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Test-particle motion in Einstein s unified field theory.
I. General theory and application to neutral test particles
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We develop a method for finding the exact equations of structure and motion of multipole test
particles in Einstein s unified field theory —the theory of the nonsymmetric field. The method is
also applicable to Einstein's gravitational theory. Particles are represented by singularities in the
field. The method is covariant at each step of the analysis. We also apply the method and find both
in Einstein's unified field theory and in Einstein's gravitational theory the equations of structure and
motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In the
case of Einstein s gravitational theory the results are the well-known equations of structure and
motion of a neutral pole-dipole test particle in a given background gravitational field. In the case of
Einstein's unified field theory the results are the same, providing we identify a certain symmetric
second-rank tensor field appearing in Einstein s theory with the metric and gravitational field. We
therefore discover not only the equations of structure and motion of a neutral test particle in
Einstein's unified field theory, but we also discover what field in Einstein's theory plays the role of
metric and gravitational field.

I. INTRODUCTION

In this paper we develop a method for finding the exact
equations of structure and motion of multipole test parti-
cles in Einstein s unified field theory —the theory of the
nonsymmetric field. ' The method is also applicable to
Einstein's gravitational theory, as that theory is a special
case of the unified field theory. The method is covariant
at each step of the analysis. In this paper, in addition to
developing the method, we shall apply the method and
find the equations of structure and motion of neutral
pole-dipole test particles in both Einstein s unified field
theory and Einstein's gravititational theory. In finding
the equations of structure and motion of a neutral test
particle in Einstein's unified field theory, we discover not
only the equations of structure and motion of the particle,
but we shall also discover what field in the theory is the
natural choice for the metric and gravitational field.

However, our reason for developing the method goes
beyond the above simple applications. We wish to investi-
gate in Einstein's unified field theory the interaction of
particles over microsopic distances (atomic and molecular
distances) where the fields involved are relatively strong
and where the approximation procedure which has been
used previously to investigate the interaction of particles
over macroscopic distances is difficult to apply. An in-
vestigation of the motion of a charged test particle in a
relatively strong external field can be regarded as a first
step in such an investigation. In papers II and III of this
series of papers we shall find the exact equations of struc-
ture and motion of charged test particles in Einstein's
theory. The important role a test particle can play in the
study of the interaction of particles over microscopic dis-
tances in Einstein's unified field theory will become clear
through the following discussion.

In several earlier papers the author developed an ap-

proximation method for finding the Lorentz-covariant
equations of structure and motion of particles in general-
relativistic field theories. In the earlier papers the ap-
proximation method was applied both in Einstein s uni-
fied field theory —the theory of the nonsymmetric field-
and in Einstein's gravitational theory. The approximation
method will allow one to find the equations of structure
and motion of particles step by step with respect to the
powers of a parameter a. which measures the strength of
the field associated with the particles. In the approxima-
tion method the procedure for finding the field associated
with the particles can only be expected to be valid at
points which are sufficiently far from each particle, so
that one finds meaningful equations of structure and
motion only for particles which are not too near one
another. The order of magnitude of these distances have
been discussed in the earlier papers. When dealing with
Einstein's unified field theory and with particles having a
microscopic mass and a charge whose magnitude is of the
order of that of the electron charge, the interaction dis-
tances at which the approximation method breaks down
have been estimated to be of the order of the electron
Compton wavelength.

Using the author's approximation method, one does not
introduce phenomenological source terms into the
general-relativistic field equations one is studying. Parti-
cles are represented by regions of space-time in which the
field is very strong (i.e., the regions are very nonflat ).
For example, in Einstein s gravitational theory an isolated
particle might be represented through the Schwarzschild
solution (we shall call such a particle a Schwarzschild
particle), or through the Kerr solution (a Kerr particle),
or perhaps through some other solution to the field equa-
tions. In Einstein s unified field theory an isolated parti-
cle might be represented through the Wyman solution (a
Wyman particle), or through the Bandyopadhyay-
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Vanstone solution (a Bandyopadhyay-Vanstone particle),
or perhaps through some other solution to the field equa-
tions.

If sufficiently far from each particle the field one is
studying can be expanded in a power series in the parame-
ter a., then the author's method for finding the equations
of structure and motion of the particles is expected to be
applicable as long as the particles are sufficiently far from
each other. This is true whether the particles are
represented through singular or nonsingular solutions to
the field equations. However, at each order of approxima-
tion the approximate solution obtained using the author' s
approximation method when analytically continued into
the strong-field region associated with a particle will gen-
erally no longer approximate the exact solution to the
field equations and will become singular along a world
line associated with the particle. This world line can be
considered to define the position of the particle. We shall,
in fact, adopt this definition of position. The exact solu-
tion of the field equations may or may not be singular
along this world line.

Using the author's approximation method, one finds
that particles in both Einstein's unified field theory and
Einstein's gravitational theory are characterized by a
series of multipole moments, and that the particles in-
teract with each other through what can be interpreted as
forces and torques. The multipole moments associated
with a particle can be related to the particle's mass,
charge, magnetic monopole moment, spin, and higher
mass and electromagnetic moments. Both the force and
torque acting on a particle, in addition to depending on
the particle's kinematic properties, are found to depend on
the particle's multipole moments and an external field in
the vicinity of the particle. This external field can be re-
garded as produced by the other particles which interact
with the particle under consideration.

If one is willing to neglect the self-interaction terms in
the force and torque acting on a particle, (i.e., those terms
in the force and torque which are nonlinear in the mul-
tipole moments which characterize the particle), then the
equations of structure and motion of the particle can also
be found to any order of approximation desired through
the use of certain conservation laws which follow from
the author's approximation method. This is discussed in
the author's papers. ' The conservation laws do not deter-
mine all the terms in the equations of structure and
motion of a particle, but do determine those which survive
in the test-particle limit, that is, in the limit where one
neglects self-interaction and the effects of the particle on
the external field in its vicinity.

Through the use of the conservation laws one finds that
one can obtain the equations of structure and motion of
test particles step by step to any order of approximation
desired through only algebraic manipulation and differen-
tiation. No partial differential equations need be solved.
This suggests that one might also be able to obtain the ex-
act equations of structure and motion of test particles
through only algebraic manipulation and differentiation.
In this paper we shall show that this is so providing the
test particles are described through a finite number of
Inultipole moments. We call such test particles multipole

test particles.
In this paper we derive a general method for finding the

exact equations of structure and motion of multipole test
particles in Einstein s unified field theory and in
Einstein's gravitational theory. The method we derive is
closely related to a method developed earlier by Tulczy-
jew" for finding the equations of structure and motion of
multipole test particles in Einstein's gravitational theory.
Tulczyjew's method is based on previous work by Mathis-
son. '2

The principle advantage of our method over that of
Tulczyjew is that we derive it from the field equations of
the general-relativistic theories in which we are interested
without having to introduce phenomenological source
terms into the fundamental field equations of the theories.
Particles in the theories are represented by regions of
strong field. This distinction between the two methods is
important when dealing with Einstein's unified field
theory as Einstein regarded his unified field theory as a
complete theory of nature and thus in a fundamental in-
vestigation of the theory phenomenological source terms
should be avoided. This distinction is also important
when dealing with Einstein's gravitational theory if one
regards the gravitational theory as a special hmiting case
of Einstein's unified field theory.

