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The stability properties of a class of spacetimes with quasiregular singularities is discussed.
guasiregular singularities are the end points of incomplete, inextendible geodesics at which the
Riemann tensor and its derivatives remain at least bounded in all parallel-propagated orthonormal
(PPON} frames; observers approaching such a singularity would find that their world lines come to
an end in a finite proper time. The Taub-NUT (Newman-Unti-Tamburino}-type cosmologies inves-

tigated are R')&T and R )&S' flat Kasner spacetimes, the two-parameter family of spatially
homogeneous but anisotropic Bianchi type-IX Taub-NUT spacetimes, and an infinite-dimensional
family of Einstein-Rosen-Gowdy spacetimes studied by Moncrief. The behavior of matter near the
quasiregular singularity in each of these spacetimes is explored through an examination of the
behavior of the stress-energy tensors and scalars for conformally coupled and minimally coupled,
massive and massless scalar waves as observed in both coordinate and PPON frames. A conjecture
is postulated concerning the stability of the nature of the singularity in these spacetimes. The con-
jecture for a Taub-NUT-type background spacetime is that if a test-field stress-energy tensor
evaluated in a PPON frame mimics the behavior of the Riemann tensor components which indicate
a particular type of singularity (quasiregular, nonscalar curvature, or scalar curvature), then a com-
plete nonlinear backreaction calculation, in which the fields are allowed to influence the geometry,
would show that this type of singularity actually occurs. Evidence supporting the conjecture is
presented for spacetimes whose symmetries are unchanged when fields with the same symmetries
are added. The conjecture and the exact solutions which support it both indicate that most waves
mimic scalar curvature singularities; only very special wave modes mimic nonscalar curvature or
quasiregular singularities. Therefore if general fields are added to the idealized empty Taub-NUT-
type cosmologies, one would expect the quasiregular singularities to be converted into scalar curva-
ture singularities.

I. INTRODUCTION

The nature of singularities which occur in the classical
solutions of Einstein s field equations is largely an unex-
plored area. The singularity theorems which predict the
occurrence of singularities in broad classes of spacetimes
give little clue to the nature of these singularities. %'e
must therefore investigate spacetimes with all varieties of
singularities together with their stability properties in or-
der to understand more fully their relevance both within
the mathematical structure of Einstein's equations and
within the physical universe.

A singularity in a maximal spacetime (i.e., a connect-
ed, C, Hausdorff manifold M together with a Lorentzi-
an metric g&„) is indicated by incomplete geodesics or in-
complete curves of bounded acceleration. The obstacle
which bars the embedding of singular spacetimes in larger
nonsingular spacetimes is obvious in those cases where
physical quantities (e.g., energy density and tidal forces)
diverge for all observers who encounter the singularity.
However, not all singularities which occur in exact solu-
tions to Einstein's equations are of this type.

Under a classification scheme devised by Ellis and

Schmidt, ' singularities in maximal, four-dimensional
spacetimes are divided into three basic types: quasiregular,
nonscalar curvature, and scalar curvature. Exact
mathematical descriptions of each type of singularity can
be found in the articles by Ellis and Schmidt, ' or a sum-
mary of the description may be found in the preceding pa-
per by Konkowski, Helliwell, and Shepley which we refer
to as paper I. Only in the case of a scalar curvature
singularity do scalar curvature invariants diverge and
physical quantities become infinite as described above.
The physical significance of the other two types of singu-
larity is less obvious. For a nonscalar curvature singulari-
ty the Riemann tensor or its derivatives diverge in some,
but not all, parallel-propagated orthonormal (PPON)
frames; that is, some, but not all, observers feel infinite
tidal forces as they approach the singularity. It is even
more curious that for a quasiregular singularity the
Riemann tensor and its derivatives are bounded in all
PPON frames, so no observers see physical quantities
diverge as they approach the singularity.

When we discuss the stability of a spacetime (or class of
spacetimes) with one of these types of singularity, we are
concerned with whether the nature of the singularity is a
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stable feature of the spacetime (or class of spacetimes). In
particular, we are concerned with the likelihood of the
different singularity types, both as classes within all
mathematical solutions of the field equations and in astro-
physically relevant situations. No single technique is used
to test the stability of such a singular spacetime; it may be
stable in many different and not necessarily equivalent
ways. It may satisfy a mathematical "genericness" condi-
tion; it may be unaffected by a linear perturbation; it may
appear unchanged if test (classical or quantum) matter is
added; or it may be that a similar exact solution, usually
one with the same symmetries but containing different
source fields, behaves in the same manner. Since general
relativity is a nonlinear theory and since no unambiguous
back-reaction scheme exists, all one can do is take the re-
sults of these analyses to give some indication of the like-
lihood of the different kinds of singular spacetimes.

