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This work is an extension of the recent spinor-connection theory of Szekeres, Cullinan, and
Lynch. In that theory, a geometric model for the gravitational and electromagnetic fields was real-
ized by use of both left- and right-connection groups acting on a 4X4 spinor tetrad. Here the right-
connection group is enlarged in a natural way from a one-parameter to a three-parameter Lie group.
This enlargement introduces two extra potential fields which may provide a simple model for the
strong and weak fields in curved space-time. A solution to the new field equations is given for a
neutral "pionlike" particle exhibiting the strong and gravitational fields.

I. INTRODUCTION

Szekeres, Cullinan, and Lynch' (henceforth SCL) have
recently proposed a geometric model for the gravitational
and electmmagnetic fields in terms of left and right
spinor-tetrad connection fields in general relativity. It has
been demonstrated that the field equations, derived from
a single world Lagrangian function, may admit an essen-
tially unique cosmological solution and a variety of parti-
clelike solutions, with or without electric charge or spin.

However, the SCL theory exhibits no fields which can
in any way account for either the weak or strong forces.
There is, it is true, a short-range field in some way similar
to the torsion field of U4 theory, but such a field is inter-
preted as a mere spin contact interaction.

We show here that the group of right connection in the
SCL theory is by no means the most natural choice. %'ith
a natural and in a sense obligatory extension, from U(1) to
U(1) U(1) U(1), we obtain two extra four-potential
fields which might feasibly provide a classical model for
the weak and strong forces. This extended group is the
largest group which leaves invariant the four left-ideal
subspaces of the Clifford algebra used to represent the
quartet of Dirac four-spinors (the matter field).

All other essential features of SCL are retained and, in
particular, unlike in U4 theory, the base manifold remains
as the pseudo-Riemannian space of general relativity, with
vector connection defined by means of the symmetric
Riemann-Christoffel affinity. Physica11y, the group ex-
tension introduces two new "charges" as sources for the
proposed strong and weak fields. The required short-
range nature of these fields results from the imposition of
appropriate boundary conditions on the solutions, so that
the far-field Gaussian fluxes of the field intensities are
zero. Thus the new "charges" are not observable in the
same sense as is the usual electric charge. The relative
strengths of the fields are accounted for by the relative
magnitudes of the source "charges, "which are conserved.

The field equations, though again derived from a single
world Lagrangian function, should, in principle, admit a
very great variety of classical particlelike solutions, de-
pending on the choice of combination of the Clifford
spinor-ideals and on the symmetries of the metric field.

We give as an illustration of these potentialities a two-
ideal, spherically symmetric, single-particle solution
which manifests the strong and gravity fields only. The
(dimensionless) strong coupling constant is assumed to be
exactly unity, as it cannot it seems be determined from the
field of this single particle. Except in the rather dramatic
but well-behaved Schwarzschild region, where recourse to
machine integration has been necessary, the solution can
be given in explicit functional form and it can be carried
right down to the origin. Identifying the solution as a
classical "neutral pion, " we calculate that near the "sur-
face" of the particle the strong force is 1&&10 times as
strong as that of gravity. Further, with this identifica-
tion, the single fundamental mass required by the world
Lagrangian, that is the mass whose Compton radius de-
fines the scale of length for the geometry, is calculated to
be within two percent of the p-meson mass.

II. SPINOR CONNECTION AND CURVATURE

g=«.p) llgll=t de«g. p)« (2.1)

is a nonsingular linear mapping, g„&AH, from the tangent
space of Eq to V4, . For arbitrary tangent vectors A,",P",
the inner product g~~~g"P" is a real scalar, invariant
under both the action of L4 in Vq and the group of gen-
eral coordinate transformations in E4. The metric tensor

As in SCL, the base manifold is just the pseudo-
Riemannian Einstein space E4 with local coordinates x",
p=1,2, 3,4. The manifold E4 carries a variety of com-
plex vector spaces in which representations of the proper,
homogeneous Lorentz group I.4 are induced.

Firstly, there is the usual vierbein space V4 which is
equipped with orthonomal basis vectors and which has
the group L4 as a left operator domain. A vector u P V4,
has components u„, n =1,2, 3,4 with j„u„real, where
J ) =j2 ——j3 ——ij4 ——i, i = —1, and where the summation
convention is suspended as always in expressions involv-
ing the j„. The space V4 induces the Minkowski repre-
sentation of L4, the action of cr E Lq on u H V4 being
(tru) =M „u„,where M „has positive unit determinant
and each component has the reality property that
j~j„M~„ is real. The local metric field
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of E4 is taken as

Io =I Ip5= —I II2I3I4
I &b= —I p+I pb& (a (b(5

with the general multiplication rule

II ah~cd (~ac8bd ~adobe )I+ 2 +abcdef ~ef

(2.3)

(2.4)

+ (g., rbd+8bdr. , s.drb—, —6„I.,), (2.5)

with gI' =g "g,where g "g =b" and g "g„&——5 „.
As well as the vierbein space V4 we need the usual

skew-tensor space 8'6 spanned by the wedge products
u hU of V4 vectors. A vector m H 8'6 has skew com-
ponents w~„with j~j„w~„real and the two-sided action
of a C I.4 is expressed by (ower ') „=M pM„qwpq.

