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We calculate the positive- and negative-parity spectrum of baryons by diagonalizing the hyperfine
Hamiltonian in a space corresponding to the SU(6) multiplets 56, 70, and 20. The highest spin con-
sidered is J =% for positive parity and J =% for negative parity. The main difference with the
work of Isgur and Karl based on the harmonic oscillator is that we consider the more realistic un-
perturbed wave functions derived variationally by Carlson, Kogut, and Pandharipande in a flux-tube
quark model. The finite size of the quark is also taken into account.

I. INTRODUCTION

Recently Carlson, Kogut, and Pandharipande' (hence-
forth abbreviated as CKP) have provided variational wave
functions for describing the nonstrange mesons and
baryons. They consider a semirelativistic Hamiltonian
with relativistic kinetic energy for the quarks and an adia-
batic potential derived from a flux-tube quark model. In
the case of a g7 pair the potential is a linear combination
of a Coulomb and a linear confinement term. For a
color-singlet gqq system they have shown that the poten-
tial energy can be expressed as a sum of three pair poten-
tials and a three-body potential which depends on the ten-
sion in the flux tubes. Accordingly, a three-body correla-
tion factor has been included in the baryonic wave func-
tions. Both the two- and three-body parts are
parametrized functions of the relative position of the
quarks and the parameters are found by minimizing the
energy.

The present study is intended as a complement to the
work of Ref. 1. We analyze the role of the hyperfine in-
teraction? starting from a nonperturbed SU(6) basis
formed with the variational wave functions of Ref. 1. We
calculate the nonstrange-baryon spectra closely following
the method applied by Isgur and Karl*~> for a harmonic
confinement. Apart from the more realistic long-distance
behavior of the confining potential, another important ad-
vantage in using the CKP wave functions is that one has a
consistent approach both for the color-electric and -mag-
netic interactions. The Hamiltonian of Ref. 1 yields a
unique unperturbed spectrum which does not have to be
adjusted separately for each parity. Moreover, there is no
degeneracy to be removed as in the harmonic-oscillator
case. Therefore such a procedure has more predictive
power.

The unperturbed space considered in this analysis is
spanned by the 56(0%,27%), 56’'(0%), 70(0%,17,2%), and
20(1%) SU(6) multiplets. The outcome of our calculations
is the spectrum of N and A and the mixing angles for
positive-parity states up to J=+ and negative-parity
states up to J =-.

More recently, Carlson, Kogut, and Pandharipande
have considered other variational wave functions® which
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in a qqq system include pair correlations due to the spin-
spin color-magnetic interaction. In the excited spectrum
of baryons they consider only the 1~ state and the O*
breathing mode and calculate energy levels up to J ==
for positive parity and J = % for negative parity.

In the next section we summarize the ingredients of our
calculations. In Sec. IIT we present the baryon spectrum
obtained from the diagonalization of the hyperfine in-
teraction modified to include finite-size effects and for
comparable J values we discuss them in the light of Ref.
6. Concluding remarks are given in Sec. IV. Appendix A
gives a detailed analysis of the normalization constants of
the CKP wave functions. In Appendix B we show that
the 66 matrix elements of the spin-spin and tensor parts
of the hyperfine interaction can be reduced to linear com-
binations of 13 three-dimensional integrals when the finite
size of the quark is taken into account. Therefore the in-
tegrals can be computed with a better precision than usu-
ally allowed by the Monte Carlo method.!¢

II. THE BASIS

In our calculations of the baryon spectra the space part
of the wave functions is treated as in Ref. 1. Accordingly
the wave function of a ggq system is chosen to be of the
form

Un(T12,T13,T23) =F 133 [ [ f (7))@ (T2, T13,T23) , (2.1)

. i<j
where f and F,; are the two- and three-body parts of the
ground-state wave function n =0. The functions ®, with
n=~0 are defined in Egs. (2.8) to (2.17). The function f is
parametrized as

Inf( "ij)= - W(rij)}‘lrij —[1- W("ij)])n.s"ijl's ’

(2.2)
1+exp(—rq/a)

W)= Cexplirg—ro)/al ’

(2.3)

where 7; is the distance between the quarks i and j
(i,j=1,2,3). One can see that the function f(r;) de-
creases at large r;;, as implied by the linear confinement.
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The three-body part is chosen as

2":‘4"%2’11' ’ ) 2.4

i<j

Fip3=1—BV0o

where r;4 is the distance between the quark i and a point
T4, where the flux tubes meet at 120°. For angles larger
than 120° this point becomes identical to one of the quark
positions 7; (i =1,2,3), as explained in Ref. 1.