In this paper we are concerned with the stability prop-
erties of spacetimes with quasiregular singularities. We
continue the discussion of the global properties of such
spacetimes and the test-field behavior within them which
was begun in paper I. There we focus upon the known ex-
act cosmological solutions to Einstein's field equations
which possess quasiregular singularities. All such models
we term Taub-NUT (Newman-Unti-Tamburino)-type
since, in common with the original Taub-NUT spacetime,
they are characterized by incomplete geodesics which
spiral infinitely around a topologically closed spatial di-
mension. One or more quasiregular singularities, each of
which appears as a topological defect in the spacetime, is
present in all maximal, Hausdorff and non-Hausdorff ex-
tensions of each Taub-NUT-type cosmology. As in pa-
per I, we focus upon one maximal Hausdorff extension
for each spacetime, and the spacetimes discussed are each
a member of one of three classes of Taub-NUT-type
cosmologies: R ' & T and R &S' flat Kasner space-
times, the two-parameter family of spatially homogene-
ous but anisotropic Bianchi type-IX Taub-NUT space-
times, ' ' or the infinite-dimensional family of spatially
inhomogeneous Moncrief universes" which are a subclass
of Einstein-Rosen-Gowdy spacetimes. '

Here we investigate the likelihood of quasiregular
singularities by studying their stability in each of the
Taub-NUT-type cosmologies. Within spatially homo-
geneous cosmologies, quasiregular singularities are gen-
erally considered to be unstable (see, e.g., the reviews by
Ellis and Schmidt and by Tipler, Clarke, and Ellis' ).
Within spatially inhomogeneous spacetimes, however, the
situation is less clear, and the existence of infinite-
dimensional families of spacetimes"' ' with quasiregu-
lar singularities increases one's curiosity about the general
stability properties of such spacetimes.

As discussed by Clarke' ' and in related review pa-
pers, ' quasiregular singularities (holes and primeval
quasiregular singularities) cannot be ruled out in space-
time models on physical or mathematical grounds; howev-
er, specialized quasiregular singularities (which can only
occur if the spacetime is Petrov type D, 0, or X, and elec-
trovac or with "unrealistic" negative pressure or density)
are considered somewhat unlikely in realistic cosmological
models because of their specialized nature. Those

quasiregular singularities corresponding to imprisoned in-
completeness are necessarily specialized. Finally, since
specialized quasiregular singularities can be considered the
milder vacuum analog of a particular nonscalar curvature
singularity, the whimper, a result by Siklos ' implies the
unlikelihood of these cosmologies among all spatially
homogeneous cosmologies.

These general considerations are supported by studies of
individual classes of spacetimes, especially by studies of
Taub-NUT-type cosmologies. In R'&T and R XS'
flat Kasner spacetimes, test fields ' and vacuum polariza-
tion effects appear to have a destabilizing influence on
the nature of the singularity. The quasiregular singulari-
ties of Taub-NUT spacetimes also appear to be unstable:
Test fields ' ' and test matter' both classical and
quaritum build up near the singularity, and the addition of
matter as a source for spacetimes with similar sym-
metries appears to produce, in general, a curvature
singularity. In addition, in the Moncrief universes, a
linear perturbation appears to change the nature of the
singularity, and a quantum Moncrief universe appears to
be unstable.

Here we shall take a slightly different approach to look
at the stability of the singularity structure in Taub-NUT-
type cosmologies. Our approach will utilize the test fields
whose behavior in these cosmologies was studied in paper
I. Instead of simply taking the divergence of a field am-
plitude to indicate an instability in one of these space-
times, we examine the behavior of stress-energy tensor
components since they play the role of the source in
Einstein s field equations. In particular, we make predic-
tions about the stability of Taub-NUT-type quasiregular
singularities under back-reaction, based on the behavior of
stress-energy scalars and tensors calculated in PPON
frames.

We say that a test field mimics a particular type of
singularity if the stress-energy scalars and tensors behave
in a way analogous to the behavior of the curvature sca-
lars and tensors used in the Ellis and Schmidt classifica-
tion scheme. We then conjecture that if a test field mim-
ics a particular type of singularity on a Taub-NUT-type
background spacetime, then a full back-reaction calcula-
tion would convert the Taub-NUT-type singularity
present into the type of singularity mimicked. A similar
hypothesis was advanced in a previous paper ' for two-
dimensional models of these cosmologies, but in two di-
mensions there is no unambiguous way to couple matter
and geometry, and there is no way to test the back-
reaction conjecture. Here, on the other hand, we can test
our conjecture by using field modes with symmetries iden-
tical to or easily generalized from the symmetries of the
background cosmology.

The plan of this paper is as follows. In Sec. II we brief-
ly summarize those properties of Taub-NUT-type cosmo-
logies with massive and massless, conformally and
minimally coupled scalar test fields derived in paper I
which are needed for the discussion to follow. In Sec. III
we discuss the divergence properties of the corresponding
stress-energy tensors and scalars. In Sec. IV we present a
stability conjecture regarding the effect of the back-
reaction of these fields on the singularity structure of the
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Taub-NUT-type spacetimes. In Sec. V we test this conjec-
ture using exact spatially homogeneous and spatially in-
homogeneous solutions of the Einstein-Maxwell-scalar
field equations. In Sec. VI we discuss our results and list
avenues for future research.

II. TAUB-NUT- TYPE COSMOLOG IES
WITH SCALAR TEST FIELDS

ds =2dgdt+2t dg +d8 +dP (2.1)

The coordinate ranges for the R')& T cosmology are
—oo &t & oo, 0(/&2m, 0&8&2vr, and 0&/ &2' For.
the R XS' cosmology, the g coordinate is periodic with
0&/&2+, while —oo &t & oo, —oo &8& oo, and—oo & P & oo. In either cosmology the hypersurface t =0
is a null hypersurface which separates a noncausal spatial-
ly inhomogeneous region (t &0) from a causal spatially
homogeneous region (t &0). The null hypersurface at
t=O is both a Cauchy horizon and a Killing horizon; in
addition, it contains a quasiregular singularity in the sense
that incomplete geodesics hit t =0 at P= oo. The metric
of Eq. (2.1) is that for one of the two maximal Hausdorff
extensions of the original flat Kasner metric

ds'= dt'+t'dg'—+d8'+dP' (t & 0) .