To represent the spinor-tetrad we employ a 16-
dimensional complex Clifford algebra A generated by the
Dirac matrices I, m = 1,2, 3,4, with I I „+I „I
=26 „I. Following Eddington, a convenient basis for Q
is obtained in terms of the 15 symbols I,b ———I b„
0&a &b &5, defined by

(2.6) and (2.10) that (cog) =(t) co and from (2.7) that
(crg) =g cT

' if c7 H S4. Thus, if f( and p2 are spinor-
tetrads then the inner product

&4142& =
4 Trf)02 (2.11)

is invariant under the action of S4.
The decomposition (2.9) of Q can be performed so that

the constituent spinor ideals, are mutually orthogonal
under the inner product (2.11). Such a decomposition is
given by

4
~(q, e) ~ (q, e) Y(g, e)

Q~ (2.12)

Y )"=—'(I, +l7)l +i&I —
'QADI ),

Y(~"= ,'(r„-+ill.„+iq~r er„—),
Y3 (I 23+ /~14+ ~~31+19E~24)

Y'""=—(1 (2+ r)1 34 2)~ro5—

(2.13)

(2.14)

(2.15)

(2.16)

where the four u„'""are complex functions of the coordi-
nates x" at the point of attachment to E4 and the fourF'""which span the ideal Q'"" are given by

where E,b,d,f is the alternating symbol on 0, 1,2, 3,4, 5.
The sixteen elements I,I,b form a basis for 0 over the
complex field, so that any element co H 0 is written

=+I+ —,y,bI,b. The I,b have a representation by 4X4
traceless Hermitian matrices (Appendix A). The Hermi-
tian conjugate co'*' of co is thus co'*'= I+ 2XabI a

where y, b is the complex conjugate of the number y,b.
The adjoint co of ~ E Q is defined by

I o4m I p4-(g) (2.6)

The skew-adjoint (co = —co) elements —,ij j„I „span
the real Lie algebra of the spin representation of the sim-
ply connected covering group S4 of L,4. An element
o. H S4 is represented in 0 by

cr=exp( ,'iP „I „),—jj„P „real (2.7)

(2.8)

For some fixed g, e', an element 1t)("'" of 0("' ' is a Dirac
four-spinor. A general element 1' H 0' has a decomposi-
tion into a quartet of Dirac four-spinors

(2.9)

and is called a s inor-tetrad.
The adjoint P of a spinor-tetrad P H 0' is defined by

q(a )I (2.10)

If co H Q, p H A, then colt H Q, and it follows from

so that o-~=o--'.
The algebra 0 admits S4 as a left operator domain.

This left representation space, denoted by 0, can be
decomposed into a direct sum of four minimal left ideals,
say n'& ' with g =+1,a=+1, so that

IIl g fl(g, e) II(+,+)@II(+,—)@II(—,+)@II(—,—)

The algebra 0 also induces the usual scalar, pseudosca-
lar, vector, pseudovector, and skew-tensor representations
of S4 with the irreducible representation spaces being
spanned by the basis elements (I), (I O5), (I 0„), (I „3),and
(I „). In particular, if v E V4 and w E 8'b, then U„I ()„
and w „I „are self-adjoint (co =co) and are here called
vector and skew-tensor operators, respectively, with the
transformation laws

~(U„I,„)~-'=M,U, r,
—1

(T(Wmn ~mn )cr MpqMklWqlI pk

(2.17)

(2.18)

as can be verified from (2.7) with the Minkowski matrix
(M „)=exp(Pm„), with (Pm„) infinitesimal.

The fact that the spinor-tetrad (2.12) is to play a more
fundamental role in our theory than the usual Dirac
four-spinor has crucial significance when we seek a natur-
al choice for the group of spinor connection. Cullinan
noted that in undergoing an infinitesimal displacement
along a curve in E4, the spinor-tetrad should logically ad-
mit transformation from the right in addition to the con-
ventional transformation from the left. If v. H Q is such a
right transformation then the inner product (2.11) is in-
variant provided ~~'*'=w' '~=I. Thus the right-acting
group must be unitary or special unitary. This require-
ment is rather too general as a starting point and a more
specific requirement is that the minimal left ideals in the
decomposition (2.8) of 0' should be invariant subspaces,
that is Q'"I'"z E O'"". In SCL the right group is taken to
be the simplest that is admissible, namely, U(1). However,
it is readily verified that the decomposition (2.12) allows
by this criterion a larger, maximal group, namely,
U(1)U(1)U(1), since the individual minimal left-ideals
1'("'e) are eigenspaces under the right action of not one but
precisely three (nontrivial) basis elements of A, with the
multiplication rules
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Q(V~&)f' ~g( v, n)