Although we derive our method for finding the equa-
tions of structure and motion of multipole test particles
from the general-relativistic field theories in which we are
interested without introducing phenomenological source
terms into the fundamental field equations of the theories,
we do introduce and use, in finding the equations of struc-
ture and motion of multipole test particles, an auxiliary
set of field equations involving source terms. However,
these auxiliary field equations, which are useful for find-
ing the equations of structure and motion of multipole
test particles, do not replace the fundamental field equa-
tions of the theories. What we show is that through the
proper use of the auxiliary field equations one obtains the
same equations of structure and motion for multipole test
particles in an external field as one would obtain from the
fundamental field equations of the theories under con-
sideration, under the condition that the particles involved
are interacting over distances sufficiently great so that the
approximation method developed by the author and
described earlier in this introduction is valid. The equa-
tions of structure and motion obtained from the auxiliary
field equations are not expected to be valid under more
general conditions. Thus, if one uses the author's method
for finding the equations of structure and motion of mul-
tipole test particles in Einstein's unified field theory and
in Einstein's gravitational theory, one can see under what
conditions the test-particle concept is physically meaning-
ful in these theories, and one can also relate the parame-
ters characterizing a multipole test particle to the fields
associated with the particle when the test-particle limit is
not taken.

The method described in this paper when applied to
Einstein s gravitational theory gives the same results as a
previous method for finding the equations of structure
and motion of multipole test particles developed by Papa-
petrou. ' With respect to our needs, however, the Papa-
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petrou method has two disadvantages which the method
described in this paper does not possess. If one uses the
Papapetrou method one must introduce phenomenological
source terms into the fundamental field equations of the
theories one is investigating, and the Papapetrou method
is noncovariant.

The method described in this paper for finding the
equations of structure and motion of multipole test parti-
cles is easy to apply. In this paper, paper I of a series of
papers, we use the method to find the equations of struc-
ture and motion of neutral pole-dipole test particles' in
both Einstein's unified field theory and Einstein's gravita-
tional theory. This is the first time this has been done in
Einstein's unified field theory. The results in the case of
Einstein's gravitational theory are of course the same
equations of structure and motion as previously obtained
by Papapetrou' and by Tulczyjew. " In papers II and III
of this series of papers, we shall use the method to find
the equations of structure and motion of a charged test
particle in Einstein's unified field theory. In paper II we
find the equations of structure and motion of a charged
test particle possessing no magnetic monopole moment,
and in paper III we find the equations of structure and
motion of a charged test particle possessing both an elec-
tric charge and a magnetic monopole moment.

Why are we interested in the motion of test particles in
Einstein s unified field theory' First, as mentioned ear-
lier, until now there has been no satisfactory way for de-
ciding what field in the theory is the natural choice for
the physical metric and gravitational field. The natural
choice for the electromagnetic field is known. In investi-
gating the motion of a neutral test particle in Einstein's
unified field theory, we find that there is a symmetric
second-rank tensor field with respect to which a neutral
pole test particle posssessing no electromagnetic multipole
moments moves along a geodesic. This field is therefore a
natural choice for the physical metric and gravitational
field in Einstein's unified field theory. In the case where
the antisymmetric part of the fundamental field in
Einstein's unified field theory vanishes, and thus
Einstein's unified field theory reduces to Einstein's gravi-
tational theory, this symmetric second-rank tensor field
reduces to the metric of the gravitational theory. The
choice is therefore consistent with the choice of metric in
Einstein's gravitational theory. With this choice of a
metric one can say that in both Einstein's unified field
theory and Einstein's gravitational theory a neutral pole
test particle possessing no electromagnetic multipole mo-
ments travels along a geodesic of the metric of the back-
ground field.

However, the principle reason that we are interested in
the equations of motion of test particles in Einstein s uni-
fied field theory is that a study of the motion of test parti-
cles may give us insight into the interaction among parti-
cles over microscopic distances in Einstein s theory. Us-
ing the approximation method developed in earlier papers
by the author one can easily investigate the interaction of
particles over macroscopic distances (laboratory and as-
tronomical distances) since, in this case, one needs only
keep terms of lowest nontrivial order in the approxima-
tion method. Higher-order terms can be neglected. One

finds that charged particles in Einstein's theory interact
over laboratory and moderate astronomical distances
through the conventional classical electromagnetic in-
teraction. This has been discussed in the literature.
However, over atomic and molecular distances we do not
yet know the form taken by the interaction between
charged particles in Einstein's theory. Although the ap-
proximation method used to investigate interactions over
macroscopic distances is sti11 expected to be valid over
atomic and molecular distances, ' higher-order terms in
the interaction among the particles are not expected to be
negligible over such distances and thus the approximation
method is very difficult to apply. Many higher-order
terms must be evaluated and studied. However, if one is
willing to neglect the self-interaction acting on a particle
and the effect of the particle on the external field in its vi-
cinity, then one can obtain the exact equations of motion
satisfied by the interacting particle. One needs only find
the equations of motion in the test-particle limit. A
knowledge of the motion of a test particle in an external
field can thus be regarded as a first step in the investiga-
tion of the interaction of particles over microscopic dis-
tances.

In seeking the equations of motion of a particle in the
test-particle limit, we are neglecting the self-interaction
terms acting on the particle and the effect of the particle
on the other particles with which it interacts. We are also
assuming the particle is sufficiently far from those other
particles so that the test-particle limit is physically mean-
ingful, ' and since we are restricting our study to mul-
tipole test particles we are also assuming the particle can
be characterized with sufficient accuracy by a finite num-
ber of multipole moments. It is because of these idealiza-
tions and assumptions that finding the equations of
motion in the test-particle limit can only be regarded as a
first step in the investigation of the interaction of particles
over microscopic distances. The validity of the above
idealizations and assumptions when applied to particles
interacting over microscopic distances will be studied in
future papers.