The quantities A, A s, 7o, a, and S are the variational
parameters found by CKP:

A,;=0.637 fm~!,

Ays=1.40 fm~15 |

ro=0.12 fm , (2.5)
a=0.12 fm,

B=0.25 GeV~!,

and Vo takes the conventional value of the string-tension
constant )

Vo=1GeV/fm . (2.6)

As usual, we express the relative coordinates r; in
terms of the Jacobi relative coordinates

2.7)
1
v’6
By using the notations of Isgur and Karl*® for angular

momenta L =0,1,2 and projection M =0 the normalized
¥, considered in this study can be written as

A=—(T1+T,—273) .

Yoo=NooF , (2.8)
Yo=No[1—alp®+AD)]F, (2.9)
Wo=NBpAF , (2.10)
Yho=Nb+(p*—ADF , 2.11)
Wo=N%0poF , (2.12)
Plo=NRoAoF , (2.13)
Plo=N{op_A,—pA_)F , (2.14)
Yo=N3[3(pe>+Ae?) — (0 +AD)]F , 2.15)
YBo=N5(3pgho—pA)F , (2.16)
Yo=N%7[3(po*—Ae®) — (p—AN)]F , 2.17)

where
p+=pxtipy, Ai=Aytik,,
and
F=F [11(ry) .
i<j
Let us remark that the orthogonality of the above states

has been ensured by a proper choice of ®, in Eq. (2.1). In
Appendix A we show that the constant @ and the 8 nor-
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malization factors N/, where the superscript “sym”
designates the permutation symmetry, can be expressed in
terms of five independent three-dimensional integrals.
The three integration variables are p, A, and x =p™A /pA.
The value obtained for a from the orthogonality between
(2.8) and (2.9) is

a=2.53 fm~2. (2.18)

The hyperfine interaction? is modified to include the

finite size A of the quark as in Ref. 6. Then for the quark
pair 12 the spin-spin and tensor interactions read

MV 2rag 1

e 2/2A2§1 ‘§2 ) (2.19)

ST om? (2mA)2
Qg p
= rf
Vr V2m?*p? [e Vv2A
V2 L3 2 2 A2
_ 1432 —p“/2A
Wra | T2
1

As we consider only nonstrange baryons we deal with
completely symmetric states in flavor, spin, and space.
Then the contribution of all three pairs is given by three
times the contribution of the pair 12 in each given state.
The value of the strong-interaction coupling constant ag
is taken as in Ref. 1, i.e.,

———=0.5. (2.21)

3 #ic
The quantity A is assumed to be a free parameter. This
will be discussed in the next section.

We combine the spatial wave functions of Eqgs.
(2.8)—(2.17) with the quark spin and flavor in order to
construct totally symmetric wave functions. To describe
them in a SU(6) basis we follow the notations of Isgur and
Karl,>~ i.e., each state is represented by the normalized
ket | 2S+1X (u,L™)J™), where X =N or A, S, L, and J are
the spin, orbital, and total angular momenta, 7 is the pari-
ty, and p is the SU(6) multiplet.

In the following section we present the results obtained
by diagonalizing the hyperfine interaction Vg V1 in the
above-mentioned basis.

III. RESULTS AND DISCUSSION

The results obtained by the diagonalization of the Ham-
iltonian containing the hyperfine interaction in the basis
described in Sec. II are given in Tables I and II for
m=+1 and 7= —1 states, respectively. These results
have been obtained with a precision of 0.5% in the com-
putation of the integrals S; (i =1—7) and T; (i =1—6)
entering the matrix elements of the spin-spin and tensor
interactions (see Appendix B).