$(vJ&n)p ~p('Q, E)

q(g, n)l ~~q(g, e)

(2.19)

(2.20)

(2.21)

terms of the usual Riemann tensor Gp & and a spin-
connection torsion tensor T~p, as follows. 8 Defining

Qmnv=gm gnp~pv gm gn).'v, ~ (2.31)

p & A,pI p.= 2g P(g) p,.+g~,p gp,—~), (2.32)
Thus we take here for the right group the three-

parameter group U3 of unitary transformations Tmnp =Smnp, Qmnp ~ (2.33)

r =exp(iA, („)I („)), A,(„) real, x = 1,2, 3

(x) =(I ()), (2),I (3))=(I o5~1 )&~ I 34) .

(2.22)

(2.23)

it follows that Tm„p is a skew tensor of W6 for fixed p,
since Q „„has the same left-connection transformation
law (2.25) as S „„.Thus,

The effect of an element r H U3 is to provide each g(""
with a phase factor exp[i(gA()) —e'A, (2) —egA(3))j. From
(2.5), the I („)have the commutation rules

t. ~( ) ~(y)1+ =2~(.) l~( ) ~(y)l-=0
where (x,y,z) is any permutation of (1,2,3). The decom-
position (2.12) as specified by the I'„'""of (2.13) to (2.16)
is not of course unique, but it can be shown that the corre-
sponding I ( ) exist for any decomposition. We require a
fixed, global decomposition (i.e., the same decomposition
at each point of attachment in E4) and without loss of
generality take it as given by (2.13) to (2.16).

Taking now S4 U3 as the connection group, the co-
variant derivative of a spinor tetrad is

4~p 4,p 4 S np~mn4 2 +(x)p(tI (x) ~

where the comma derivative denotes the partial derivative
Bp and —,iS „pI „and —,'iK( )„I"(„)are elements of the
Lie algebras of S4 and U3, respectively, both covariant
with respect to p and with jmj„Sm„p and K(x)p real. The
condition (o'Pr) (p o(g

~

p)r giv——es with (2.7) and (2.22) the
connection field transformation laws

Tpvp = Tvpp =gmpgnvTmnp (2.34)

is a real torsion tensor in E4. From (2.28) and (2.33) it
then follows that

where the semicolon derivative is the usual covariant
derivative with respect to the Riemann-Christoffel affini-
ty I~pr of (2.32) and G",p is the Riemann tensor con-
structed from this affinity, viz. ,

p p p v A p A,

Gvpo =~vo, p ~vp, o+ ~ap~vo ~ao~vp ' (2.36)

The Ricci tensor Gp and the Ricci scalar G =GPp are ob-
tained from the Riemann tensor by the usual contraction
of indices by use of g&p.

III. FIELD EQUATIQNS

The world Lagrangian real scalar density function is
taken, with obvious classical analog, as

+pvpo
=Gpvpo. + +pvp;o ~pvo;p +pro. +vp + ~pap ~vo.

(2.35)

Smnp ™mp~nq~pqp+ ~mp, p~np

+(x)p +(x)p +~(x),p

(2.25)

(2.26)

2A pv
gm gn Rmnpv b(x)P(x)pvP(x)T

~ pvg(v~p
———4iRmnpvt mn(t) 2iP(x)pvWI . (x) ) (2.27)

Rmnpv=Smnp, v Smnv, p+ SmppSpnv Smpv pnp &

I

+(x)pv +(x)p, v +(x)v,p '

(2.28)

(2.29)

From (2.25) and (2.8) it follows that R „p,I m„ is a tensor
operator, of type (2.18), and hence

Rp„p ——g ~„Q „p (2.30)

is a real left curvature tensor in E4. The right curvature
tensors (2.29), like the left, are invariant under all S4 and
U3 transformations.