We must next ask the question, can one understand the
interaction of particles over atomic and molecular dis-
tances by means of Einstein's theory without transform-
ing the theory into a quantum field theory, that is without
"quantizing" the theory. Einstein believed that this must
be so if the theory is valid. Einstein believed that if the
interaction among particles as derived from the theory
was treated statistically, then the theory, if correct, should
give results that are in a first approximation identical to
those obtained from conventional quantum theory. In
other words, he believed one should be able to derive in a
first approximation the statistical results of conventional
quantum theory from the unified field theory. Finding
the equations of motion of a test particle in a given back-
ground field can be regarded as a first step in an effort to
test Einstein's hope. Only after obtaining the interaction
among particles over microscopic interaction distances

' can we treat the interaction statistically and see if in a
first approximation the results of conventional quantum
theory follow from Einstein's theory. If this turns out to
be so, Einstein s ideas will have proved fruitful and his
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years of labor justified.
The organization of the paper is as follows. Section I

of the paper introduces the subject. In Sec. II we describe
the space-time manifold in Einstein s unified field theory
and also introduce the concepts of particle and physical
field in the theory. In Sec. III we discuss the contracted
"Bianchi" identities. In Sec. IV we introduce a set of aux-
iliary field equations which will be useful for obtaining
the equations of motion of test particles. In Sec. V we
develop the method for obtaining the equations of motion
of test particles. In Sec. VI we apply the method to the
case of neutral test particles possessing no electromagnetic
multipole moments in Einstein's unified field theory and
in Einstein s gravitational theory. In particular, we find
the equations of motion of a neutral pole-dipole particle
and a neutral pole particle. In finding the equations of
motion of these neutral test particles in an external field
in Einstein's unified field theory, we discover what field in
the theory is the natural choice for the metric and gravita-
tional field.

III. CONTRACTED BIANCHI IDENTITIES

where

—Rpa p R~g re Rperp~

R + + =R ~ ~ —Rpr~ —R~I ~~,

s =s„.,—s„.r,"„—s„„r,"..
(3.2)

The tensor R» has been defined in (2.3), and the tensor
S» is defined through the equations

Before we discuss the motion of particles in Einstein's
theory, we shall investigate certain identities which are sa-
tisfied by the fundamental field g„„.Making use of the
definition given in (2.2) of the displacement field I &„in
terms of the field g„„,it is not difficult to show that the
following contracted "Bianchi" identities are satisfied by

.18
gp, v:

(3.1)

~pv = rpv, p rpv, p ro'vrpp+ rpvrop (3.3)

II. SPACE-TIME MANIFGI. D

I't'ppl =0

R[p~p] 0

R(p )
——0,

(2.1a)

(2.1b)

(2.1c)

where the displacement field I Pz and the contracted cur-
vature tensor R» are defined through the equations

A. Field equations

In Einstein's theory of the nonsyminetric field nature is
regarded as a four-dimensional space-time manifold
whose structure is described through a second-rank tensor
field g». The fundamental field g&„satisfies the
general-relativistic field equations'

The contracted Bianchi identities will now be put into a
form which we shall find convenient for later use.

A contravariant tensor density S& associated with the
fundamental field g» can be defined through the equa-
tions

g» ( g) I/2g»

where g~" is defined through

gag =gag =
p ~

~p p

(3.4)

(3.5)

and g denotes the determinant of g». We are assuming

g&0. (3.6)

It is easy to show from (2.2) and the definition of g" that

(3.7)

g + —.( gp, p g ~pp gpa~p )

R p, v =
p, v,p re, v rp, o rpv+ p,vrpo

B. Particles and physical fields

(2.2)

(2.3) S @
—SI (pp)

——0,
where

g=( —g)' '.

(3.8)

(3.9)

(3.10)

A region of the space-time manifold is regarded as flat
if a coordinate system can be found in the region so that
the fundamental tensor field is equal to the Minkowski
metric throughout the region, that is,

From (3.7) one also finds

SP .—SP r,.„,+S'rP, =O, (3.11)

gpv ='gpv (2.4) S,o+S r[ae]+S red =0 (3.12)

Particles are limited portions of the manifold —limited at
least in the spatial directions —which have a very nonflat
structure. Portions of the manifold between the particles
and possessing a nearly flat structure are known as empty
space or vacuum. The slight deviations from flatness in
such portions of space-time indicate the presence of an
electromagnetic field if g(»)&0, and the presence of a
gravitational field if g~»&&g». Nearer the particles,
where the deviations from flatness are larger, the field gz
may also be associated with weak and strong interactions.

and from (3.9),

rP rP
(pp), ( p) p (3.13)

We introduce some additional notation. A field
which is a function of gp is defined as being

transposition symmetric with respect to the indices p and
v if with the replacement of gp~ by g p and the simul-
taneous interchange of the indices p and v of A. . .„„.. .
the field is transformed into itself. If the field is
transformed into the negative of itself, the field is defined
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S
R~v ——RPv+R~v,

S A
S~v ——RPv —R@

where

(3.14)

(3.15)

R„'.= r„.,—rp, „—I p.r +rp„r,.
+ ~(+imp), +~'f p),! 2~! ~rp ))

The tensor R„„is transposition symmetric with respect to
the indices p and v, and the tensor R& is transposition
antis ymmetric.

From (3.11) and (3.12) one finds

R „+gP Rpp+2g" R(pp)IP

=g' (Rp„l(~.) —R!~l (p~) ~ (3.18)

If we place (3.2) in (3.1) and make use of (3.14)—(3.17) and
the definition of g~" given in (3.4), we obtain

as being transposition antisymmetric. It is clear that any
second-rank tensor which is a function of g& can be
decomposed uniquely into a transposition-symmetric part
and a transposition-antisymmetric part. It also follows
from its definition in (2.2) that the displacement field I

&
is transposition symmetric with respect to its indices p
and v.

We shall decompose both the contracted curvature ten-
sor R& and the tensor S&„into parts which are transposi-
tion symmetric with respect to the indices p and v and
parts which are transposition antisymmetric. One finds
from (2.3) and (3.3)

C~ ——g R(») I [
M [p~] S

po A A A A+ —,g (R „+R„—R „—2R„I
„

+2R("„p)I p~) . (3.22c)

IV. AUXILIARY FIELD EQUATIONS

a)1/2apv g(pv) (4.1)

(4.2)

where a denotes the determinant of a& .' We also define
an electromagnetic field y(z ) as follows:

P [PV) 2 GPVPg g o
[~pl (4.3)

The field y(») is an oriented second-rank tensor field. We
shall show later that a& is the natural choice for the
metric tensor and gravitational field in Einstein's theory.
That y(») is the natural choice for the electromagnetic
field has been discussed earlier.

We next define a vector field i&,

(4 4)

A. Preliminaries

In seeking the equations of inotion of test particles in
Einstein's theory, we shall find it convenient to supple-
ment the fundamental field equations (2.1) with a set of
auxiliary field equations. In preparation for this, we first
define in Einstein s theory a covariant metric tensor a&„
and a contravariant metric tensor a~" through the equa-
tions

gP R +g PR„—2gP R(„„,l"
=g Rp~p+g (Rp&rp+Rpnp Rppcr zn pp

+2R( )I" ) . (3.19)

From (3.18) and (3.19) we see that the contracted Bianchi
identities (3.1) can be written in the form

an oriented vector field s&,
—1/2 ok' S

sz ———,( —a) a„„d'R (pQ' i, )

and a symmetric tensor field T»,
S & p~ S

Tpv R (pv) 2 apv R (p0. )

(4.5)

(4.6)

The indices on i&, s&, and T& are understood as raised
and lowered through a""and a& . Thus, we have

i"=a»i
p (4.7)

s"=a "ps
P '

T~"=a~&a "T., T&.=Z.„~=a»Z.„.(4.8)