To allow a comparison with Ref. 6, we first consider
the same values for the quark mass, the finite-size con-
stant, and the ener%y constant, namely, m =360 MeV,
A=0.13 fm, and Ej=—1265 MeV. Later on, we shall
let m and A vary. A comment is in order for the varia-
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TABLE 1. Nonstrange baryons of positive parity. (1) Mass spectrum (this work). (2) Mixing angles (this work). (3) Mass spectrum
(Ref. 6). (4) Experimental mass spectrum (Ref. 7). Mass spectra are in MeV. Columns (1), (2), and (3) have been obtained with

m =360 MeV and A=0.130 fm.

State (1 2 3) 4)
“N(70,2+)1% 2028 (1) 1950—2050
“A(56,2+)%" 1985 1) 1910—1960
2N (56,2+)3 % 1860 0.864 —0.504 7% 103 1670—1690
2N (70,2+)%7 2006 —0.499 —0.858 —0.120
‘N(10,24)37 2061 —0.066 —0.100 0.993
“A(56,21)3 " 1997 0.599 0.800 1890—1920
2A(70,2+)3* 2011 0.800 —0.599
‘N(70,01)3* 1859 0.067 —0.859 0.507 0.007 7x 10~ 1690—1800
2N (56,2%)3+ 1956 —0.907 —0.195 —0.215 0.299 0.058
N (10,2%)3" 2008 —0.350 0.444 0.802 —0.182 —0.069
‘N(10,2%)37 2033 —0.205 —0.155 —0.225 —0.780 —0.524
2N (20,14)37 2077 —0.093 —0.046 —0.060 —0.518 0.847
“A(56,0+)3* 1308 0.991 —0.116 —0.053 0.035 1240 12301234
A(56',0%) 3" 1893 0.113 0.993 —0.031 0.030 1847 1500—1900
‘A(s6,2+)3 " 1986 0.068 0.035 0.842 —0.534 1860—2160
2A(70,2H)3% 2010 0.002 0.009 —0.536 —0.844
2N (56,0)+* 1092 —0.988 —0.106 0.110 0.024 —7x10~* 940 940
2N (56',0)++ 1712 0.093 —0.988 —0.121 © 0.001 —10-* 1583 1400—1480
2N (70,0%)4 " 1868 0.116 —0.108 0.973 —0.166 0.025 1680—1740
‘N(10,2+)5" 1996 0.041 —0.014 0.158 0.904 —0.395
2N (20,1+)LF 2076 —0.014 0.003 —0.041 —0.394 —0.918
2A(70,0*)4* 1934 0.99985 0.01758 1850—1950
“A(56,2%)+ " 1970 —0.01758 0.99985

tion of m. The unperturbed spectrum used in these calcu-
lations is taken from Ref. 1 and corresponds to the mass
mo=313 MeV. In cases where we use a different quark
mass, we calculate the effect of Am =m —m, by the per-
turbation theory.

TABLE II. Same as Table I for

In making the comparison, one should have in mind
that the essential difference between the wave functions
used here and those of Ref. 6 is that there the wave func-
tions contain short-range spin-spin correlations. In our
work we include mixing between different spin and angu-

nonstrange baryons of negative parity.

State (1 2) (3) 4)
*N(10,17)5" 1690 6 1661 1660—1690
*N(10,17)5 1579 0.998 0.069 1446 1510—1530
‘N(170,17)3 " 1726 —0.069 0.998 1628 1670—1730
2A(70,17)5 1657 (1 1564 1630—1740
2N(70,17)5 1568 0.945 —0.327 1399 1520—1560
‘N(70,17)%" 1673 0.327 0.945 1514 1620—1680
2A(70,17) 5~ 1657 ) 1566 1600—1650
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FIG. 1. The quark-mass dependence of the A-N splitting for
different values of the finite-size parameter A (in fm). The ex-
perimental value lies in the range (290—294) MeV.

lar momenta, but the correlations introduced in this way
are not short range.

