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Gravitation without black holes

15 MARCH 1985

A. G. Agnese and M. La Camera

(Received 3 August 1983)

The Schwarzschild, Reissner-Nordstrom, and Kerr exterior solutions in general relativity are
reconsidered adding to the vacuum a massless scalar field. The event horizons in the modified solu-
tions all reduce to a point, thus preventing the formation of black holes.

I. INTRODUCTION away. This point is left to further investigations.

In the study of the global structure of spacetimes
described by Einstein s theory of general relativity, an im-
portant role is played by Penrose's hypothesis of cosmic
censorship. ' In particular, all proofs of black-hole ex-
istence are based on this hypothesis. At present there is
widespread confidence in the first-order stability of black
holes, and the discussion of validity of the cosmic censor-
ship hypothesis is focused on the appropriate equation of
state to be used at extremely high density.

Now, to our knowledge, a precise formulation of cos-
mic censorship has not yet appeared in the literature, its
plausibility being supported on one hand by perturbative
and computer calculations and on the other by the lack of
any convincing counterexample disproving it. The main
point under investigation is, therefore, whether one can
obtain naked singularities by destroying, in a physically
reasonable manner, the event horizons associated with the
well-known black-hole solutions of the gravitational-
collapse problem.

The efforts in this direction seem to indicate that the
structure of the event horizons can be drastically changed
if the gravitational field is coupled to a massless scalar
field. Recently the authors have shown that even a
minimum amount of scalar charge in a body is sufficient
to give to the Schwarzschild horizon the topology of a
point. The purpose of this paper is to generalize the
above-mentioned result.

In Sec. II we summarize the effect of a scalar-field cou-
pling for the Schwarzschild spacetime, and the same
analysis is carried out in Secs. III and IV for the
Reissner-Nordstrom and Kerr spacetimes, respectively,
showing that in these cases too the event horizons shrink
to a point. In all these cases the energy-momentum tensor
describing the scalar field is chosen in its simplest form.
In Sec. V we shall obtain and discuss some exact static
solutions in the case of a conformally invariant massless
scalar field coupled to gravity.

The concluding section contains some comments on the
results obtained; in particular, we suggest that collapsing
matter is always associated with a scalar field, thus pro-
viding a justification to the introduction of the scalar field
itself. Finally, we mention that the stability of our solu-
tions under time-dependent perturbations will not be dis-
cussed in this paper, even if there may exist some choices
of the initial data such that the scalar charge be radiated

II. SCALAR-FIELD-MODIFIED
SCHWARZSCHILD SPACETIME

RIJ. = —2+).J.

and moreover imply the d'Alembertian equation

y=O.

(3)

(4)

The required line element, which can be written in the
form

d$2=e (r)dr2 —ea(r)dr2 —e j(r)r2(dg2+sin2gdg7 )

was already found by the authors in Ref. 4.
In this paper it will be more convenient to use a coordi-

nate system in which

(x( r)+y(r) =0
thus obtaining

T

dS = 1—
r

m/g

dr2 1——
r

j. —m/g

' —m/g

r (d8 +sin Bd(p ),

where

( m2 ~+2 )
I /2

The real constant o. which appears in the time-
independent scalar field

We begin by examining the static spherically symmetric
metric of gravitation coupled to a zero-rest-mass scalar
field in the exterior region. The field equations of general
relativity are

1

RgJ 2 gag 8 ITTgJ

where

1 & k
Tij = (pl pj 2 glj p pk)

4m

is the energy-momentum tensor of the neutral massless
scalar field and (p;—:B(plBx' (1'=0,1,2,3). Equations (1)
and (2) are equivalent to
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ip(r) = ln 1—0 2'
2' r

(9)
1 —m/q

2 2nA = f f &g32g33dOdy=4mr 1 — (16)

R=r 1—2q
r

' (1—m/q)/2

(10)

can be interpreted as the scalar charge. The radial coordi-
nate r varies in the range 2g & r & ao, correspondingly the
standard radial coordinate

while the proper lengths are, respectively,
(1—m/g)/2

L = + g—33d@=2mr'l- 27l
0 r

for a closed azimuthal curve 8=m/2 and

(17)

takes values between 0 and oo.
Let us note that at the value

2nLe 2 ——Q g32—d8=2mr 1—
0 r

' (1—m/q)/2

g'J=l'n~+n'I~ —m'm J—m 'm J, (12)

where I', n, m and m are all null vectors, with l and n real
and m and m complex conjugates of each other, and
I'n; = —m'm; =1, all other products vanishing. We ob-
tain, up to tetrad rotations,

lj=( r'"' 1 0 0)

n j= —,
' (1,—er'"', 0,0),

(13)

mj=
V2rej"2'~3 ' ' ' sin8

' (1—m/g)
(g+m) g —m

2m tj'+ m

the six-dimensional embedding changes from a pseudo-
Euclidean E(2,4) to a pseudohyperbolic E(3,3) one. The
analysis of the asymptotically flat spacetime correspond-
ing to the metric in Eq. (7) is conveniently carried out in
the Newman-Penrose null-tetrad formalism.