In this section we briefly summarize those results of pa-
per I which are needed for the discussion to follow. Here,
as in paper I, we restrict detailed discussion to one maxi-
mal Hausdorff extension for each of the three classes of
Taub-NUT-type spacetimes:

I. Flat Kasner spacetime On. e maximal Hausdorff ex-
tension of the flat Kasner universe on the manifolds
R '

&& T or R )&S' is defined by the metric

X

ds =2(2l)(dg+cos8dg)dt+ U(t)(2l) (df+cos8dg)

+(t +l )(d8 +sin 8dg ),
where

(2.2)

FIG. 1. Penrose diagram of the covering space of a (t, P}
slice of the flat Kasner universes. The R flat Kasner spacetime
is only a portion (region I) of Minkowski spacetime (regions
I+ II+ III+ IV). For R'&T or 8 &S' flat Kasner space-
times, the points a are identified, the points b are identified,
etc. , and the original spacetimes can be extended in two in-
equivalent Hausdorff ways across the null hypersurfaces shown:
One extension is given by regions I+ II, and the other by re-
gions I + III. A maximally extended non-Hausdorff spacetime
consists of regions I + II + III+ IV with the point P removed.

The extension corresponding to the metric of Eq. (2.1) is
based upon Regions I + III of the Minkowski 2(mt +i')

U t = —1+ t2+ $2
(2.3)

[ds = —(dx ) +(dx') +(dx ) +(dx ) ]

covering space shown in Fig. 1. The half-line x'= —x
(x &0), together with the boundary line x'=x, maps
into the t =D null hypersurface in the extended flat Kas-
ner geometry; the boundary line (which corresponds to
g=+ oo ) is the site of the quasiregular singularity. The
alternate Hausdorff extension, which is based upon Re-
gions I+ II rather than I+ III, has the metric of Eq.
(2.1) except that the first term is negative; the quasiregular
singularity in that case arises from the boundary linex'= —x . A non-Hausdorff extension is also possible,
which includes all four regions of the Minkowski covering
space, modulo the action of the isometry group of this
spacetime, but which excludes the point P =(x,x ')
=(0,0). This point is an essential quasiregular singulari-
ty, because it is singular in all of the extensions; the other
boundary points in the Hausdorff extensions form a
nonessential quasiregular singularity.

2. Taub-1VUTspacetimes. The metric for one family of
maximal Hausdorff extensions of this two-parameter fam-
ily of spatially homogeneous, anisotropic Bianchi type -IX
solutions' to the vacuum Einstein equations is

ds~= ——(e~' —' e)(bd)~t+ ,' e' dpdt-
4t

+ 'e' (dy)'+e "(d8)'—+e "(dP)', (2.4)

where

and m and l are constants. The manifold for these
cosmologies is R'XS where —oo &t & oo, and g, 8, P
are Euler angles on the three-sphere with 0&/&4m,
0&8&m., and 0&/&2m. The null hypersurfaces' at
U(t) =0 [i.e., at t =t+ ——m+(m +I )'~ ] are also Cauchy
and Killing horizons; they separate the causal spatially
homogeneous Taub universe ( t & t & t+ ) from the non-
causal spatially inhomogeneous Newman-Unti- Tamburino
(NUT) cosmologies ( t & t or t & t+ ). Each t = t+ null
hypersurface contains a quasiregular singularity in the
same sense as the R 'X T and R XS' flat Kasner space-
times.

3. Moncrief spacetimes. The metric" for one family of
' maximal Hausdorff extensions of this infinite-dimensional

family of inhomogeneous vacuum solutions to the field
equations is
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b(t, g)= g a„JO(nt'~ )sin(ng+y„),
n=1

Bb(s, g)a(t, g)=b(t, g)+ —,
' f ds 4s

0 Bs

db(s, g)
ae

2

'2

(2.5)

(2.6)

e'"~+ +"~' (flat Kasner or Moncrief),
e'"~d„(8)e'"~ (Taub-NUT),f (~li, g, rh)= '

(2.10)

where the d „& are Wigner functions.
For R ')& T flat Kasner and the Moncrief universes the

summation sign denotes

(CI —gR —M )C&=0, (2.7)

where is the Laplace-Beltrami operator, was given as
the sum

(p(0)+ (y( &)+@(2) (2.8)

where

N' '=lnT g g a„"T" f()p(g, p),
A, ,p n

(2.8a)

@(I) g y btcxPTn taalnTfk (q g y)
K~A~P n

ya."'"T" f."„(e8 4) .
K, A, , )LE

(2.8b)

(2.8c)

Here the constant a and the functions f „depend on the
spacetime:

Here an and yn are constants and JO is a regular Bessel
function of zeroth order. The manifold is R'&&T with
—co &t & oo and 0&/ &2~, 0&8&2~, and 0&/&2m.
To avoid the question of convergence of the series for
b(t, g), only a finite number of coefficients (a„j are as-
sumed to be nonzero. If all the a„are zero, the resulting
spatially homogeneous spacetime is an R 'X T flat Kas-
ner spacetime.

The Moncrief cosmologies are Einstein-Rosen-Gowdy
spacetimes' ' which do not have any curvature singu-
larities. Each Moncrief universe does have a quasiregular
singularity located in the t =0 null hypersurface (at
P= co); the null hypersurface is also a Cauchy horizon
and a Killing horizon.