As a general trend the calculated positive parity levels
are situated within the experimental error bars except for
those dominated by L =0 and/or S =+ configurations.
Such a result is consistent with the conclusion reached in
Ref. 6 according to which extra spin-spin correlations
have to be added to the wave functions containing quark
pairs with L =0,5 =0. Comparing columns (1) and (3) of
Table I one can see that these correlations help to bring
down the ground and first excited states of N and A by
~150 MeV and ~ 50 MeV, respectively.

For negative-parity states the situation is different.
Table II shows that the energies and also the mixing an-
gles calculated with the present approach are in better
agreement with experiment® than those found in Ref. 6.
This suggests that for the Hamiltonian which has been
used above and in Ref. 6, our negative-parity wave func-
tions have more appropriate spin-spin correlations for cal-
culating mixing angles.

To our knowledge there are no mixing angles extracted
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FIG. 2. Same as Fig. 1 for the N*-N splitting. The experi-
mental value lies in the range (460—540) MeV.
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FIG. 3. Same as Fig. 1 for the A*-A splitting. The experi-
mental value lies in the range (266—670) MeV.

from experimental data for w=+1 levels. Table I shows
cases of strong mixture for practically all J values. This
had to be expected from the closeness of the unperturbed
levels 56'(0%), 70(0%), 56(27F), 70(2%), and 20(1"). Note,
in particular, that the hyperfine coupling has inverted the
weight of the 56(2%) with that of the 70(0") and 70(2%)
configurations in the A(< ") and N(3 %) spectra, respec-
tively. A similar result has been also obtained by Isgur
and Karl.*

In Ref. 6, A has been chosen to reproduce the 7-p or
equivalently the N-A splitting. One may ask how the
above results depend on this choice. We have considered
other values of m as well as of A because they both affect
the hyperfine splitting. The mass has been allowed to
vary in the interval 250—360 MeV since values down to
230+ 15 MeV of the quark constituent mass are consistent
with chiral-symmetry breaking and QCD sum rules.® For
A we have taken values in the range 0.0—0.325 fm with a
step 0.065 fm, i.e., half the value of A chosen in Ref. 6. A
change in A modifies the effects of the hyperfine interac-
tion at short separation distances. In calculating the spec-
trum such a change can to some extent simulate the effect
of short-range correlations. For the various A considered,
we show in Figs. 1—3 the results for the A-N, N*-N, and
A*-A splittings as a function of m. Except for A*-A split-
ting (note the range on the ordinate scale) there is a pro-
nounced dependence on the quark mass which, however,
becomes weaker as A increases. From Fig. 1 one can see
that the present model can accommodate the whole con-
sidered mass range if A is properly chosen. For instance,
with m =250 and A=0.195 fm we can obtain the same
kind of fit as in Ref. 6. This is indicated in Table III.

TABLE III. A-N, N*-N, and A*-A splittings in MeV. (1)
This work with m =250 MeV and A=0.195 fm. (2) Reference
6 (m =360 MeV and A=0.130 fm). (3) Experiment (Ref. 7).

(1) (2) (3)

A-N 294 300 290—294
N*-N - 651 643 460—540
A*-A 589 607 266—670
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From Fig. 2 it appears that values even larger than
A=0.195 fm would be favored by the N*-N splitting.

IV. SUMMARY

In this work we have calculated the nonstrange-baryon
spectra up to J "=% and J"=3 by diagonalizing the
hyperfine interaction—modified for finite-size effects—in
a basis obtained from the variational wave functions of
Ref. 1 and which spans the 56, 70, and 20 SU(6) multi-
plets.