(4.9)

We also define a vector density i& associated with i„,an
oriented vector density s„associated with s„,and a tensor
density Tz associated with T&,'

i& ——( )'~aip, — (4.10)

s„=(—a)'~ s&, (4.11)

(4.12)

The indices on ip, sp, and Tp. are also understood as
raised and lowered through a" and a& . Thus, we have

(g (pp) i pg (pa) ),o'+ Yg p (p~) p
(p~) S I 0' (pK) S & (pz) S

(3.21)

where

(gPR +gPR ) —gPR ~„
—g' ("ppl (-)—Rp-"(p-))

=gP (R ~p+Rp p Rpp 2R" I—pp-
+2R ("„p)I p ) . (3.20)

If we decompose the fields g" and Rz appearing on the
left-hand side of (3.20) into their symmetric and antisym-
metric parts, the Bianchi identities (3.20) will take a form
which we will find

especial'
convenient later. Decom-

posing the fields g" and R& as mentioned, and making
use of (3.8), one finds from (3.20),

M
Cp —Cp +Cp

E 1 [p~] SC —
p g R[p(y p)

(3.22a)

(3.22b)

i"=a "pi
p

s"=a "ps
p

(4.13)

(4.14)
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Tp~ g—l2pri~~T Tp —T p —gppT (4 15)

Finally, we discuss some notation. In the case of the
covariant differentiation of a tensor where the displace-
ment field is given through I p„,we have associated a +
or —sign with the tensor indices. See, for example, (3.2),
and for a discussion of this notation see Ref. 20. In the
case of the covariant differentiation of a tensor where the
displacement field is given through the Christoffel symbol

I~&„],where we define
r

'=
2

aP (a~p „+ao.„p—ap„), (4.16)

we will associate no sign with the tensor indices. Thus,
we shall use the notation

Next let us look at T"". From (4.15), (4.16), (4.19b), and
(4.2) we find

(4.22)

From the definition of a we have

g'""' T =[(—&)' ' ~" +(—a)' a" ]T„2, (4.23)

and from (4.12) and (4.23) we see that

P .„,P
i~.~——i" ~+ ip ' ' —i~ '

PA. PA

s A=s A+8 g
—sI —p p - p ~

P, P

(4.17)

(4.18)

Making use of
KA,a p

———aa„~a

and the definition of a", it can also be shown that

(4.24)

(4.25)

p v
Tpv Tpv +Tpv ' +Tfcp ~ ~ Tpv

p Al

. P
(4.19a)

PA,

1/2 & (KA)
( —a) p

——2a„,g p. (4.26)

Making use of (4.2), (4.6), and (4.26) in (4.24), we find

P +TP' ' TP'p p
pA, pA,

(KA) S
,pT~2.=g,pR(~) ) ~ (4.27)

B. Identities

(4.19b)
so that from the contracted Bianchi identities (3.21), the
definition of Tp, and from (4.1) we have

Tp .v= —
2 g ",pR( z)+&p ' (428)

We shall show that ip, s", and T""satisfy certain identi-
ties. Let us first look at i~ and s~. From (3.8), (4.1), (4.4),
(4.10), (4.13), and (4.17), and from (4.5), (4.11), (4.14), and
(4.18), we find

(4.20)

Placing (4.27) and (4.28) in (4.22), we obtain the identities

(4.29)

(4.30)

T~ .„=a&PC

Making use of (3.22), the definition of y(&„),and the defi-
nitions of T„,i„,i~, and s~, we also find

Cp ——Cp +Cp
s .p=s p=(} .P P (4.21)

I

where

~E
Cp =7[vp]S

fKv] & Ar & KA, v & Kv & [KA] v & [Ky]cp =y (TKp 2~ p+ T2, )i +( 2+ pi, 2+ RKp 2'Y R KpA2y R , p)i

[Kv] & [Kv] f i,~] & . & [Kv]+(——,y, p+ —2«.y y r(p, ))i„,„——,y

The curvature tensor R"„„2and the "dual" electromagnetic field tensor y("") are defined through

R "p g
——I p g —I pg

—I I pg+ I 'gI p

y(p&) —( ~) i&2g(9+1

(4.31)

(4.32)

(4.33)

(4.34)

C. Field equations

From the analysis contained in Secs. IV A and IVB, we see that if through Eqs. (2.2) one defines the displacement
field I &„in terms of g&„and the derivatives of g&, then the field g& will satisfy identically the field equations '

rial =~pp'
S 1/2R 1~~pl: ( 0) el'~~

1 p~~S ~pcsR (pv) 2 apva PL (p) a@pa v~ T

(4.35)

(4.36)

(4.37)
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where the vector density i", the oriented vector density s", and the tensor density T", defined in terms of P, s", an
T", respectively, through

ip=( —a)'/2i p,
sp ( a)i/2sp

TPv ( a)1/2TPv

satisfy the identities

i .p
——0,P

s".„=0,
T" . = appy*„[]s+appy[""](T, ,'a„a—'T—i„,)r

+ ( a pKa pi+ v a pKa pv+ a pKy [pi, ]g v pe~ [pv]~ )j2 PKA, pK 2 pKA, 2 PK V

+ (
i apky[Kv] +

apnea

y[lcv]y[p7']+~ )i + ( apiy[Kv])i

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.45)

In the special case where one chooses i"=0, sP =0, and T""=0,Eqs. (4.35)—(4.37) are Einstein's field equations (2.1).
The auxiliary field equations which we shall find useful for investigating the motion of particles in Einstein's theory

are obtained from Eqs. (4.35)—(4.37) by setting

i"= g f (&) [i "(x)5(x —g)]d(~)s+ gg f (~) [i" ' '(x)5(x —g)].)„.. . i d'~)s, (4.44)
P P l

s"=g f (i') [s "(x)5(x —g)]d(i')s+ g g f ()')[s" ' '(x)5(x —g)].i . . . )„d(i')s,

Tp = g f (~)[T(p'(x)5(x —g)]d'~'s+ gg f "'[T ' '(x)5(x —g)]. . . . d'~'s . (4.46)
P P l

In (4.44)—(4.46) a superscript (p) to the left of an expres-
sion means that those quantities in the expression which
are associated with a particle are to be associated with the
pth particle. The (i')g in (4.44)—(4.46) are the coordinates
of points along the world line of the pth particle, and (i' )s

is a parameter defined along the world line through the
equations

d (P )s 2 (P )a d (P)Pd (P)gv (4.47)

The field (~)ap„appearing in (4.47) is understood to be the
external metric field, appropriately defined, at the posi-
tion of the pth particle. In the case of a test particle,
(i')ap„represents the background field at the position of
the test particle. The tensor fields {~'i&, 'I'i " '

—(pv)A,T ""', and ' 'T ' ' and the oriented tensor fields
)~)MA~ ' ' A, -' 's p and ' s ' ' are defined in the vicinity of the pth

particle and depend on the structure of the pth paNicle,
on its kinematic properties, and on the external field in its
vicinity. Their explicit form will be discussed later. The
quantity 5(x —g) represents the four-dimensional Dirac
delta function. The indices on both x" and P have been
suppressed in (4.44)—(4.46).