In later sections we will find it useful to let T be the
length of time away from the null hypersurfaces which
occur in each of these spacetimes. In the flat Kasner and
Moncrief cosmologies there is one null hypersurface at
T =t =0, while in the Taub-NUT cosmologies two null
hypersurfaces occur, at T =t t+ ——0. —

In paper I, we showed the similarities in wave behavior
near the null hypersurface at T =0 in all three classes of
universes. The complete wave solution to the massive
(M+0) or massless (M =0), conformally coupled (g= —, )

or minimally coupled (/=0) scalar wave equation,

X=X X
K, A, p K= —oo A =—oo

(2.11)

for R XS' flat Kasner, where g is the only periodic coor-
dinate, it includes two integrations

f dA. J dp;
K, A,P K= —oo

and for the Taub-NUT cosmologies it signifies

(2.12)

K, A, ,P A, =O P= —A, K= —A, A, =1 P= —A, K= —lIP I+ 2

1IKl--
2

~= —lKI+ —,

(2.13)

where p is always an integer, A, has integer values in the
first two terms and half (odd) integer values in the third
term, and a has integer values in the first term and half
(odd) integer values in the second and third terms.

The coefficients a„' " and b„"" are different in each
cosmology. Simple recursion relations for the a„'s and
b„'s exist for both the flat Kasner and Taub-NUT cases,
since the wave equation is separable. The procedure used
to determine the coefficients for waves on the Moncrief
universes is more complicated, however, since the wave
equation is not separable in the coordinates t and 0. In
fact, for Moncrief waves, terms of fixed A, (i.e., individual
modes of 4&) are not generally solutions of the wave equa-
tion; only for massless waves with no P or P dependence
are individuals modes also solutions. For more details see
paper I.

Finally, it is important to note the behavior of the dif-
ferent types of modes in Eq. (2.8) near the null hypersur-
face at T=O: The N' ' modes diverge in amplitude, the
N'" modes diverge in phase, but the @' ' modes do not
diverge in any way. Since the only singularities in these
maximal Hausdorff spacetimes are quasiregular ones at
T=O, one might expect that a generic wave perturbation
would destroy the mild nature of these singularities and
turn them into curvature singularities. This supposition is
considered in more detai1 in the following sections.

1 (flat Kasner),
a = ~ 2 (Moncrief),

t+ Il (Taub-NUT)
(2.9)

III. DIVERGENCE OF THE STRESS-ENERGY
TENSORS

The wave equation for a massive scalar field N with
coupling g is given by Eq. (2.7),

(U —M —$R)@=0 .
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Since each Taub-NUT-type cosmology under considera-
tion is a vacuum solution of the Einstein equations and
thus Ricci flat, Eq. (2.7) and its solutions are independent
of curvature coupling. The corresponding stress-energy
tensor ' is

T [(1 2g)C) p(P „+(2g——,
' )gp„(S+M 4 )

—2ge e.„„+g(R„„——,g„.R+2gg,.R)c' l

S =S(/T+S2 ln T+S3 lnT+ convergent terms,

where the first term is
2

S /T= 2T—C —+Cp 1 i 1
1 p T 0

+2 @() —+ 4&(') — [@I(1)+@)(1)]

(3.4)

(3.5)

(3.1)

where S =g ~4 4& p. Tz is not independent of the cur-
vature coupling g even though, since R =0, the last three
terms are absent. We will investigate separately the diver-
gence properties of the minimally coupled (/=0) tensor
T& and the conformally coupled (g'= —,

'
) tensor T&„.

in the flat Kasner case. Similar expressions for S2ln T
and S3lnT are easily found. The results are slightly dif-
ferent in the Taub-NUT and Moncrief geometries, be-
cause of the metric tensor in the definition of S.

Finally, we need the divergent terms of 4, which are
logarithmic terms arising from the divergence of @' '.
That is,

A. The minimally coupled scalar field stress-energy tensor

The stress-energy tensor in the minimally coupled case
1s

4 =8&ln T+82lnT+convergent terms,

a, = gao'"f(')~(e y)

(3.6)

[@„@„—,
'
gq„(S +—MN )] . (3.2)

and
The divergent terms in this tensor can be found by first
writing @ and the derivatives @& as sums of terms of de-
creasingly divergent order in T. Since 4 can be separated
into three mode types 4&=@( ) +@("+4( ' for each
cosmology, the derivatives are then

T

@ ()
—— @o —+&0o — +No(lnT)p 1 $ 1 p

+ [C'o(1)+@o(1)+C'(')(1)]

+C o( T ln T)+ (3.3a)

@,1 [@1(1)+@)(1)]+[@I(T)+C&)(T)]+ .

4& z
——&bz(ln T)+ [@z(1)+4'z(1) ]+@2(T ln T) +

(3.3b)

(3.3c)

3 —C 3(ln T)+[43( 1 )+@3(1 )]+(I3(TlnT)+

(3.3d)

where each symbol @J. refers to a specific set of terms.
The superscript indicates which set of modes 4&( ', @(",or

has been differentiated; the subscript (0, 1,2, 3)
=(t,g, 8,$) indicates which derivative has been taken; and
the argument indicates the time dependence of these
terms. For example,

»=2 gao'"fo„(~ 4)
A, ,p

(ad@ +b&~Pei ea)nT) fil (q g y )
K, A, ,p

From these results it is easy to find the most divergent
terms in each element of the symmetric stress-energy ten-
sor Tz in all of the Taub-NUT-type cosmologies:

T-' y-'lnT T-'lnT
T lnT lnT

ln'T

y
—1

(3 7)

Of more interest is the behavior of the stress-energy
tensor in a parallel-propagated orthonormal (PPON)
frame e~(~) carried by a'generic freely falling observer ap-
proaching the null hypersurface. Here by a generic ob-
server we mean one whose path does not end at T=O in
the essential quasiregular singularity but rather an ob-
server whose path is extendible across T =0 (i.e., a pass-
through observer) or one whose path ends at the nonessen-
tial quasiregular singularity at T =0 (i.e., a spiraling ob-
server). Results for nongeneric observers will be stated in
our final theorems, but for simplicity are not derived here.
In a PPON frame carried by a generic observer, the
stress-energy tensor is

e —=—ga "fo (8,$),p 1 1 og
p T

—
T 0 p

A, , JM,

m p v m
T(aP) =e (a)e (P) Tpv (3.&)

which are the terms of @'p' whose time dependence is
1/T.

From the derivatives of N we find that S may be writ-
ten

[(e(~)"@~)(e (tt) @„)

2 (e( )e(t3)& )(S +M @ )] (3.9)
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T(oo)= [(e(o)@,1 ) + 2'(S+M'C")]
4m

(3.10)

where e~~~e(p~„———1 if a=P=O, =+1 if a=13=1, 2, or
3; and =0 if a&P. The frame vectors e~~~ differ for gen-
eric spiraling and pass-through observers, they are listed
for the two cases in the Appendix, for the flat Kasner,
Taub-NUT, and Moncrief spacetimes. In the Moncrief
case, because of the relative difficulty in finding geodesic
paths near the singularity, we have found explicitly only
the vector e~~o], including only terms of order T ' and of
order unity.

The energy density in a PPON frame is

the argument refers to the term's time dependence. The
value of each term can be found by referring to the Ap-
pendix. In particular, the quantity ep(1/T) =0 in a pass-
through frame.

In order to find all divergent terms of T~~~, we must
find all divergent terms in (e~p~@~); therefore because
the most divergent term of e~p~@ & is of order 1/T, we
must keep terms up to order T lnT in this quantity. The
result is

(e(p~C'&) =A~/T +A2(lnT)/T+A3/T

+A41n T+A5lnT+convergent terms,

and the frame vector e~~p~ can be expanded in decreasingly
divergent powers of time as follows:

where, for example,

(3.12)

eo(1)+eo(T)+
ep(1/T)+eo(1)+eo(T)+ ~ ~ .

e(o) =
eo(1) (3.1 1)

A /T = ~ e (1) 4& —+4)o o
] — 0 0

2

+ eo —[&&I(I)+@,(1)] . (3.13)

where the superscripts refer to the component of e~p~, and
Similar expressions for the other divergent terms are
readily found. The energy density therefore becomes

T(oo) —— [Ai/T +A2lnT/T+(A3+ —,S~)/T+(A4+ —,S2 —,
' M B~—)ln T+(A5+ —,

'
S3 ——,'M B2)lnT]

+convergent terms, (3.14)

which converges if and only if each of the divergent terms
of given time order vanishes. In particular, A &/T must
vanish; this condition constrains which modes of N are al-
lowed. From Eq. (3.13) and the fact that the modes of 4
are linearly independent, it follows that A&/T =0 im-
plies the three conditions:

Condition (1) forces all coefficients ap "——0. For pass-
through observers, where ep(1/T)=0, condition (3) im-
poses no constraints, but condition (2) forces all coeffi-
cients bp "——0 (unless ~=0). For spiraling observers,
condition (2) imposes no constraints because it is satisfied
identically; condition (3) forces all coefficients ap "——0
(unless a.=O). In summary, the vanishing of A&/T im-
plies that only 4'" modes are permitted for spiraling ob-
servers, and only @' ' modes are permitted for pass-
through observers. This result is both valid and easily ob-
tained in all of the Taub-NUT-type cosmologies. Here we
have used the fact that if the coefficients ao "——0, then
the v=0 modes within N"' and N' ' have the same func-

e(]]N &
——e~&]N 0+e[~]@]+convergent terms0 1 (3.15)

converges because the divergent parts of the first two
terms on the right cancel. The quantities e~[z]N& and
e ( 3 ) 4 p also converge, so T

~ ~p] converges for spiraling ob-
servers as well. Therefore, in general, T~~I3] converges if
and only if

l

tional form.
It is then straightforward to show in the flat Kasner

and Taub-NUT universes that if 3&/T =0, i.e., if only
the modes listed above are permitted, then all other poten-
tially divergent tems in T[oo] vanish as well. That is, the
terms Az(lnT)/T, . . . , (A5+S3 —M B2)lnT are also all
zero. The proof simply requires expressions analogous to
Eq. (3.13) for A&/T, and the observation that Az. . .A5,
S&. . .S3, B&, and B2 all vanish if the above mode con-
straints are applied. The conclusion is that T[00] con-
verges if and only if A, /T =0. Because of the compara-
tive difficulty of finding the frame vectors for the general
Moncrief cosmologies, we have not proved the result in
this case, although we believe it is valid. Subsequent re-
sults in this section have also been established only in the
flat Kasner and Taub-NUT cases.