We have analyzed the dependence of the spectrum on
the quark mass m and the size parameter A which both
influence the coupling of various states. Our results sug-
gest that the present approach leaves an ambiguity in the
choice of m and A. There are several (m,A) sets which
give results very similar to those of Ref. 6. As the Roper
résonance has too high an energy for all choices of param-
eters, it seems desirable to improve the first 0" breathing
mode. The variational wave functions with spin-spin
correlations® give lower energies and therefore more accu-
rate values!® than ours for the chosen Hamiltonian. In
spite of this, our wave functions give better mixing angles
for the negative-parity states and the diagonalization
method being simpler allows more extensive calculations.
It would be useful to make a comparison with results
given by variational wave functions containing spin-spin
correlations for J7 > %+ levels and to further test the con-
figuration mixings by calculating decay amplitudes.!!
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APPENDIX A

In this and the following appendix, we use the compact
notation

(F[(- )| F)= [ dpd®A--OFAEE, (A

where ( - - - ) stands for any expression.

By taking into account that FX(p, 1) depends only on p,
A, and p-A, one can show easily that the normalization
factors appearing in Egs. (2.8) to (2.12) can be written as

(Ny)~2=Ny, (A2)
N 2
(Noo) 2=+ [7\%] (N3+2N4+Ns)—Ni,  (A3)
2
(NBy)2=+(N3—2N4+Ns), (A4)
(N30)"2=+F(N3+Ns)—2N, , (AS)
(N%)) 2=5(N3+Ns)+5N4 , (A6)
(N{))"2=2N4—5(N3+N5s) , (A7)
(N§)"2=%N,, (A8)

where N;...Ns are defined by

N,=(F|F), (A9)
N,=(F |p*|F), (A10)
N;=(F|p*|F), (A11)
N,=(F |p*\?|F), (A12)
Ns=(F |A*|F) . (A13)

Note that the six-dimensional integrals (A9)—(A13)
reduce to three-dimensional ones, three out of the six in-
tegrations involved in the calculation of the N;’s being
trivial. The remaining variables are p, A and x =p" Iy /pA
and the integrals can be computed without using the
Monte Carlo method. The values we obtained are given in
Table IV.

In the same manner, one can show that the constant «
which appears in Eq. (2.9) can be written as

1N

a= N, (A14)

In deriving (A14) and reducing all normalization con-
stants to the linear combinations (A2)—(A18), use has
been made of the properties

(F|p*|FY=(F |\*|F), \ (A15)
(F | p*A*Py(x) | F)= 5(F | (p*+A*) | F)
—2(F|p*A*|F) . (A16)

These relations can be easily proved by taking into ac-
count that F is invariant under all permutations of three
particles.

APPENDIX B

We present here the nonvanishing matrix elements of
the spin-spin [Eq. (2.14)] and tensor [Eq. (2.20)] parts of
the three-quark Hamiltonian in units of Cgg and Cr,
respectively, where :

4\/§,1Tas 1
$8= 2 2)3/2 (B1)
3m (27A°)
and
Cpm 28 (B2)
™= vam?

The expressions (B19) to (B84) given below involve the
following quantities:

E—e P 720" (B3)

TABLE IV. Values of the integrals (A9)—(A13) arising in the
calculation of the normalization factors [Eqgs. (A2)—(A8)] and
[Eq. (A14)].

N, 0.28984x 107!
N, 0.57262x 1072
N, 0.21158x 1072
N, 0.12013x 1072
Ns 0.21049x 1072
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3 2
—erf | P | _ 13m0 AT | a2
M =erf VA 3 2/*17A3 1+3p2 }e R
(B4)
S;=(F|E|F), (BS)
S,=(F |p’E |F) , (B6)
S;=(F |ME |F), (B7)
S,={F|p*E |F), (B8)
Ss=(F |p*A’E |F) , (B9)
S¢={(F |\*E |F), (B10)
S;=(F |p*A\*P,(x)E |F) , (B11)
=(F|Mp|F), (B12)
T2=<F M F) : (B13)
P
)\2
T3=<F M= F> , (B14)
p
}\2
T4=<F MZ=Py(x) F> : (B15)
KZ
T5=<F M2 py(x) F> , (B16)
p
A.4
T6=<F M pyx) F) : (B17)
p

In Egs. (B11) and (B15) to (B17), P, is the second-degree
Legendre polynomial and

= L
x= oA
As for the quantities (A9)—(A13), the integrals (BS) to
(B17) can be reduced to three-dimensional integrals and
computed without the Monte Carlo method.