V. EQUATIONS OF MOTION

A. Auxiliary field equations

We shall investigate in more detail the auxiliary field
equations discussed in Sec. IV, that is, Eqs. (4.35)—(4.37),
where ip, s", and T" are given through (4.44)—(4.46). ))[ e
wish to show why and under what circumstances the auxi-
liary field equations can be used to find the equations of

KtT ~ aux
'V[pv, p] ='9 ~pvpK cr

Q2y*

V(pv) 7(pp), v g(vp), p+ QpvV{pa) trav
p ~p ,p~ aux

where y[p ] is defined as in (4.3), and

(po )
~{pv) 9pp9vcrS Ipv ~

(5.2a)

(5.2b)

(S.2c)

(5.3)

(5.4)
.aux -pI p

= 'gpp1

aux pS~ =2 I@ps +Y Ipp R )KA ~)

t„'"„"=2a»a TP +(ap„aP rip„riP )R~—
p~ Pf

2(&(p~) 2npvn —&(p~)) ~-
The field R& is that part of the tensor Rzv which is non-
linear in g""—rip". On the left-hand side of Eqs. (5.2b)
and (S.2c) the indices have been raised with the Min-
kowski metric. From Eqs. (4.37) we find

(5.5)

(5.6)

S 1 p~
(pv) =Tpv 2 QpvQ +pa ~ (5.7)

so that the field t„'"*defined in (5.6) can also be written

structure and motion of particles in Einstein's unified
field theory.

If we assume the expansion

k8pv ~ + (kgpv~ (08pv gpv ~ (5.1)
k=0

for the fundamental field gp„(ais the expansion parame-
ter), the auxiliary field equations can be put into the
form24
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2—(~",„„,2—~„—.~p z~. ) . (5.8)

kin IE
27)ppsP=sp +s p (5.10)

Because of the general form of i", s&, and T&" as given
in Eqs. (4A4), (4.45), and (4.46) respectively, it follows, as-
suming the expansion (5.1), that we can always write =( a—)'"(t„"'„"+t„"„),(5.11)

.p .kin -IE'Iid ='i +'~ (5.9)
I

~here

, g f ' '[e u„]5(x—'p'g)d'p'&+, gg f 'p'e~( ). . . 5' ' '(x ~»g)dV»~fp&~] '
C C p l

s„"'"= Q f 'p'[eEu„]5(x 'p'g)d—'p'~+, g g f 'p'e 5' ' '(x 'p'g)d—'p'r'
fgo I] . ~ o;C C p l.

(5.12)

(5.13)

C

and

g f 'p'[ , Sou—+,S puq]—5'p(x 'p'g)d'p—'r+ — gg f 'p'm(p )(„).. . 5' ' ' '(x 'p'g)d'p—'r, '

C C p l.

(5.14)

'P'e 5(x —"'g)d'P'r+ — g g 'P'e 5" '(x —'P'g)d'P'rC2 IJ C2 ''pc
p P E

s„"= g f ' 'b„5(x ''g)d' —'r+- gg f ' 'b 5' ' '(x ''g)d' —'r
p P l

~ y f (p) a 5(x (p)g)d(p) + ~ y y f (p) 5 p1 p (x ( )g)d(p)(pv)pi ' ' pC
p E

(S.15)

(S.16)

(5.17)

The quantities

(p) M (p)e Me fpg ] ~ ~ - g. )
(p) E (p)

fy ]'''&.

.aux kin .int
P

aux kin lnt

(5.23)

(5.24)

(p) 6 (p)g ~ (p)
p» ~ fp~~]f v~2] .

(5.18)
aux kin int

~pv =trav +trav (5.25)

in (S.12)—(5.14) can be regarded as characterizing the pth
particle and are functions of a parameter 'p'w defined
along the world line of the pth particle through

d(P)P + g(P)gyd(P)P (5.19)

(5.21)

All indices in (5.12)—(5.17) are to be understood as raised
and lowered with the Minkowski metric. The quantities
(p) (p) (p) g, (p) g, (p)&C, Cpp e ~ e p "wp. . p ~V»
'P'a~&„~p . . .p in (S.15)—(S.17) will generally be functions(pv)pi .p;
of 'P'~.

We see from (5A), (5.5), and (5.8)—(5.11) that we can
write

We are using the notation
d(p)pp(pius ip)j p (5.20)

A dot over a quantity associated with the pth particle
means the derivative of that quantity with respect to ' '~.
%'e also assume with no loss in generality

(p) G (p)~pv= ~vp, ~

(p) 6 (p) (5.22&fp~~]fv~~] . ~. fv~2]fI ~~]. -

where
~ int - IE

int h
p 3 ~pp+ + fa'~ &]+~p
int IE

rpv 2(+(pv& Y Ipv9 +(peri)+trav ~

(5.26)

(5.27)

(S.28)

This means that the auxiliary field equations
(4 35)—(4.37), where i", s", and T" are given by
(4.44)—(4.46), are at each order with respect to the power
series in a. entirely equivalent to the field equations used in
the author's papers RVI and RVII (See Ref. 4) to find the
equations of structure and motion of particles in
Einstein's unified field theory. The approximation
method used in papers RVI and RVII to find the equa-
tions of structure and motion of particles in Einstein's
theory is called the conservation law method.

In papers RVI and RVII, it is shown that the conserva-
tion law method gives at each order of approximation
with respect to the powers of a the same results for the
equations of structure and motion of particles as an earHer
approximation method described in the author's papers
RI—RV, in which the field equations analyzed were the
fundamental field equations (2.1), and particles were
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represented by regions of space-time in which the field
was very strong, i.e., the regions were very nonflat. The
earlier approximation method made use of the expansion
(5.1) and thus could only be expected to be valid when in-
vestigating particles which are sufficiently far from each
other. The order of magnitude of these distances are dis-
cussed in the earlier papers and in the introduction to this
paper. Under the restriction that the particles are suffi-
ciently far from each other so that the approximation
method can be considered valid, it was shown that parti-
cles in Einstein's unified field theory could be regarded as
characterized by the quantities, which we shall call mul-
tipole moments, given in (5.18). If the number of these
moments characterizing a particle was finite the particles
were called standard ideal particles.

What we have found in this section of the paper is the
following: if one uses the auxiliary field equations
(4.35)—(4.37) and (4.44)—(4.47) to find the equations of
structure and motion of particles characterized by the
quantities (5.18), one obtains equations of structure and
motion which, if one expands them in a power series in x,
will be identical to each order in ~ with those obtained us-
ing the author's approximation method described in pa-
pers RI—RV. The auxiliary field equations can thus be
used to find the equations of motion of particles in
Einstein's unified theory —and also in Einstein's gravita-
tional theory since that theory is a special case of the uni-
fied field theory —under the same conditions for which
the author's earlier approximation method is valid.