The left curvature tensor Rp p can be expressed in

Thus S „„is not a tensor of 8'6 and E( )„are Weyl
gauge fields. One left- and three right-spin-curvature ten-
sors follow from —0 ~"4~~„+ ~4 )

(3.1)

rp=g„pr, „. (3.2)

The b(„),T are taken to be four dimensionless coupling
constants and the constant A is included to achieve di-
mensional consistency. It has the dimension of length and
sets the scale of length for the geometry. We apply
Hamilton's principle to the action f L d x, where the
independent variables are the left- and right-connection,
metric and spinor-tetrad fields S „p, K(„)p, g „, and g,
respectively. The four sets of equations which result are

where the repeated x are summed over 1,2,3 and 1"p is the
vector operator, of type (2.17),

(3.3)

P(„)P".„— (QI PQI („)) (no x sum—mation),
Sb(„)

(3 4)
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A 2
1 PcT 1 aP & aPcr

Gpv i gpvG = 2b(x) (g P(x)ppP(x)av 4 gpvP(x)apP(x) )+ TgpvT TapaT

(K(„)„&qr„yr(„) )+K,„,.& pr„gr(„)) ) — & y „r..q+ q ,r„.q y—r,q „.y—r„y, (3.5)

i.r—~y.„,' T——P&E.~,„r„r&y ,'K—(„—)„r&yr(„)+w 'q=-o, (3.6)

where summation over repeated x index is carried out
everywhere except on the right of (3.4) and where

Ei„„„llg l l

—sig(A((ivo )

is the alternating tensor of the manifold and

0;p =4,p 4'Qm—n barmn 4

(3.7)

(3.8)

with Qm„& being defined by (2.31).
The equations (3.4) are the differential equations for the

three right-connection four-vector fields X(~)&. In SCL
there is just one of these right-connection fields and it is
interpreted as the geometric image of the electromagnetic
four-potential A&. Here we give this electromagnetic role
to K(z)z, associated with the Lie algebra element

iK(z)&I (z), although, in principle, any one of the genera-
tors iI („) could be so labeled. We take A(z)„as the elec-
tromagnetic four-potential in Heaviside-Lorentz units and
put

K(2)„——2q(g) (iric ) A (2)„,
—1

—1P(2)p„——2q(2)(iric ) F(2)pv

=2q(&)(~) '[~(2)p, v ~(2)v,„]

(3.9)

(3.10)

(3.11)

P'( )"
16q(z) b(z)

(3.13)

In the case of the spherically symmetric field of a charge
—eq(q) with Coulomb's electrostatic field intensity (at
large r)

—~q(z)
E(z) ——

4mr
(3.14)

we need the space volume integral of the divergence of the
(global) field intensity E(2) to satisfy the Maxwell-Csauss
condition

V-E(z)d x= F(z) ';d x= —eq(z),3 4i 3 (3.15)

where i is summed over 1,2,3. Implicit here is the non-

where q(z) and Mo denote an electric charge and a rest
mass, respectively, and where F(z)„ is Maxwell's field
tensor. With these identifications, the flat-space version
of (3.6) for a single minimal left ideal element g("') and
with neglect of torsion T~& and the potentials K(1)z and

K(3)p becomes, on account of (2.20) and (2.23),

iver&@ eq(&) a(2)„r"y—Mpc2q=O . — (3.12)

This equation is Dirac s equation for a charge —eq(2) and
rest mass Mp. Equation (3.4) gives

T=fic(16nG„Mp ) (3.16)

where G„ is Newton's gravitational constant, the field
equations (3.5) are, in the appropriate weak-field limit, the
Einstein-Maxwell equations for the free electromagnetic
field.

In analogy with the above, the two fields E($)p X{3)p re-
sulting from the enlarged connection group are now asso-
ciated with "strong" and "weak" charges, respectively.
We introduce as sources for these fields strong and weak
"charges" q{1) and q(3) respectively. If the corresponding
curvature tensors P(1)&, and P(3)p are short range, decay-
ing faster than inverse square at large r, the charges q(i)
and q(3) will give no observable flux far from the sources,
in contrast with the electric charge. Equation (3.15) will
hold if the corresponding field intensities E(1) and E(3)
are Coulomb-like as r~O rather than as r~oo. This
would be quite unacceptable in special relativity, causing
for example infinite self-energy, since the energy density
in that theory is given by E(~) . We shall see however
that the influence of the metric and torsion fields removes
this infinite-energy problem in the present theory (at least
in the particular case later demonstrated).

We note that the analogy made with Dirac's equation
(3.12) is purely formal. The field potential A& in that
equation refers to the so-called "external" field, whereas
no such dichotomy is envisaged in Eq. (3.6), where the
K(x)p field refers to the total field, including that of the
source itself. Likewise, there is only superficial similarity
between the torsion of (3.3) and the torsion of U4 theory. i
In U4 theory, the torsion originates from Cartan's non-
symmetric connection for real vectors in the space-time
manifold and is physically interpreted in terms of spin-
ning matter. Qur torsion has a totally different origin.
Further, its presence need not indicate any spinning
matter at all, as we shall shortly see.