The next step is to investigate the convergence of T~~p~
in general, using Eq. (3.9) for T~~p~. If only the above
modes are permitted, then we already know that S and
M @ converge. In the case of pass-through observers,
the quantities e~ ] and 4& all converge, so clearly T[ p]
converges. In the case of spiraling observers, the quantity
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(a) tt ~""—0 for a spiraling frame, for all )r, A, ,)tt;
(b) ao "——0 and bo "——0 for a pass-through frame, for

all lr, k,p except for x.=O.

~',oo=[C'oo(T ')+@'oo(T ')]
+ [@oo(T ')+ @oo(T ') ]+Coo(lnT), (3.18)

B. The conformally coupled scalar field stress-energy tensor

The stress-energy tensor in the conformally coupled
case is

in a notation similar to that used in Sec. II A. When the
new final term ——,4@.& is combined with the previous
results for T&, one finds that the most divergent terms of
the elements of the symmetric tensor T& are as follows,
in all of the Taub-NUT-type cosmologies:

The final term involves the quantity

(3.16)

(3.17)

T lnT T 'lnT T 'lnT T 'lnT
lnT lnT lnT

T ' lnT
T—I

(3.19)

which requires an analysis of the convergence properties
of the second derivatives of @. For example, N oo may be
written

Of more interest is the tensor evaluated in a PPON
frame e~[~).

~C P V C

(ap) (a) (p) Tpv

[—,(e~)~)N &)(e)t))@ ) —6 (e~)~)e~tt)&)(S+M 4& ) ——,4(e~)~)e~~))@.„]. (3.20)

In particular, the energy density is

T(oo) = [ 3 (e)o)C &) + 6 (S +M @ ) —3 Z]4~

where

(3.21)

Z =@(e(g)e (g) )@.&&

=Z)(lnT)/T +Z2/T +Z3(ln T)/T+Z41nT/T+Z5/T+Z6ln T+Z7lnT+convergent terms .

Here, for example,

(3.22)

Z)lnT/T =@(lnT)t[eo(l)] Woo(T )+2eo(1)eo(T ')@o)(T ')+[eo(T ')] 4'. ))(l)I, (3.23)

where 4&(lnT) consists of all modes of order lnT in 4&, @.oo(T ) consists of all terms in &b.oo of order T, etc. The en-
ergy density Eq. (3.21) is then

c l
T((g) —— [——,Z)(lnT)/T +(—,A) ——,Z2)T —,Z3(ln'T)/T—+(—', A2 ——,

' Z4)(lnT)/T+( —', A3+ —,S) ——,Z6)/T

+(—', A4+ —,S2+ , M 8) ——,
'

Z6)l—n T+(—,A&+ —,'S3+ —,M Bz ——,Z7)lnT+convergent terms] . (3.24)

We now seek the implications of a convergent T~oo). In
particular, it is straightforward to show that the two most
divergent terms (or order T lnT and of order T ) van-
ish if an only if

(a) ao "——0 for a spiraling frame, for all ~, A, ,p;
(b) ao""——0 and bo "=0 (except x=0) for a pass-

through frame.
These results are easily established for any of the

Taub-NUT-type cosmologies. Then one can show in the
flat Kasner and Taub-NUT cases that these conditions,
which are precisely the same conditions which lead to
convergence of the minimally coupled stress-energy ten-
sor, make all other potentially divergent terms
——,'Z3(ln T)/T, etc. , vanish in Tioo), they also make all

other elements Tt~p) of the stress-energy tensor vanish as
well. As in the minimally coupled case, we have not
completed the proof for the Moncrief cosmologies, be-
cause of the comparatively extensive calculations needed
to obtain the frame vectors.

C. Stress-energy scalars

In this section we establish the convergence properties
of certain scalars constructed from the stress-energy ten-
sor. In particular, we examine the scalar quantities T"„
-and Tp T" .

For a minimally coupled massive scalar field, the trace
of the stress-energy tensor is
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(T )"=— ($+2M N )
1

(3.25)

and the scalar product is

Tm Tmpv p2+M2@2(Z+M2@2))1
(3.26)

For a conformally coupled massive scalar field, these
quantities are

and

(T')"=— M 4
4~

(3.27)

Tc TcPv [
& g2+ & gM2@2+ 2 (M2@2)21

9

+ 94&N'" —(N@„„4@.„@—)] . (3.28)

For a massless field, the trace ( T')z Oand —s—o obvious-
ly converges; for a massive field (T')& converges if and
only if 4& converges, i.e., if and only if ao "=0 for all
A, ,p. For the other scalar quantities (T )~, T„,T ~', and
Tz~T'", it is straightforward to show that they converge
if and only if

(a) ao "——0 (for all A, ,p), and also
(b) either ao "——0 (for v&0) or bo "=0 (for ic&0) or

both.

D. Summary

We can condense the results of the preceding sections
into two theorems.

Theorem I. The stress-energy tensor T~ p~ for a
minimally coupled or conformally coupled massless or
massive scalar test field N on a Taub-NUT-type cosmolo-
gy converges at the singularity at T=0 if and only if the
following conditions hold.

(1) If T~ap~ is evaluated in a PPON pass-through frame,
then 4 must be restricted to the 4' ' modes of Eq. (2.8c),

The above results are for frames carried by geodesics
which do not end at the essential singularity. A similar
analysis of T~ p~ convergence properties for the additional
geodesics has the following more restrictive result.