However, there is a difficulty in using the method
which one also finds in using the conservation law
method. If one uses the auxiliary field equations one

I

finds that certain terms appear in the equations of struc-
ture and motion of a particle whose values are not deter-
mined through the formal use of delta-function notation,
and therefore one must deterinine the contribution of such
terms to the equations of structure and motion through
some other method —for example, through the method
described in the author's papers RI—RV. In the case
where one restricts oneself to finding the equations of
structure and motion of particles in the test-particle limit,
however, these terms do not appear, so that in this case
the equations of structure and motion can be completely
determined through the use of the auxiliary field equa-
tions. Test particles will be discussed in the next subsec-
tion.

B. Test particles

We define a test particle in the following way. If one
neglects the self-interaction terms in the equations of
structure and motion of a particle (i.e., those terms in tQe
equations of structure and motion which are nonlinear in
the multipole moments which characterize the particle),
and if one neglects the effect of the particle on the exter-
nal field in its vicinity, then one is investigating the equa-
tions of structure and motion of the particle in the test-
particle limit. A particle which is being studied in the
test-particle limit will be known as a test particle. If, in
addition, the particle can be described through a finite
number of the mulitpole moments, then it will be known
as a multipole test particle.

From the analysis in the previous sections we know that
the exact equations of structure and motion of a multipole
test particle must be consistent with the equations

jp —o

S .p
——0,IJ

(5.29)

(5.30)

gPV Q y[ p]s +a y (T~p —
p &~p& Ti„)

+( P Pi.g+ gP+gp~g gp+y[pi]Q+ g& y[p ]Q )i2 a a PKA 2 pK 2 PKA, PK V

+ ( PiLy[Kv] + aPia y[Kv]y[p ]P )i gp y[ ]i (5.31)

(5.32)

where over a region of space-time enclosing the world line of the test particle but not enclosing the world line of any oth-
er particle,

i"= f i "(x)5(x—g)ds+ g f [i ' '(x)5(x —g)].i . . . &ds,

s"= f s "(x)5(x —g')ds+ g f [s ' '(x)5(x —g)].i, . . . i ds, (5.33)

TP~= f T'~ '(x)5(x —g)ds+ g f [T ' '(x)5(x —g)].i, . . . i ds . (5.34)

We shall call the quantities i" and sp in (5.32) and (5.33) the electromagnetic current densities associated with the mul-
tipole test particle, and the quantity T~ in (5.34) the energy-momentum tensor density associated with the particle.

Equations (5.29)—(5.34) will completely determine the equations of structure and motion of a multipole test particle in
a given background field. We shall illustrate this in Sec. VI where using (5.29)—(5.34) we shall find the complete equa-
tions of structure and motion of a neutral pole-dipole test particle in both Einstein's unified field theory and Einstein's
gravitational theory In papers . II and III of this series of papers we shall use Eqs. (5.29)—(5.34) to find the equations of
structure and motion of charged test particles in Einstein's unified field theory.
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VI. NEUTRAL TEST PARTICLES

A. Preliminaries

We shall confine our study in this section to neutral multipole test particles in Einstein's unified field theory for which
all electromagnetic multipole moments vanish. Over a region of spacetime containing such a neutral test particle Eqs.
(5.29) and (5.30) are identically satisfied, since

i"=0,
s"=0,

and Eqs. (5.31), which must also be satisfied, take the form

(6.1)

(6.2)

gjM V gp, v +gpv ~
p

~V , V P~
=0, (6.3)

TP"= f T'""'(x)5(x —g)ds+ g f [T" ' '(x)5(x —g)].i . . . i ds, (6.4)

~p
Pl + P P P P (6.5)

ds =a&„dPdP . (6.6)

The field az„in (6.5) and (6.6) is the background field in the vicinity of the test particle. The coordinates of points along
the world line of the particle are denoted by P.

B. Pole-dipole test particles

We shall use Eqs. (6.3)—(6.6) to find in a given background field in Einstein s unified field theory the equations of
structure and motion of a neutral pole-dipole test particle for which all electromagnetic multipole moments vanish. For
such a particle (6.4) takes the form

T&"= f T'P"'(x)5(x g)ds+ —f [T'~ '"(x)5(x —g')].„ds. (6.7)

If we make use of the definition of covariant differentiation discussed in Sec. IV, and make use of the identities

f(x) f g (s)5(x —g)ds = f [f(g)g (s)]5(x —g)ds,

f(x}f g(s)5p(x g}ds = f [f(—g)g(s)]5p(x g)ds —f —[fp(g)g(s)]5(x —g)ds,

Eqs. (6.7) can be put into the form
r r

T""=f [T'""'"]5,(x —g)ds+ T'" '+T'»' ' '+T'"P' ' ' 5(x —g)ds,po' po

(6.g)

(6.9)

(6.10)

where the quantities in the brackets are understood as evaluated along the world line P of the test particle and are func-
tions of s.

If we make use of the definition of T"'. , see Eqs. (6.3), we find from (6.10) that
I

T" .„= [T'""'"]5„(xg)ds+ T'""'—+T'»' ' '+T' P' ' '+T'P ' ' 5 „(x—g)ds
V P P

po pO po
r

T'P ' ' —T'P '"' +2T'P '"' ' ' ' 5(x g')ds, —P — P — ~ P
(6.1 1)p~ pIC (TA,

where the quantities in brackets are functions of s. From (6.3} and (6.11) we shall find the exact equations of structure
and inotion of the test particle.

From (6.11), making use of the fact that (6.3) must be satisfied, one can show that there is no loss in generality in
choosing T '""'"to be of the form

y(pv)~ & gpaUV+ & gv~Up
2 2 (6.12)
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In (6.12) the quantity S" is an antisymmetric second-rank tensor characterizing the test particle,

s& = —s&,
and

dP
dS

Placing (6.12) in (6.11) one finds

T"".„=f [—,'S""U"]5„„(x—g)ds

(6.13)

(6.14)

V
T (~'+-'S&PU'

2 ~P

We are using the notation

r

' ——'S i'U ' 5 (x —g)ds+ T'i' ' 'p p
2 po, v pcs ,'Si' U—"R'"„z~5(x —g')ds .

(6.15)

R'&„~——
Kp KO . rP

P P
AP KO 'ACT KP

(6.16)

in (6.15). The field R' „~~is the curvature tensor associated with the background field a„„.
Qne also has

f [S""U"]5„„(x—g)ds= f S 5 „(x—g)ds
dS

DS" V—S»U-
po

' —S~"U ' ' 5„(x—g)ds, (6.17)

where we are using the definition where M is a scalar characterizing the test particle and
r

as&" ds~ p V
+Si ' 'U +S"i' 'U . (6.18)

Ds d$ po' po

The quantity DS&"/Ds, known as the absolute derivative
of the tensor S&" with respect to s, is a second-rank ten-
sor. Making use of (6.17) in (6.15) we find

y

XI'Up ——0, F~U~ ——0,
where

U~ ——a~„U

(6.26)

(6.27)

(6.28)

Tpv 7' p~ +— 5 „(x—g')d-( ) 1 DS"
2 Ds

This means that the first integral in (6.19) can be put into
the form

Ii ——f ['Y'""'+ Yl"")+X"Ui' Y"U"]5„(x——g)ds
T(~) ~

Pc7
' ——,

' Si' U"R*"„p 5(x —g)ds .