The nonvanishing diagonal and off-diagonal matrix ele-
ments are listed below in terms of S; (i =1-—7) and T;
(i =1—6). As the operators Vg and V' are Hermitian,
we refer only to the triangle above the main diagonal.

(B18)

N(Z") subspace: { | ¥;)= |4N(7_0,2+)%+)}:
(N%y)?
(W] Ves | 1) =5 (3s4+3s6+1os5—4s7) (B19)
(NBy)?
(W, | Vr | W) =— 635‘(’) (3T, +7T3—T,4+3Ts) . (B20)
AT subspace: { | ¥1) = |4A(56,2)% )3
20)2
(W | Vss | W1) = (S4+Ss+2S7), (B21)
4( 20)
(¥ [ Vr | W) =— (Ty+2T4+Ts) . (B22)

| W)= |2N(56,2+)3 ")
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(B23)

(B24)

(B25)

(B26)

(B27)

(B28)

(B29)

N($%) subspace: || W,)=|2N(70,2+)3 %)
| W)= [“N(70,2+)% )
(N )2
(W, | Ves | W) = — ——>~(S4+S6+257)
N
(W, | Vs | W) = — ;S/N_2°(s4 Se)
. (NBy)?
(W, | Vs | W,) = — 12‘(’) (38, +3Ss+10S5—4S;) ,
)?
(W3 | Ves | W3) = 1;‘(’) (35, +3S5+10S5—4S,) ,
N$ N8
(0| Vr | W)= =22 (T =T,
(N8y)?
(W, | Vr | W3) = 1802‘0/7(3T1—7T3—11T4+3T6) )
)?
(W3] Vr | ¥3) = 2;‘; (3T, +7T35—T4+3Ts) .

| W)= |*A(56,27)3 )

NG subspace:
’ 1) = |?A(70,2H)% )

)2
W | Vs |0y =2V (6 ser2s)
)
<‘I’2|Vss|‘1’2>~— Vo (S¢+S¢—10S5—4S,)
2(N 0)?
(| V| W)= 51 (T +2T4+Tg) ,
N3:N%
W, | Vy|W,)=— —T.
(W, | V1| ¥,) 55 (T1—Te)
| W)= |*N(70,07)2 ")
| W,)=|2N(56,2%)27)
N(—;—+) subspace: {|W¥;) = |2N(m,2+)%+)

W)= |*N(70,27)2 ")
|Ws)=|2N(20,1%)37)

P)‘

. (N
(W] Vss | W1>=—#"—’—(3S4+336—2s5+8s,) ,

(N20 )

(W, | Vss | W) =— (S4+Se+2S7),

(B30)

(B31)

(B32)

(B33)

(B34)

(B35)
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<\I’2 ’ Vss I ‘I’3> = —[g‘NzoNtz,o(S‘r—SG) (B36)
C (NBy)?
(Wy | Vs | W) =— 125‘:) (3S,+3Ss+10S5—4S;) ,
(B37)
(N5, )?
(W, | Ves | Wa) = 1;‘(’) (35, +3Ss+10S5—4S;) ,
(B38)
(Ws | Vss | Ws) = —(N{)HS5—S7) , (B39)
NBN%
(‘PIIVT‘\P2>=“‘_—_12‘/§ (T\—T3+T,—Tg), (B40)
NBN%
<‘I’1|VT|W3>=m‘(3T1—7T3—11T4+3T6),
(B41)
N2.NE
(| Vr| \IJ4)=——%N‘/%(3T1+T3+5T4+3T6) ,
(B42)
NBE,N3,
(W, | Vp | W) = 2;’2[2°<T1—T6>, (B43)
(N%)?
(W3 | Vr | W)= 1802“’/2(31*, —TT3— 11T, +3T) ,
(B44)
NN
(\P41VT|\P5)=——6%(T3—T4). (B45)
| W,)=|*A(56,01)27)
A subspace: W)= ‘4A(§_6"’0+)%+>
i | 1wy =4as6,20)3 )
[W,) = |2A(70,27)3 )
(Ngo)?
(W] Ves | W) =—p"—51 , (B46)
(¥, | Vss | W) = °°N°°[s1—a<s2+s3>], (B47)
(NS)
(W, | Vss | W2) = [ S, —2a(S,+S3)
oS, +2S5+5¢)],  (B48)
‘ )2
(\1/3|VSS|‘I/3)-— Vo) (SutSe+250) (B49)
)
(\P41Vss|\ll4>—( 80) Sy +5,—1085_4S5,),  (BS50)
(W | Vr|¥3)= OONZO(T2+T5), (B51)