Let us decompose the metric (7) as
III. SCALAR FIELD MODIFIED

REISSNER-NORDSTROM SPACETIME

We shall now determine the static spherically sym-
metric line element (5) with the coordinate condition (6),
in the case when the interior material system of mass m
carries both scalar and electric charge. Accordingly, the
energy-momentum tensor in Einstein s equations is the
sum of the scalar field tensor (2) and of the electromag-
netic field tensor

k & rs
Tij ( Fik j + 4 gij +rs+

4m
(19)

Due to the spherical symmetry, the quadripotential vector
A; has only one nonvanishing component A0= V(r)
which, from Maxwell's equations in the vacuum, must
satisfy

for a polar curve q1 =constant.
It is now evident that the singularity at r =2g has the

topology of a point and the event horizon has therefore
shrinked to a point. Thus we cannot speak of a black hole
in the usual sense, even if the red-shift still approaches in-
finity as the radius of the body tends to zero.

m

2r (1 2'/r)'— (14)

It is then straightforward to compute the spin coefficients
and the Weyl scalars in the chosen frame.

The nonvanishing quantities are, respectively,

r —m —g r —m —g
r (1—2q/r) 2r (1 2glr)'—

1 1 2 1 F1
+00 2 711+Y1 1 + 2 Pl) 1+ r

2
(2P+r)e4

e~'"'r V(r) =q .
dr

Here the constant q is the total electric charge of the body
which is the source of the field.

The relevant Einstein equations are

and

cote
2v 2r (1 2qlr)"—

m (r —m —g) cr /3—2

4( 1 2 /r)2 —m/si
(15)

2 2

e —(2P+ y) 2 —2(P+ y)e —
4 e

r r

(21)

Therefore the metric is of Petrov type B, and moreover
there appears a singularity at r =2g which corresponds, in
standard coordinates, to R =0.

We investigate the structure of this singularity by ex-
amining the properties of the equipotential surfaces
gpp ——constant, t=constant, and of the closed curves on
these surfaces as r approaches the value 2q. The area of
the equipotential surfaces is

+ P1+—4

After some algebraic manipulations, one obtains the sys-
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2

y()+yi +piyi ——y( ——
4 e2 2 29 —{2P+y)

r
(22)

P—+0, y~O,

r P&~2(g —m), r y~ —v2m, as r~ (23)

(p))+ yii) +(pi +yi)'+ —(p)+y, ) =—(e '~+r' —l),

which can be integrated with the conditions

These are appropriate requirements to recover the previ-
ously known solutions when o. and/or q vanish.

Performing the integration, in the case q &I,we get

2 ((~2
q 2)/(~2 q 2) ]1/2

1 —2n q 11 I
r

+
&m —q

+ 2 2

j(m —q )/(q —q )]

1 9 vn q
r

er(r) 1 ~+ ~ e
2
r r 2

1 m+—1—
&m' —q'

2 2 t. (~2 q2)/(g2 q2)]1/2
~+

r

(24)

l d (r —2r)r+q ) d
2R3

y=p+, , ~= p=—
2R 2v 2R

(25)

and

'I 2
1 d 1dR

gz ——— ~ (r 2r)r+q )—
R

where the radial coordinate r now satisfies
g++g —q &r & ao and the corresponding standard ra-
dial coordinate R =re~" varies in the range 0 & R & oo.

Proceeding as illustrated in the preceding section, we
obtain that the nonvanishing spin coefficients and Weyl
scalars are, respectively,

IV. SCALAR FIELD MODIFIED KERR SPACETIME

We examine how the Kerr solution is modified if the
rotating body acquires a scalar charge. In the Boyer-
Lindquist coordinates, a general stationary axisymmetric
metric can be written as

d&2 e2vdt2 e2$(d+ ~dt)2 e2kdr2 e2Pdg2 (27)

Here also the metric is of Petrov type D and there appears
a singularity at r = ri+(g q)' =—r+, w—hich corre-
sponds, in standard coordinates, to R =0.