(6.19)
+ f (MU" +X"+ Y") 5(x —g)ds .d

$
(6.29)

(6.20)

where

We must next investigate further the integrals appear-
ing in (6.19). The first integral in (6.19) can be written

I, = f Yi'"5„(x—g)ds,

If we then make use of (6.29) in (6.19), we find

T"",.= f ['Y'""'+'Y'~")+X U& Y"U~]5.(x —g—)ds
l

-" ~U~+X~+yp +T(p )

d$ pcT

yp, v g[pv]+ y(pv)

g(pv) T (pv)

(6.21)

(6.22) ,'Sl U"R'"„~5(x——g)ds . (6.30)

1 DS""
2 D$

(6.23)
Since (6.3) must be satisfied, it follows from (6.30)

that"

With no loss in generality, one can always write

y(&"'=*y(&")+X&U"+X"U&+mU&U",

y[jMv] + p[pv]+ y'p U v yvUfl (6.25) 'y(~")=o, ~[~"]=0, y~=x~ .

'« ~(pv)+ + y[pv] yvpp+Xv~p

(6 24) which is equivalent to

(6.31)

(6.32)
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Making use of (6.32) in (6.30) we find
r

T"". = MU~+2X~
ds

as»T" . = MU"+ U ——SP R*& U"
v D ' D p 2 KIT

X&(x —g)ds, (6.39)

+ T'~'' ' —'S~ U—"R " 5(x —g')ds .
po 2 KpP'

T &&"&=mU&U"+X&U"+X"U&, (6.34)

DS~
2XPU 2X UIJ

Ds
(6.35)

(6.33)

If, in addition, we make use of (6.24), (6.25), and (6.32) in
(6.22) and (6.23), we find

where we have made use of the definition,

DA" dA"
Ds ds po' (6.40)

of the absolute derivative DAI'/Ds of an arbitrary vector
A& defined along the world line P.

Since (6.3) must be satisfied, we see from (6.39) that
neutral pole-dipole test particles for which all electromag-
netic moments vanish obey the equations of mass and
motion

and from (6.35) one has

X~ 1 DS
U

2 Ds
(6.36)

Da~ —-S~Z'&„U"=O,
Ds 2

where

(6.41)

Placing (6.36) in (6.34) we see

T'""'=MU"U~+ — U U +— U U",
2 Ds P 2 Ds

(6.37)

DS"P
PIJI ~UP+

Ds
(6 42)

From (6.38) we also see that the particles obey the equa-
tions of spin

and placing (6.36) in (6.35) gives
DS~ DS"P v DS

Ds Ds P Ds
(6.43)

DS" DS
U Uv DSPU U&.

Ds Ds P Ds
(6.38)

Finally, making use of (6.36) and (6.37) in (6.33) we find

If we make use of (6.12) and (6.37) in (6.10), we find that
the energy-momentum tensor density T& associated with
these test particles is given by

T""=f [—,S""U"+—,'S""U"]5„(x—g)ds

1 DS» 1 DS"PMUI'U" + UU—"+— U Ui'+ ,'S» U —+,' S I' —'U 5(x g)ds . —
2 Ds P 2 Ds P Po ' Po

The particles are characterized by a mass M and a spin S"". The physical interpretation of M and S""follows from the
form of the equations of structure and motion (6A1)—(6.43).

In the special case of Einstein s gravitational theory, the equations of structure and motion (6.41)—(6.43) were first ob-
tained by Papapetrou using a method different from the method described in this paper but related to it. Papapetrou
assumed Eqs. (6.3) in Einstein s gravitational theory and then studied the relations among integrals of the form

f T&"d x, f (x~ P)TI' d x, f—(x~ g~)(x P)T"—"d x, — (6.45)

which are imposed by (6.3). From a study of these relations he arrived at the equations of structure and motion
(6.41)—(6.43) for pole-dipole test particles in Einstein s gravitational theory.

It is clear that Papapetrou's method and the method described in this paper give identical results for the equations of
structure and inotion of multipole test particles in Einstein s gravitational theory. For the case of neutral pole-dipole test
particles we illustrate the relationship between the two methods for finding the equations of structure and motion of test
particles, by evaluating integrals (6.45) using (6.44), and then checking to see that the results obtained using the method
described in this paper are identical to those obtained using Papapetrou s method. From (6.44) one finds by direct in-
tegration

3 1 1 DS"P 1 DSPT" d x= MU"U+ — U U+ — U U"
U4 2 Ds P 2 Ds

+ —,S"P I 1 d U" U"
~ Ucr+ & Svp ~ ~ Ucr+ Sp4 +Sv4

}o~ ' y~ 2 ds U' U' (6.46)
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UP
(x~ P—)TI' d x = ,' (S—~"U"+Si' U" )+ , (S—"U +S" U")

U4 2 2 U4
(6.47)

and all other integrals of the form (6A5) vanish. From Eqs. (2.7), (3.5), (3.8)—(3.10), (4.1), (5.1), and (5.2) in Papapetrou's
paper, one also obtains for I T""d x and I (x~—P)T""d x the expressions given in (6.46) and (6.47), while all other in-

tegrals of the form (6.45) vanish for pole-dipole particles. The two methods thus give identical results.

DPP
Ds

where

(6.48)

P"=MU" . (6.49)

The particles are characterized by a mass M. Equations
(6.48) and (6.49) are equivalent to the equations

dU" I Ui'U =0,
ds

(6.50)

C. Pole test particles

From (6.41)—(6.43) we see that in Einstein s unified
field theory the equations of structure and motion of neu-
tral pole test particles possessing no electromagnetic mul-
tipole moments are given by

APPENDIX A: a„„ANDa""

We assume that the fundamental field g» exists and
has a nonvanishing determinant g over the region we are
studying. This means that g is finite and that g&0.
Under these conditions the field g» exists and is uniquely
determined through Eqs. (3.5). We also assume that Eqs.
(2.2) determine, as a function of g» and its derivatives, a
unique and finite field I ~&„over the region. Under these
conditions it follows that both the fields g~»~ and g'" '

have nonvanishing determinants over the region. That
under these conditions the field g&»~ has over the region a
nonvanishing determinant —which we denote by h—is
shown in Ref. 31. Under these conditions it is also shown
in Ref. 32 that

dM
GS

(6.51) g =Ah, (A 1)

Therefore in Einstein s unified field theory, such neutral
pole test particles move along geodesics in the background
field a». This justifies our earlier statement that a» is
the natural choice for the metric tensor and gravitational
field in Einstein's unified field theory.

where the quantity Ii denotes the determinant of g'" '.
From (Al) we see that the field g'" ' will also have a non-
vanishing determinant over the region. This means that
the fields a» and a», defined in Sec. III through Eqs.
(4.1) and (4.2), exist over the region and that a&0.