3v’5
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2N

(¥, [ V1| \Il4) 6i/——(—)00 T,—Ts), (B52)
SINS

(¥, | Vr | ‘I’3>=‘3L‘/§—00[ T,+Ts

—a(T+T3+T4+T6)],
(B53)
NN
(¥, | VT]\P4>=__E\7_1_6—[T2—T5
—a(T1+T3—T4,—T6)],
(B54)
N%N%,

(W5 | VTI\I/4)———15—‘—/-2—(T1—T6). (B55)
| W)= |*N(56,01)+ ")
[W,)=|2N(56,0+)+ ")

N(+7) subspace: { | W3)=|2N(70,0*)+7)
|W,) = |*N(70,2+)+ %)
| Ws)=|2N(20,1%)537)

(N5)?
(W) | Vss | ¥1)=— w05, (B56)
(W) | Vs | W) = — wmﬂ&—a&+&n (B57)
N5oNG

(¥, ] VSS]\I’3)=—4—V;2(SZ_S3) , (B58)
(N 0)?

(W, | Vs | Wy) = ———[ 1 —2a(S, +853)

+aXS,+285+S6)], (B59)
N3NG
(¥, | Vss | ‘I’3>=_——4_‘/§_OO—[S2_S3_‘Z(S4_S6)] )
(B60)
(N%)?
(W | Vs | W3) = — =2 (3844355~ 255 +8S) ,
(B61)
(N%y)?

(W Vs | Wa) =20 (35443564105 —457) ,

(B62)
2ANE?

(Ws | Vs | Ws) = — ———2(S5—57) , (B63)

NN 5o
=2 2(r,— B64
(W | Vr | 0y) == 2= (T, = Ts) (B64)
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‘ N3NN8,
(W | V1 | W) = PVeT:
X[Ty—Ts—a(T+T3—T,—Tg)],
(B65)
N8N
(W | Vx| w4>=_—7f;°%9(3T1—7T3—11T4+3T6) ,
(B66)
(N%y)?
(We | V| W) = —— 2= BT +7T5~ T +3T6) ,
(B67)
: N{oN%
= 0 r._T,). B68
(W, | V1 |¥s) e (T3—Ts) (B68)
A(+™) subspace | W)= 2A(20,0%)5 ™)
5 ubspace:
? | W,) = | *A(56,2+)1F)
(N§o)?
<l111 l Vss I \l’1>= 32 (S4+S6—6S5—'8S7) ’ (B69)
’ (N%)?
(¥, | Vss | W2) = ) ;0 (S4+Ss+2S7), (B70)
N5N3,
<w1|VT1w2)=—gi"%9(T1—T3+T4—T6), (B71)
2(N3)?
(¥, | VT|‘1’2>=——1;L“(T1+2T4+T6). (B72)
Negative-parity states:
N($7) subspace: { | ¥;)=|*N(70,17)3 " )}:
(N%)?
(W | Vs | W)= 21: (S, +S3), (B73)