It is easily verified that the area of the equipotential
surfaces and the proper lengths of the closed curves I.+
and Lg on it, all tend to zero as one approaches the singu-
larity at r =r+. This implies that at r =r+ we have the
topology of a point and the black-hole behavior of the
standard solution has again been eliminated by the intro-
duction of the scalar field.

+(r —g)
1 dR

R dr
O

2

3(r 2rlr +q~)—
(26)

where y denotes the azimuthal angle in the equatorial
plane and r and 0 are the two remaining spatial coordi-
nates. The quantities v, g, co, A, , and p in Eq. (27) are
functions of r and 0 only.

The relevant equations are

[e" (e~+ )„]„+[e "(e~+ )e]g=O,
[e"'"+" '(4 v), ],+["++' "—(4 v).]e ""-[e"—-'(~ —)—'+—"--~(~ )']

[ 3c/i v+p-3. ] + [ 3g v+A. p— ] 0— —

[v.e+v, ve+Q, e+Q, Qe p, (g+v—)e &e(p+v—)„]—,' e "~ 'co„coe—= 2@„qe, —
[v (@+p) +@p']+e "[vee+ve(v p)e+Wee+—4e(4+v p)g]+ —e —'+ '[(~, ) —e '" "'(co ) ]=q&„—e '

[eQ+v+p —A~ ] + [e f+v+iL —p ] 0

(28)
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where the "comma" notation for partial derivatives has
been adopted. These are obtained by using the com-
ponents of the Einstein and Ricci tensors appropriate to
the chosen form of the metric as written down by Chan-
drasekhar and Friedman. We notice that, in the absence
of the scalar field, Eqs. (28) are the basis for a direct and
simple derivation of Kerr solution. In the case at hand it
seems more convenient to try whether the Newman-Janis
construction' retains its validity in the presence of a sca-
lar field and still provides a transformation from the
Schwarzschild to the Kerr solutions. Some evidence that
such a method could be effective comes from its success
in deriving a Kerr-type metric when applied to Brans-
Dicke theory. "

Turning to our problem, let us consider the radiation
form of the modified Schwarzschild line element (7):

where i and n are repeated principal null vectors of the
Weyl tensor [with x~=(u, r, g, y)]. Then the complex
coordinate transformation

u'=u —ia cosO,

I"'=r +ia cos0,
(33)

is performed, and the new coordinates are restricted to
real values. Of course, because of the Newman-Janis con-
struction, what is finally obtained is not a genuine coordi-
nate transformation.

Dropping the prime, the resulting tetrad is

ds =e 'r)du +2du dr e@"'r—(dg +sin~gdy~),

where the time coordinate u is chosen such that

(29)

P =(0,1,0,0),
n'=(I, ——,'er'" ', 0,0),

du =dt —e ~ 'dr

e I3(r)

r

(30)

1

v 2(r ia cosg—)e~'"' '~
—Ia sin6, ia sin0, 1,

IJ= I,a sing, —I.a sin0, 1,
v 2(r +ia cosg)e~'"' '

l

sinO

(34)
—l

sin8

e y(r) 1
2'g

m/g where

P(r 8) 1
2gf

r+a cosO

' 1 —rn/g

The metric (29) can be written in term of a null tetrad

lJ=(0, 1,0,0), y(r 0) 1
29~

r +a cos8

m/g
(35)

nj 1 ey(r) O 0
1

&y means of the coordinate transformation

(32)
du =dj— e t '" e'(r +a ~'cos g) +a ~ sin g

2 2
8P

~ —2gr +a

a
2 2

47
r —2gr +a

(36)

v 2ret'"'~~ ' ' 'sing the corresponding line element is, dropping the overbar,

2 2
&(„g) a sin L9

e P(r, e)(r 2+a 2cos28)

dr +2(1 er'"' ')a sin gdtdy—

(2 e (r, e) &a sin g—et"""(r'+a'cos'8) dg'+ 1+ '
e~'"' '(r +a cos 8)

sin g j'y (37)
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The line element (37) has now the form required by ex-
pression (27), so by comparison we obtain

2 2 2

e "= 2~ & 2 2~ R 2 2e ~= sinO, e =, e"=R
y2 R2

as the "dragging of the inertial frame, " we are allowed to
conclude that the parameter a can again be identified with
the angular momentum per unit mass.

