique of integration by parts to get a well-behaved extension of gz(s) in the limit s~0, we obtain at
the end
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—3(2—3s)(1—3s}$2(s}= (s+2)(s+1)p' f dx
(47r) 0 + ==5+ ++r

(x —p)'+ (x —5)'(x —r)'

+ 3(s+1)sp'5 f dx
(4m )' 0 +p~5

(x —p)'+'(x —5)'+ '(x r)'—

3(s+1)s5 r f dx +5~r(4'�) (x —p)'(x —5)'+2(x r)—'+ '

X+ 3 s+1)s r dx + ~r
(4 (x —p)'+ ( —5)'(x —r)'+'

1 oo x+ 6P5r dx
(4~}' ~ (x —p)'+'(x —5} +'(x —r) + (B5)

This expression for $2(s) has only poles at s = —,',s = —', . With the help of the definition

J(abc)=
2 f dx

(4zr)' ' (x —p)'(x —5) (x r)' '—

we have

gz(0) = ——,[O'J(3,0,0)+5'J(0,3,0)+r J(0,0,3)], (B6)

p f «[»(x —p)+ln(x —5)+ln(x —r)] +p~5+ p~r
3 (4'�) 0 (x —p)z

—2p J(3,0,0)—25 J(0,3,0)—2rzJ(0, 0, 3)——,
'
p 5J(2, 1,(}) —,

' p52J(1 2 0)

—
z 5 rJ(0, 2, 1)—2 5r J(0, 1,2) —'PrzJ(1, (),2) ——'PzrJ(2 0 1) (B7)

Until now we have not mentioned whether all three roots p, 5, r, are real or not, but, as far as it is concerned with the
obtaining of well-defined expressions for $2(0) and gz(0), we only need that the J integrals stand for their principa
values. As for the range of large 8 two of the roots (for example, p and 5) become complex, we also have to choose the
sheet —~(argp, arg5 ( +zr, so that each one of the integrals becomes finite in the limit Imp, Im5~0. The renormahzed
expression for ln det (D2/p ) in terms of p, 5, r, reads

ln det
2 (p +5 +r ) ln — +ln +ln

p (4zr)2 p p p
(p +5 +r ) —p5 5r pr— — —

—( —,
'
p + —,'5')I(1, 1,0)—( —,

' p'+ —,
' r )I(1,0, 1)—( —,'5 + —,

' r )I(0, 1, 1)

—( 6 P —
z P 5 )I(2, 1,0)—( 6

5"——,5 P )I(1,2,0) —( 6
r" zP r )I(1,—0,2)

—( , r —,5 r )I(0„1,2) ——(6P———,P r )I(2,0, 1)—( 65 ——,5 r )I(0,2, 1),

I(a, b, c)=— f dx
oo 1

(4m ) (x —p)'(x —5) (x —r)'

Finally, we have to remark that this renormalized
ln det(D2/p ) contains the standard form of the logarithm
in the flat —space-time limit p~ , 0~5rO~25g 8,

It can be shown that all divergences in (BS) cancel out to
give the previous formula, which we took into account in
the computation of the limit expression (42).

APPENDIX C: NOTATION

ln det
p, (4zr)

(25g 8 ) 25g 8
ln

p

5
( 25g 282 )2

12
(B9)

In this appendix we detail the notation used in this pa-
per. The metric tensor of the Riemannian space-time is
denoted by g and has signature —2. Greek indices are
used as general coordinate indices p, v, . . .=0, . . . , 3,
whereas latin indices i,j, . . . = 1, . . . , 3 are used as coordi-
nate indices of a spatial section of the space-time. I'
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denote the Christoffel symbols, R", , the curvature tensor,
R& ——R& the Ricci tensor, and R =g" R& the scalar
curvature. The volume element of the space-time is
chosen as ( —go )

' = ( —detgo )
'

Latin indices a, b, c, . . .=1, . . . , 24 are used as SU(5)
indices in a space with metric 6,b. T, denote the genera-
tors in the fundamental representation, normalized by
Tr(T'Tb) =2+'

isT

0

0

0

0
T'= 0 0 0

0 0

a = 1, . . . , 8, A,'= Gell-Mann matrices

T 16

0 1

0 0
0 0

000
0

T =9

0

100
000

1 0
0 0
0 0

T 17

0 —i
0 0 0

0 0

T 10

—i 0
0 0 0

0 0

000
i 0 0

0

i 0 0
000 and T = (1/v 10)diag(1, 1, 1, 1, —4). f,t„denote the

structure constants of the SU(5) group, [ T„Tq]=if,b, T, .
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