In SCL the existence of positive and negative electric
charge follows from the eigenproperties of the left ideals
under the action of the right-connection group. Likewise,
the strong and weak charges will appear with opposite
signs in different ideals g("". Using the right multiplica-

Coulomb requirement that r E(z)~0 as r~O, since

f (7 E(2)d'X =4~ f d(r'E(2) )

for a radially symmetric field. To meet (3.15) we could
take, for example, the conventional normalization,

f llgll &Or'0&d' =1

in which case from (3.13) we would have b(2) ——(64ira)
where a is the electromagnetic fine-structure constant,
q(2) (4iriric) '. If we now take
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TABLE I. "Charge sign" table as constructed from the right
multiplication rules (2.19) to (2.21).

The equations (3.4) are satisfied for x =2, 3 by
K(z)p —K(3)p —0. The left curvature scalar is given by

Strong
Electric
%"eak

q( —,+) Ri' „„=G+r'i' r,„„= (1i1i),pv

where 6 is the Ricci scalar and the torsion scalar is
2—3A

128T2go2

(4.13)

(4.14)

tion rules (2.19) to (2.21) we can draw up a "charge sign"
table as in Table I.

Writing K());=0, i =1,2, 3, K())4 ——K, and denoting dif-
ferentiation with respect to r by a prime, the field equa-
tions give

K'= fogoJ— (4.15)
IV. NEUTRAL PIONLIKE PARTICLE

The m has zero spin and takes part in the strong and
gravitational interactions. We take as our model a field
with exact spherical symmetry which carries the strong
charge only. Numbering the coordinates x" by (r, 8, i', t)
and using A of (3.11) as the unit of length, the line ele-
rnent is

J'+ —J=2 fj fo 8
r 16b(&) go

(4.16)

fo 3foP + (1 fo)P= —(gK —2)Q foR —— AQ ~

2go 32Tg p

(4.17)

ds = f() dr —r(d9 +—sin Oditi )+g() dt (4.1) Q'+ —(1+fo)Q=—1 fo 3o
(riK 2)P foS—+ — AP

2go 32Tgo
where fo and go are real functions of r only. Equations
(2.2) are satisfied by the metric field

g~& diag(ifo, ——ir,ir sin8, go) . (4.2)

To achieve zero electric and weak fields we see from (3.4)
that our ansatz for the spinor field must be such that
(1iI &pl („)) is zero for x =2,3. From Table I, we expect
a spinor tetrad with nonvanishing components in just two
of the four ideals g'"", of the form (t)=f(+'+)+1()'+'
or ((ti=@' '+'+f( ' '. Thus, for some fixed g, either +1
or —1, we set 2

(4.18)

R '+ —(1+f() )R = — (riK 2)S f()P— — A—S,1 fo 3o
r 2go 32Tg p

(4.19)

S'+ —(1 —f() )S= (z)K —2)R —f()Q+ AR,1 o 3 p

2gp 32Tgo

(4.20)

4
ii y ieplz y (v&e) y(v, e)

V 2go e=+( n =(

with the ansatz

(g, e) ~ p i@8/2, ~ —i'/2

(g 0') ~p —i e8/2 ~ i e8/2
Q2 = —EE 8

(g, e) g —i'/2 g i@8/2
Q3

(g, &) -g i e8/2, g —i e8/2

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

f't b2fo 1(f z 1)= (()f zJz+ z 0 —
~ o

3f A
+

256T'go'

2 go 1+, (fo —1)
r go

fo'
(riK 2)B, —

8 Tgo

(4.21)

where P, Q, R, and S are real functions of r only. All
relevant inner products vanish except for

b()), , 3fo'A' fo'
f() J + — (riK 2)B-

256T g 8Tg

(yr„y)= "
2go

(PP) = (QR —PS),
go

where we have put

(4.8)

(4.9)

(4.10)

(4.22)

From the known short-range character of the strong
field, we want K and J to drop away with increasing r
about as quickly as the spinor field functions P,Q,R,S.
At large r, where all these quantities are negligible, the
equations admit Schwarzschild's solution

+ (PQ+RS)+ (PS QR ) . —fo' fo
2Trgo 2Tg p

A=P +Q R S- —
B=P'+ Q'+R'+S' .

(4.11)
2 —2 P

go =fo
8m'Tr

(4.23)
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with p some constant and M0 the fundamental mass of
(3.11). We now rescale the radial coordinate and the field
functions as follows:

y=rT,

KO —— , JO —— y J,qK gyT' T2

(4.25)

(4.26)

where the mass of our field generating object is taken as

(4.24)

fi(1—fi') fi'Ji'
+

2y 2y
T

fi y 3Ai KiB,
+ 2g)2 16 32y4 y2

—gi(1 —fi') gift'Ji'
2y 2y

f) y 3A) K(B(
+

g 16 32 4 2

(4.35)

, (. )
4y 2

(Pp Qp, Rp, Sp)'= (P,Q,R,S),T
where y is a constant defined by

(4.27)
where now from (4.11) and (4.12)

B( ——P,——+Q)2 2 (4.37)

—b(])T ~

2 (4.28)

If we write out now the field equations for the zero-
indexed functions we find that g (which determines the
sign of the strong charge) does not appear.