The Kinnersley frame, ' which provides a suitable basis
for the description of the Kerr geometry, now becomes

a(R +a sin 8—b)
Q) =

g2

where

(38) l~= —(R +a sin g, b, O, a),

z (R +a sin 8, —6,0,a),
2R

R2=(r2+a2cos2g) 2 r
r+a cosO

5= r 2rjr +—a

X =(R +a sin 8) —a sin gb. ,

I —m/g

(39)

1

v2R,
lia sinO, 0, 1,' ' 'sinO

—ia sinO, 0, 1,' ' '
sinO

(42)

and the radial coordinate r varies in the O dependent
range

g+(g —a cos 8)'~ &r & ao

which corresponds to 0 & R & oo. It is easily verified that,
in the limit of vanishing scalar charge, one obtains the
Kerr solution.

Our task is now to check if the functions (38) together
with a suitable scalar field y(r, g) satisfy Eqs. (28). It
soon became very apparent to us that the required calcula-
tions were quite involved and easily affected by errors, so
that we preferred to test our results on a computer. In
this way we have verified that the functions (38) are
indeed solutions of Eqs. (28) adopting for the scalar field
the O independent ansatz

g+ &g' —a'
ln 1—

2&g' —a' (40)

2m 2 I, 2(g —m)e —1 — e"- 1— r sinO,
r r

Of course, this ansatz satisfies the d'Alembertian Eq. (4)
which, written explicitly, corresponds to the last of Eqs.
(28). The fact that in our solution the scalar field is only
r dependent is perhaps not surprising if we consider that
the source of the Kerr field can be a rotating spherical
body and that a 8 dependence might only arise from a
departure from sphericity. We remark that in this case
we should also take into account, for example, the scalar
field modifications to the 5&1 Tomimatsu-Sato families
of solutions, ' which however will not be pursued here.

It is also interesting to notice that the asymptotic
behaviors

where

R+ =(r+ia cosg) 1— 2' r
r +a cosO

(1—m/q)/2

1 (3

T

1 a 2
2

R +2ia cosO
Qr

lQ SlnO
2

(R +a sin 8),
2R+2A ~O

4 R +2ia cosO
4R

lQ SlnO
2 (R +a sin 8),2 QO

l

ia sing 8 2R +Zia cosO
2 2RR 8

(R +a sin 8),
4 2R~R

ia sinO
2

R +2ia cosO
2v'2R 2R Br

lQ SinO

4R'Z aO2 (R +a sin 8),

The spin coefficients in this frame are

(43)

(44)

2m 2„1 2(g —m)
r r

4(g —m) 2am
co 1—

r r 3

(41)
f=P+

cotO
2~2R

la sing 8 (R2 2 . 2g)
4 +Q Sln

ia sinO R
ln

4@2R+ Br r +a cos g

of the various metric coefficients, clearly shows that the
modified Kerr metric approaches the modified
Schwarzschild metric as r~ op. Moreover, interpreting m

+ 2 (R +a sing),
2 2RR+ Bg

1 aa=m. —P+
2v 2R2R 88

(R'+a 2 sin'g) .
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The components of the Weyl tensor can be calculated,
by (44), from the Ricci identities; once the Weyl scalars
are obtained, it is possible to arrive at the Petrov classifi-

cation. Since in this paper we are primarily interested in
the nature of singularities, we shall confine ourselves to
the analysis of the curvature scalar

g'JR;J = 2g 2

(r 2rir+—a )(r +a cos 8) 1—
r+a cos8

1 —m/g (45)

One sees immediately that there appears a singularity at

r =g+(g —a cos 8)'~ =r+(8)
13 —=f(r),

2
(49)

i.e., at R=O.
Here again the area A of the equipotential surfaces and

the proper lengths of the closed curves l~ and Lg all tend
to zero as one approaches the coordinate location of the
singularity at r =r+ (8). Therefore the singularity at
r =r+(8) has the topology of a point, and consequently
also the Kerr ergosurfaces and event horizons are reduced
to a point by the presence of a scalar field.