(3) If T~a~~ is evaluated in a PPON (necessarily spiral-
ing) frame for a geodesic which approaches the essential
singularity, then @ must be restricted to the
independent, convergent modes

C=g Q I„"~T"f,'„(e,y).
Ap n=0

The sums over ~, A, ,p extend over all permitted values for

g a„" "T" f„„($,8,$) .
K, A, p Pf =0

(2) If T~ap~ is evaluated in a PPON spiraling frame,
then 4& must be restricted to the 4&'" modes of Eq. (2.8b),

g b 2FTnn ei alnTnf 2 (g g p)
K, A, ,P n =0

the cosmology in question. The only modes in cornrnon
are those with x=0; that is, g-independent, convergent
modes are allowed for both pass-through and spiraling
frames and for geodesics which do and do not end at the
essential singularity. Only such modes have a convergent
stress-energy tensor in the PPON frames of all geodesics.

We have proved the theorem for the flat Kasner and
Taub-NUT cosmologies. We believe that it is also correct
for the Moncrief cosmologies but have not proved it, be-
cause we have not calculated all of the necessary frame
vectors.

Theorem IL The divergence properties of stress-energy
scalars can be summarized as follows:

(1) The trace ( T')~ of the stress-energy tensor of a con-
formally coupled scalar test field N on a Taub-NUT-type
cosmology (a) always converges at the singularity at T =0
if the field is massless; (b) converges at the singularity at
T=O for a massive field if and only if there are no 4' '

modes.
(2) For a massless or massive scalar test field @ on a

Taub-NUT-type cosmology, the scalar quantities
T&,(T')"" (for a conformally coupled field), and (T )&
and T„,(T )""(for a minimally coupled field), converge
at the singularity at T=O if and only if the only modes
present are @'"modes or N' ' modes, but not both; an ex-
ception is the ~=0 modes of 4'" and 4' ' which are iden-
tical in form (since N' '=0) and may therefore both be
present.

Theorem II has been proven for the flat Kasner, Taub-
NUT, and Moncrief cosmologies, and is independent of
whether the geodesic is pass-through or spiraling, or
whether or not it ends at the essential singularity.

IV. A CONJECTURE ON THE STABILITY
OF SINGULARITIES

I

We present in this section a method for testing the sta-
bility of the quasiregular singularities in a Taub-NUT-
type universe. We would like to be able to place fields in
such a universe and find their effect upon the singulari-
ties. However, such a back-reaction program is very diffi-
cult to carry out in general. We have placed scalar test
fields on the Taub-NUT-type spacetimes, but the
quasiregular singularities remain quasiregular; we have
not allowed the test fields to influence the geometries.
However, we can speculate about the effect of various
fields if the full problem could be solved.

At a quasiregular singularity the Riemann tensor in a
PPON frame is bounded and all scalars constructed from
the Riernann tensor are also bounded. But if there is at
least one PPON frame, such that one or more Riemann
tensor elements diverge, but all scalars constructed from
the Riemann tensor remain bounded, then the singularity
is a nonscalar curvature singularity. Finally, at a scalar
curvature singularity, some scalar quantity constructed
from the Riemann tensor diverges. Because of the cou-
pling of the stress-energy tensor with the curvature tensor
through the Einstein field equations, it is not unreasonable
to conjecture that the behavior of the scalar-test-field
stress-energy tensor on a given background Taub-NUT-
type spacetime can be used to predict the nature of the
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singularity which would occur if the corresponding scalar
field modes were allowed to influence the geometry.
Specifically, our conjecture is

Stability conjecture. For all maximally extended Haus-
dorff spacetimes with Taub-NUT-type quasiregular singu-
larities, the back-reaction due to a field (whose test-field
stress energy tensor is T& ) will affect the singularity
structure in the following manner:

(1) If both T"„and T&„T" are finite and if the Ti~tt~ in
all PPON frames are finite, then the singularity will
remain quasiregular.

(2) If both T"„and T&„T""are finite but Ti ti~ diverges
in either a pass-through or a spiraling PPON frame, but
not both, then the singularity will be nonscalar curvature.

(3) If either T&~or Tz T" diverges, then the singularity
will be scalar curvature.

Using Theorems I and II from Sec. III D regarding the
behavior of the stress-energy tensor elements in PPON
frames and the behavior of the scalars T& and Tz T",we
can translate the conjecture into a statement about the ex-
pected back-reaction effects of the various scalar field
modes.

In particular, according to the conjecture, if the x=0
C'" modes

nism for such a back-reaction is poorly understood given
the nonlinear nature of Einstein's equations; therefore, in
the following section, the back-reaction scheme we em-
ploy assumes that the nonlinearly perturbed spacetimes
have exactly the same symmetries as the original space-
times.

V. TESTS OF THE STABILITY CONJECTURE

The stability conjecture introduced in the previous sec-
tion allows one to predict how a given field mode will af-
fect the structure of a singularity, if the field is allowed to
influence the geometry, based on the behavior of the mode
when treated as a test field on a given Taub-NUT-type
cosmology. %"e can test the conjecture using exact solu-
tions of the coupled Einstein-Maxwell-scalar field equa-
tions, which reduce to the appropriate background
cosmology when the field is turned off. Then a direct
comparison is possible between predictions of the conjec-
ture and the actual singularities which occur in the field-
containing cosmologies. We present here two examples of
such universes, one which reduces to Taub-NUT space-
time and one which reduces to Moncrief spacetime, if the
fields are turned off.

g bOiPTll fi (8 P)
A, ,p n

are added to a Taub-NUT-type spacetime, the singularity
remains quasiregular, because these modes (and only these
modes) leave Ti pi finite in all PPON frames and leave
both stress-energy scalars finite as well. This holds for
massive or massless, minimally coupled or conformally
coupled scalar fields. If instead the only modes present
are N' ' modes

ga„" "T" f„"„(g,8,P)
K, A, , p 8

including at least one mode with ic&0, or are @"'modes

g b&APTn eiaalnrf A. (q 8 y)
It:, A.,p Pl

including at least one mode with ic&0, but not both (i.e.,
a„modes and b„modes are not both present), then the
singularity becomes a nonscalar curvature singularity, ac-
cording to the conjecture. Finally, if there are N' ' modes

@=1nTg g a„"T" fo„(8,$)
A, ,p n

and/or both 4'" and @' ' modes, including in both cases
at least one mode with ic&0, then the singularity is con-
verted into a scalar curvature singularity, according to the
conjecture: This is because at least one of the stress-
energy scalars diverges.