' Thus the
equations describe a classical particle-antiparticle pair
having the same mass, the same zero spin, but opposite
charge. The equations have been found too complicated
for a global solution in terms of explicit functions. How-
ever, we can find a solution with the help of machine in-
tegration if we neglect quantities with coefficient T
For this purpose it is convenient to split all field quanti-
ties into a "principal" part and a "smaH" part with coeffi-
cient T ' by the scheme

gi =fi2 —2 P
8~y

—a 4 p2

K, = 1+—
32y y 3 167Ty

(4.38)

(4.39)

2—a
16yy

1+2 16' (4.40)

1+3 P
192@y 16' (4.41)

For large y, the system (4.31) to (4.36) has a far-field solu-
tion

1
(fo&go& Jo&&o) =(f i&g 1 & Ji&&i )+ (f2&g2& J2&&2) &T Qi =—1+a p

y 16my
(4.42)

The principal part of the field equations allows two
equivalent, well-behaved solutions, one with 8 ~

——S~ ——0,
the other with P& ——Q~

——0. In each case the principal
part of the left curvature scalar (4.13) vanishes identically
by (4.10), but torsion is present and the solution can be
taken to r=0. In contrast the torsion-free case arising
from Pp ——Sp&O, Qp ——Rp+0 gives rise to a highly singu-
lar left curvature scalar and no way has been found to
continue the solution to the origin to give a particle with
finite mass. With the presence of torsion and the allowed
setting R& ——S~ ——0, the principal equations are (with the
prime now denoting differentiation with respect to y)

fight Ji
(4.31)

(4.29)

1
(Pp, Qp, Rp, Sp) =(P]&Q]&R ]&S&)+ (Pg& Q2, R2—,S2) .

T

(4.30)

-fi2nfB idy-= 1 . (4.43)

Integrating (4.32) we have

f dJ, = f Bdy. (4.44)

Since by (4.40) J~ ~0 as y ~ ao, it follows from (4.43) and
(4.44) that we must require

where a is a constant. This far-field solution is chosen so
that the strong field quantities X, and J& drop off in
unison with the spinor field quantities P& and Q&.

To specify the solution we must fix the three constants

p, y, and a. To fix y we first normalize the spinor field
by'the condition

f llgll&e I "0 &d'y= 1

which gives

fiQi
1

y

If' 3 Bi
1 2 1

1J) —— Bi,
16y gi

fiPi 1 fi
y 2g& 16 y

(4.32)

(4.33)

(4.34)

lim J(r) =
r~0 32~y r

(4.46)

By analogy with (3.10) and using (4.46), the physical
strong field intensity E~ &) as r ~0 is

lim J&(y)=J&(0)=
—1

(4 45)
y ~0 327K/

so that from (4.26) the original, unscaled J field is
Coulomb-like as r —+0 with
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Rc —pic
E( ii( i) = J(i') =

2g(]) . 64&/ g(])r

while by analogy with (3.14) and (3.15) we have

—'99(i)
Ei i i(i') =

4mr

so that by comparison of (4.47) and (4.48) we get

9'(i) 1

4m' 64~y2

(4.47)

(4.48)

(4.49)

a =2.4862X 10, p=1.3026 . (4.58)

The solution so obtained shows no significant deviation
from the far-field solution of (4.38) to (4.42) until we ap-
proach quite close to the Schwarzschild region, with the
Schwarzschild radius itself being located at

y =ys p(8')——'=0.0518 .

(y ~0) conditions (4.51), (4.53), and (4.56). Numerical in-
vestigation' has shown that all requirements can be met
by a (numerically) unique pair of values (a,p), namely,

(4.50)

The requirement (4.45) becomes

lim Ji(y) =Ji(0)= 1

y p 4
(4.51)

For later reference we introduce a "linear charge densi-
ty" C, defined by

(4.52)

which from (4.44) must satisfy the integral condition

f "Cdy= (4.53)

We can also introduce a "linear mass-energy density" D,
with the use of a standard procedure of general relativity.
In particular, ' if the field is static and the metric
tensor is Lorentzian at spatial infinity, g&
=diag( —1, —1, —1, 1), then the rest mass of the field-
generating object is given in (cgs units) by

r

m= I, g"c BU 4

8m G„Bg4&; (4.54)

where i is summed over 1,2,3 and U is the pseudoscalar
density which can be specified by

(4.55)

After some calculation" we find that D can be defined in
terms of the mass parameter iu, of (4.24) by

p= f "Ddy, (4.56)

where D is given in terms of the present field functions by

The equations (4.31) to (4.36) can be numerically integrat-
ed if qiii (4nfic) ' is roughly of order one. We shall now
assume that this "strong fine-structure constant" is exact-
ly one and take from (4.49)