135
(N8y)?
_ ¥;)=|2N(70,17)% )
N(37) subspace: ¥ ! z_
| W)= |*N(70,17)37)
(N%y)?
(W1 | Vss | ‘1’1)=——7?—(52+S3) , (B75)
(N%)?
(W, | Vs | ¥,) = 2‘: (S2+S3) , (B76)
(N®y)?
(WllVT|‘P2>=_36‘?E(T2—T5), (B77)
(N%,)?
<‘I/2|VT|‘P2>:_4150_(T2+T5), (B78)
A($7) subspace: { |¥;)=|2A(70,17)37)} .
C (N%)?
(W) | Ves | ¥1)=— 2‘: (35,—S3) . (B79)
_ ¥,)=|2N(70,17)+"
N(57) subspace: Y= - 2_)
| W,)=|*N(70,17)5 )
(N%y)?
(W | Vss | ¥1)=— (S,+S3), (B80)
24
(N%,)?
(W | Ves | W) === (5, +53) , (B8
(N%)?
(¥, | Vr|¥) = 3160‘ (T,—Ts), (B82)
(N8, )?
(W, | V| W) =— 312 (T, +Ts) . (B83)

A(L+7) subspace: { | W;)=]2A(70,17)+7)}:

TABLE V. Values of the integrals (B5)—(B17) arising in the calculation of the spin-spin and tensor matrix elements [Eqgs.

(B19)—(B84)].

A
(fm) 0 0.065 0.130 0.195 0.260 0.325

S 0 0.56419x 103 0.31825x 102 0.71005x% 10~2 0.11130x 10! 0.14495% 10!
S, 0 0.64842% 1073 0.11866% 1073 0.46775x% 1073 0.10134% 102 0.16220% 102
S 0 0.10258x% 1073 0.58648 103 0.13261x1072 0.20921x 102 0.27643x 1072
S 0 0.124 60X 10—¢ 0.75055x10* 0.53245x%10~* 0.16268x 103 0.32539% 1073
S's 0 0.11839x 103 0.22149x10~* 0.89315x10~* 0.19732x 1073 0.32243%1073
Se 0 0.35871x10~* 0.206 64 10—3 0.47106% 1073 0.74851x 103 0.99473% 1073
S 0 0.93819x10~% 0.408 7410~ 0.25316x 1073 0.71761x10~3 0.13695x10~*
T, 0.11674x 10! 0.11452x 10! 0.99072x% 102 0.71062x 102 0.463 89102 0.28926x 102
T, 0.96018x 10! 0.78502% 10! 0.49133x 107! 0.27331x 10! 0.14718x 10! 0.80054 %102
T, 0.18260% 10! 0.15176x 10! 0.97120% 102 0.55301 % 1072 0.303 84102 0.16788x 1072
T 0.52082x 1073 0.50257x 1073 0.41005x% 1073 0.28332x1073 0.17806x 103 0.10783x%1073
Ts 0.623 08102 0.41376x 102 0.22986% 102 0.11907x 1072 0.61266x 103 0.32317x1073
T 0.21835x 1072 0.14651x 1072 0.83222x% 1073 0.44169x 103 0 0.23213x 1078 0.12454% 103




136 R. SARTOR AND FL. STANCU 31

(N%,)?
24

We have therefore expressed the 66 nonvanishing ma-
trix elements (54 for m=+1 and 12 for w=—1) of the
spin-spin and tensor interactions as simple linear com-
binations of 13 three-dimensional integrals. The values
taken by S; (i =1—7) and T; (i =1—6) as functions of A
are given in Table V.

Note that the vanishing of S; (i =1—7) for A=0 com-
pensates the singularity which appears in the Cgg constant
[Eq. (B1)]. Explicitly, one has

<‘I’1|VSSI\P1>:— (352—S3) . (B84)

S; =0

N, rany .

for i =2, 4, 5, and 7 while

[{1_)11‘10 msl=0.15506 , (B86)

. 1 .
/{1310 m& =0.28013x10"", (B87)
1 S6=0.97621x10"2. (B88)

m 535
A—0 (27TA2)3/2

Actually in the limit A—0, the quantities on the left-hand
side of Eqs. (B86)—(B88) become one-dimensional in-
tegrals.
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