APPENDIX 8: T 'I'"'"

The tensor T '" '", which appears in the equations

T""=f T'»'"5„(x g)ds+ J T'""'+—T'"i' V P'+T'"i' ' ' 5lx —g)ds,po po (81)

can with no loss in generality always be written as a function of the four-velocity U",

dg'"

8$
(82)

and tensors perpendicular to U". This we shall now show. If we define T'""'", T"", T", and A'&"' in the following
ways,

T(PV)K T (Pv)K y (Pv)aU UK T (Pa)KU Qv T (va)KU UP+ T (Pa)PU U UvUK+ T (va)PU U UP, UKa a a p a p

+T'P'"U. UpU&U" —Z. 'P'y U. vpU, U&U UK

TKI —T(la) U T(I »U U UK T(» U U UI+T(aP)yU U U UF Ua a p a p a p y

+ TK—T (aP)KU U T (aP)y U U U UKa p . a p y

g(gcv) T (I V)aU a ~

where

(83)

(84)

(85)

(86)

Up ——ap„U
we find

(87)
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+Z(I ) U —0 +T(& ) U =0
eTKPU 0 TKI U 0
*T"U„=o,

(88)

(89)

(810)

T (Pv)K + T(Pv)K++ TKPUv+Q TKvUP++ TKUP, Uv+ A (Pv) UK

Furthermore, since

f A'P'"'U"5„(x f)ds—= f [A(&"'„U"]5(x g)ds—

p V
[A'""'. U"]5(x —g)ds+ —A' "' ' 'U"—A' "' '

~K OK
'U" 5(x —g')ds,

(811)

(812)

we also find

where

d T("v)K=A(I v)UK

r

+aT("p' 5(x —g)ds= f aT(p")5(x —g)ds,
PcT po

(813)

(814)

~T(~")=A(~"). U"=
;K

' p V
A'~"' +A'~v' ' +A'~~' ' ' U"

OK gK
(81S)

I

This means that the term A (""'U"in (811) is equivalent to a term A ("").KU" in T (&"). This follows from the form of the
right-hand side of (Bl). Therefore, since T'""' is arbitrary at this stage of the analysis, there is no loss in generality in
choosing

b T 'P' '"=A '""'U"= —,' ( T"U"+'—T"U" )U",

and thus T '""'"can, with no loss in generality, always be considered to take the form

T (Pv)K *Z-(Pv)K+ & gPKUv+ gvKUP
2 2

where we are using the abbreviation

S~"=2*T~+*T U~ —'T~U".

(816)

(817)

(818)

We have succeeded, with no loss in generality, in writing T'""'"as a function of U" and the tensors T'""'", T"",and
*T"perpendicular to U".

From (6.3) and (6.11) we see that the form of the tensor T (" '" must be such that

f T' "'"5„„(g)d + —T'""'+T' ' +T'" ' ' +T' " 5.( —g)d
V P P

pO PET pg, iV

r

+ T (pu) ~ T (per)K i ~ +2T (prr)K ~ ~ ~ 5(x
IJ — P

p(T, pcs „piccTA,
Placing (817) in (819), we find the first integral on the left-hand side of (819) takes the form

f [ '('T()'")"+'T'p"'")+——,'S'""'Up]5 (x —g)ds~ f [ ,'S""U"]5„„(x——g)ds .

Making use of (820) and the identity

f [—,'SP"U"]5„„(xg)ds= f [—2S)'"„U"]5„(x—g)ds,

we see that Eqs. (819) can be put into the form

f C"(~)5~(x —g')ds+ f C""5„(x—g)ds+ f C"5(x —g)ds=0,

where

CP(vK) ~ (+ T(j4v)K+ AT(P|K)v) + ) S(vK)UP
2 2

and where

(819)

(820)

(821)

(822)

(823)
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C&( 'v„=o.
Applying the theorem discussed in Appendix D, this means we must have

(sIT(tv)K+4 T()sK)sI}+ ) g(vK)Uis Q2 2

From (88) and (825) it follows that

T(~")"=o, s(~")=o.

Therefore we see that there is no loss in generality in choosing T '""'"to be of the form

T»v)K ~ SpKUv+ SvKVp
2 2

where S""in (827) is an antisymmetric second-rank tensor which characterizes the test particle.

(824)

(825)

(826)

(827)

APPENDIX C: Y ""'AND Y ""

We first investigate the tensor Y'& '. Defining the ten-
sors *Y'" ', X", and M through the equations

'Y»'= Y(&")—Y(&'V V"—Y'-'V U&

and supplemented by the conditions

c'""v,=o, c'v, =o,
implies

C(KA) P CA, O C O

(D4}

(D5)
+Y'»U. U~U&U,

X&=Y(I' )U~ —Y( ~'V~Vpv",

(Cl) If we evaluate the integrals appearing in (Dl), we find
(Dl) takes the form

m=Y'»V V

where

U =, Up ——a~„v",dP
d$

we find

*Y(&'V„=O,X&V„=O,
and

Y(~'=*Y(~"'+X~v"+X V~+mV~U .

(C3)

(C4)

(C6)

A "'5 ~(x g)+B "5—„(x—g')+C5(x —g) =0,
where

[ C(rs) ( Ur/U4)C(4s) (
Us./U4)C(4r)

U4

+(U'/U )( U'/U )C' ']

B"= C"—(U"/U )C +2 (C' "'/U )
U4 ds

(D6)

(D7)

We next investigate the tensor F(""). Defining the ten-
sors Yf" ~ and Y& through the equations

—(C' '/U ) (U"/U )
dS

+ Yfsv] Yfpvj Yfu]v Uv+ Yfv)U Uu

Y~= Yf~ jV. ,

(C7)

(C8)

2( Ur/U 4) ( C(44)/U4)
dS

(D8)

we find C= .C+
U4 d$

C4+ (C'"'/U') /U4
dS

(D9)

and

'Yf&"~V.=O, Y&V„=O,

I

fPv] e Yfpv]+ Yp, Vv YVUp (C1Q)

and 5(x —f) is the three-dimensional Dirac delta function.
Condition (Dl) requires

(D10)

APPENDIX D: THEOREM

We shall show that the requirement

f C'" '(s)5„)„(x—g')ds+ f C (s)5i(x —g)ds

+ f C(s)5(x —g)ds=0,

supplemented by the conditions

c'""v,=o,

(D 1)

(D2)

8 '=0,
C=O.

From (D7), (D10), and (D2) one finds

C(KA ) O

and from (D7)—(D12) and (D4) one finds

C("')=O, C'=O, C=O.

(Dl 1)

(D12)

(D13)

(D14)

implies
C(KA, ) p (D3)

Thus, the requirement. (Dl) supplemented by the condi-
tions (D2) implies (D3), and the requirement (Dl) supple-
mented by the conditions (D4) implies (D5).
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