V. STATIC SPHERICALLY SYMMETRIC
SOLUTIONS WITH A CONFRMALLY INVARIANT

SCALAR FIELD

f (r) =ln . 1 — cosh ln 1—27) 2
a' 2'g

r . 2 3' r
(50)

the required solutions are given by

ds =cosh ln 1—a 2+
2 37] r

x
m/g

j 2 g
r

' —m/g

where f ( r) is a function at our disposal to select a suitable
coordinate system. If we choose

In the previous section we have described the scalar
field by employing the particularly simple energy-
momentum tensor shown in Eq. (2). More generally, we
can consider the stress tensor

1 —m/g

r (d8 +sin 8dy ) . (51)

y(r)=v 3tanh ln 1—0' 2Y/

2 3'g r
(52)

(46)

where G;~ is Einstein's tensor, R is the scalar curvature, g
is an adjustable parameter, and p is the mass of the free
scalar field y which, in curved spacetime, satisfies the
wave equation

( +JR+@ )y=O . (47)

In the massless case, which we shall consider, and with
the choice g= —, (four dimensions) T~~ is manifestly trace-
less and Einstein's equations imply R=O. As a conse-
quence the field equations (1) can now be written as

2

Rij =—4V'r0'g+giJV' 0'k+20 ~i~gV'
3

and the wave equation (47) reduces to the d'Alembertian
equation (4).

Our task is that of obtaining, as in Sec. II, the static
spherically symmetric line element [Eq. (5)] in the exterior
region. The explicit solutions to this problem which ap-
peared in the literature cover only particular cases. '

We shall impose the coordinate condition

It is easily seen, by comparing the line elements (7} and
(51), that the spacetimes obtained by Einstein's equations
with the choices /=0 and g= —,', respectively in the stress
tensor (46), are conformally related at @=0.

To analyze the properties of the line element so ob-
tained, let us consider the standard radial coordinate R
defined as

(]—m/q}/2

cosh ln 1—CT 271

2 3'g r

(53)

In general it is not possible to recover 'from Eq. (53} the
inverse function r =r(R) explicitly; however, some re-
marks on the behaviors of the radial coordinates r and R
can be made. Let us point out that even if asymptotically
they nearly coincide, great differences arise when r ap-
proaches the value r =2g from above. The investigation
near this point has been carried out numerically and the
results are the following: if cr &3m the function R(r)
decreases monotonically with r and takes the value R=O
when R =2g. On the other hand, when o &3m, R(r)
begins to decrease with r, reaches a minimum (of the or-
der g) when r is quite close to 2g, and finally, as r ap-
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proaches further the value 2g, R steeply tends to infinity.
Thus the function R (r) shows that there can be a singu-
larity at r =2g with the topology of a point only if
0 )3m

We remark that this condition does not seem very real-
istic; for instance, in this case the wavelengths of the radi-
ation emitted by the collapsing body should be blue-
shifted to zero as r ~2g. Furthermore, a computation of
the energy of the scalar field in the exterior region, that is,
from the body radius r p to infinity, by the Tolman expres-
sion

V —gRp8 x (54)

yields

E = . —tanh ln 1—m o. o. 29
2 v'3m 2v 3g rp

I

X sinh ln l-o 2Y/

3g rp

which is a positive quantity for o & 3m becoming infin-

itely large as ro~2g. In the case o. &3m and consider-

ing the values of r & 2g for which R;„(R (r) & oo we
can say that the minimum attainable surface has not the
topology of a point; but it does not appear as a null sur-
face either and, in this limiting situation the emitted radi-
ation would be greatly but not infinitely red-shifted.

We are well aware that the illustrated results are not ex-
haustive and that more investigations are necessary;
nevertheless, our analysis seems to indicate that the intro-
duction of a scalar field with a traceless energy-momen-
tum tensor leads to a model with very unusual physical
properties.

VI. CONCLUSIONS

We have shown that the introduction of a scalar field
with minimal coupling to gravity prevents the formation
of the event horizons which are present in all the well-
known exact solutions of the exterior problem which ap-
peared in the literature. A possible physical effect of the
scalar field stems from its masslessness, for the resulting
long-range interaction may affect the numerical computa-
tion relative to the classical experimental tests of gravita-
tion. Within our scheme we have checked that the only
modification concerns the precession of perihelia, but the
resulting correction turns out to be undetectable by the
present apparatus at least when o. «m .

The meaning of the scalar charge is clearly an open
question. It may well be that a satisfactory explanation
should be sought for not on classical but on quantum
grounds. For example, the capture of particles (or an-
tiparticles) which are created in pairs in the curved vacu-
um surrounding the body during the gravitational col-
lapse. This mechanism looks very similar to the one pro-
posed by Hawking to describe black-hole evaporation. '

Along these lines is the work of Roberts' who suggests
that, as a consequence of the uncertainty of local energy
arising from the curvature due to matter fields, the total
stress energy tensor must contain a term which may be as-
signed to a massless scalar field. Let us finally remark
that, apart from the difficulties it generates, the introduc-
tion of a massless scalar field into Einstein's equations
leads to interesting results for the global structure of
spacetime and future work in this direction will clarify
many points which are now obscure.
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