(sr, ' —in) f i

8i =Goy I (p
(4.59)

J, = (1—I oNp'y ),
4 n

2

Ki =ko+O(y ) ~

I' i
——Npcos(Polny +Pp),

Qi =Nosin(Polny+Po),

~f1 1Q1 V 1TC= I py.2'
y

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

Here the zero-indexed quantities are all coristants. The
following relationships hold between these constants,
analytically derived and numerically verified:

3Np 31 oNo
&o= 13o=

512 32
(4.65)

As can be seen in Table II, the metric functions fi and gi
follow the corresponding Schwarzschild functions (4.38)
very closely until y —1.02ys, when a dramatic but well-
behaved deviation occurs. The function fi, rather than
tending to the Schwarzschild infinity, reaches a sharp but
finite maximum of magnitude 10.3 in the immediate vi-
cinity of ys. Likewise, the function gi, rather than fall-
ing unphysically through zero to imaginary values, retains
a real positive behavior. Here too the density D reaches a
sharp maximum of magnitude 1.7&& 10, with some 98%
of the total mass being concentrated between 1.02ys and
0.96ys, according to (4.56).

Moving inwards from the Schwarzschild vicinity, the
functions fi and D join gi in plunging smoothly, settling
to their final analytic form at about 0.86ys, where the spi-
nor intensity Bi becomes constant. The presence of tor-
sion (3 i term) dominates in the differential equations for
fi and gi, and the whole system (4.31) to (4.36) can now
be solved in terms of explicit functions which are well
behaved right down to the center at y =0. For
0 &y & 0.86ys, the solution is given by

The actual values of the constants as determined by nu-
merical integration are

J mf 3AD= 8mf, gi q + ~ KiBi-
g& 32y

, ~iQi+2~fi(1—fi') (4.57)

We must now integrate the system (4.31) to (4.36) with
the initial (y —+00) conditions (4.38) to (4.42), where the
constants a and iu, must be chosen to satisfy the boundary and

~p= 3 1899X 10 log~pGp =96.96,
6p=7. 6395 X 10 Xp =3.610 82 X 10

Po ——10.798, ko ———7.802 91X 10
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V. THE STRENGTH OF THE STRONG FIELD

At a distance r (in units of A) from a source of mass
m =pMO, the strength of the gravitational field in the
far-field region can be measured by Newton's

FG ——G„p Mo r2 2 —2

In terms of the y coordinate and the metric this is

dg)
FG =pkcTg) (5.1)

In like manner, the strength of the strong field at a dis-
tance r from a source of charge q~ ~ ~

can be measured by
F, =q~~~E~~~(r), where E~, ~(r) is the field intensity. Using
(4.47) we can write this as F, = , RcJ(r),—and using (4.26)

$0———1.257 .

We note from (4.64), (4.62), and (4.63) that in some re-
gions deep inside the Schwarzschild radius, the mass den-
sity D takes negative values due to its sinusoidal oscilla-
tion with respect to the radial y coordinate. However, the
absolute value of D is here extremely small and the total
integrated mass within this deep interior zone is zero,
with all the observed mass (@=1.3026) being positively
distributed outside and beyond y-0. 86ys. In contrast,
the charge density C of (4.64) is everywhere positive and
it is not until reaching the center at y=0 that all of the
charge q~ ~ ~

is finally accounted for.
From (4.10), (4.13), and (4.14) we see that although the

left curvature scalar R""&„is everywhere finite (namely,
zero), both the Ricci scalar G&z and the torsion scalar
T " T~&„have extremely strong but off-setting singulari-
ties at y=0, at least to the level of accuracy (T ') here
considered. In contrast, the right curvature scalar
P~~~""P~~~&„ is singular, behaving as J(r) o: r . In spe-
cial relativity this singularity would lead to an infinite
self-energy. That embarrassment does not arise in the
present case, since although this J term appears in the
energy density (4.57), it has a multiplicative metric factor
of f&g& which drags the term very strongly to zero at the
center.

we obtain in the y coordinate

F,
Sg ——

6TJi

2pTygi g r y gI g&
(5.3)

where we have used the values of p and y obtained previ-
ously.

Now the far-field of our particle begins just outside the
Schwarzschild radius. At

y=0.054=1 04ys ~

where less than l%%uo of the total mass has been penetrated,
the metric field is already very close to Schwarzschild's
vacuum solution and we shall identify this coordinate
value as giving the "surface" of the particle. As can be
deduced from Table II, the value of Sg at this y is 0.3T.
For values of y »1, or y »20ys, where the approxima-
tion (4.40) for J& is accurate, (5.3) gives S~ —10 ry
Thus, at the Compton radius, where the spinor field slow-
ly begins to emerge from the vacuum (or more accurately
from the cosmological background field, T 'e"), Sg is
very small, of order 10, since r =yT ' —1 at the
Compton radius fi(pMoc)

To specify Sg near the "surface" of our particle we
need an estimate for T. To what extent the "radius" of
the neutral pion has been objectively measured we do not
know. However, to the extent that our particle has zero
spin and exhibits the strong and gravitational force fields
only, we tentatively identify it as a m, with rest mass
some 264 electron masses.

Assuming forthwith that m =pMO ——264m, (with
m, =electronic rest mass), we get by (4.58) that
MO-203m, . This value for Mo is within 2% of 207m„
which is the muon mass. From (3.16) we calculate
T-2.8 && 10, so that at the "surface" of the particle the
strong force has relative strength 1 && 10

(5.2)

Thus a measure of the strength of the strong force as
compared to gravity in the far-field region is

TABLE II. The field behavior in the vicinity of the Schwarzschild length at y =0.0518. The func-
tion gs is Schwarzschild's (1—p/Swy }' ~.

gs g& fight Bi

1

0.1

0.058
0.055
0.054
0.053
0.052
0.051

0.050
0.046

0.974
0.694
0.326
0.240
0.201
0.149
0.057
not
real

0.974
0.696
0.334
0.252
0.215
0.169
0.103
0.020

0.003
3 X10-'

0.03
3.7

23
34
41
53
82
43

5.0
5 X10-'

1.00
1.00
1.00
1.00
0.99
0.98
0.89
0.08

1X�1-'

01X�1-' 1X10-'
3 X 10-4

0.47
3.22
8.49

33.1
328
515

7.30
4X10-4

5.8 X 10-'
1.1X10-4
6.4X10-4
9.8X10
1.2X10-'
1.6X10-'
2.6X 10-'
7.2X10-'

1.3X 10
3.3X10 ~

6.5X10
1.2X 10-'
9.3X 10
1.3X10 '
1.6X 10-'
1.9 X 10-'
2 5X10
3.4X10—'

3.6X10
3.6X10-'
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VI. CONCLUSION

The theory presented here is viewed as a logically neces-
sary enlargement of the SCL model. It would appear to
be the simplest classical generally relativistic theory which
might hope to embrace the four forces of nature in a uni-
fied manner.

The present enlargement of the spinor-tetrad connec-
tion group has a very simple but most satisfying conse-
quence from the cosmological point of view. The cosmo-
logical solution of SCL does not per se demand the use of
all four ideals of the fundamental spinor-tetrad. The re-
quirement that the universe should be in overall "neutral"
can be met in SCL by utilizing only two ideals of the
tetrad (each ideal representing opposite electric charge).
In the present theory, neutrality of the universe in the now
extended weak and strong sense requires that all four
members of the fundamental tetrad must certainly contri-
bute to the cosmological field, as is obvious from Table I.
This is clearly a most desired result in a theory aspiring to
describe matter via the spinor-tetrad field of a Mie world
Lagrangian function. Apart from this enforced change in
the intrinsic structure of the cosmological spinor-tetrad, it
is easy to find that the SCL cosmological metric solution
(namely, the zero-space-curvature Friedmann solution)
still holds.

Going now from the cosmological to the particle level,
computational complexity makes it very difficult to see
how our theory might ever deal with particle collision
phenomena. However, at the more tractable single-
particle level, it appears from Table I that, in principle, a
large number of different classical particles should be pos-
sible, although some of these are unrecognized by experi-.
ment. For example, the four-ideal electrically neutral
spinless particle dealt with in SCL (Ref. 2) would appear
in the present theory as an undetected massive gravita-
tional boson with zero weak and strong as well as electric
charge. We note too that some accepted decay phenome-
na cannot ever occur by the present theory. For example,
the simple decay ~ ~y+y violates the charge conserva-
tion law (3.4).

APPENDIX A

A convenient representation of the I,b is obtained from
the following I o and (2.5):

0 0 i 0
0 0 0 —i
—i 00 0
0 i 0 0

0 —1 0
—1 0 0

02 0 Q Q

0
0

0 0 —I 0

0 i 0 0
—i 0 0 0
0 0 0 i
0 0 —i 0

~04

0 0 —1 0
0 0 0 1

—1 0 0 0
0 1 0 0

One pointed question raised by our theory concerns the
predicted nature of the neutrino, in particular the value of
its rest mass. If the neutrino is to interact via the weak
(and gravity) force only, we would naturally assume it to
carry the weak charge only and so to be built from two
parallel spin- —,

' ideals lb'"" with the product ge being ei-
ther +1 or —1 in both ideals according to Table I. It
seems that the field equations cannot admit a solution in-
terpretable as such a charge with rest mass zero and speed
c. Indeed it appears that the only true rest-mass-zero ra-
diation fields observable in our theory are the long-range
gravitational and electromagnetic fields.
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