Our stability conjecture therefore states that if test-field
behavior on a background spacetime mimics the wave
behavior expected in the vicinity of a particular type of
spacetime singularity, then that same type of singularity
would be expected to occur if a complete back-reaction
computation could be carried out. However, the mecha-

ds = (dt') —+do (5.1)

where

dcr =B (t')(cr, +cr2 )+A (t')o3 (5.2)

in the case that two of the principal directions are
equivalent. The forms o.; are

o i
——sinitj d 8—cosg sin8 d iI),

o 2 cositid 8+sing——sin8 d((),

cT3
———d I/l —COS8 d I/J,

(5.3a)

(5.3b)

(5.3c)

in terms of Euler angles, and A (t') and B(t') can be
found from Einstein's equations, for given scalar and elec-
trornagnetic field strengths.

The scalar field is chosen to be a solution of the
minimally coupled massless scalar wave equation; its
lowest mode depends upon t' alone and obeys
dP/dt'=a/AB, where a is a constant. The lowest-mode
sourceless electromagnetic field also depends upon t'
alone; from Maxwell's equations one has the field tensor

r

0 0 0 e3

0 0 —h3 0
f~-= oh, 0 0 (5.4)

e3 0 0 0

A. The Batakis-Cohen and Brill eosmologies

A class of homogeneous but anisotropic cosmologies
due to Batakis and Cohen contain lowest-mode scalar
and electromagnetic fields; these cosmologies reduce to
those of Brill if the scalar fields are turned off, and to
Taub-NUT spacetime if the electromagnetic fields are
turned off as well. Batakis-Cohen models can be ex-
pressed in terms of the metric
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Sn.Too ——SmTii ——SmT22 ——(a/AB ) +(b/B )

Sm T33 —(a/AB ) (b/B—)

(5.5a)

(5.5b)

where

v'16m. e3 ——(b/B )sin(t3 —a),
V'16m.h3 ——(b/B )cos(t3 —a) .

Here o. is a constant and t 3 is the integral of
dt3 ——(A /B )dt'. The combined minimally coupled scalar
field and electromagnetic field stress-energy tensor is di-

agonal, with elements

field. The trace

T= (a/AB )4~ (5.6)

ds = (AB—) dH+A (dg+cosOdg)2

+B (18 +sin Odg )

and the field equations give

(5.7)

is independent of the electromagnetic field, as expected.
If one introduces a new time coordinate v. by defining

dt'=AS d~, the metric becomes

where the terms containing a are due to the scalar field
and those containing b are due to the electromagnetic and

A2=2co~/[b +(to +b )'/ cosh(2cor+2p)] (5.8)

B =Q [b +(co +b )' cosh(2cor+2p)]/2' cosh (Or+A, ) (5 9)

as shown by Batakis and Cohen. Here co, 0, A, , and p
are constants, with 0 =~ +a, and we choose Q)co) 0.
The metric is singular as ~~+ ~.

The scalar field in this metric is

4=40+a~; (5.10)

t =m +—tanh(Or+A, )
0
2l

(5.11)

so that the singularities are brought from r=+00 into
t =t+ ——m+0/21; the metric then takes on the form

ds = —U 'dt + (21) U(d P+ cosO dP)

+B (18 +sin Odg ) . (5.12)

expressions for the electric and magnetic fields can also be
found.

%'e now introduce a time coordinate

where

t+ ——m+co/21 =m+(m +1 b)'/z —. (5.17)

This metric is identical in form to the Taub-NUT
universe, except that the singularities have been displaced
by the lowest-mode electromagnetic field, as represented
by the parameter b; it is the metric of the Brill universe.
The singularities are obviously still quasiregular, which is
consistent with the fact that the contracted electromagnet-
ic stress-energy tensor T =Tz ——0, so that from the con-
tracted Einstein equations the curvature scalar R must
also be zero. Other scalars constructed from the Riemann
tensor, such as Rz R", also remain bounded at the singu-
larities. Finally, if the electromagnetic field is turned off
as well, the metric reduces to that of Taub space.

We now investigate the general metric given by Eq.
(5.12) in the vicinty of the singularities at t+ ——m+0/21,
where

Here m, l are constants, and

U=co /21 D(t),
II/21=(m 2+12 b2+a2/412)1/2

Let t =t++(0/l)b, where b, is small; then

(5.18)

2

B =(0 /2' ) 1 — (t —m—)0
where

D(t), (5.14)
and

( 2/12)geo/0/(t 2+12)

B2 (II/ )2gl m/Q(t 2+12)

(5.19)

(5.20)

where
D(t)=b +(~2+b )'/ cosh tanh ' (t m)— —

Q Q

(5.15)

with

ds = —U 'dt +(21) U(dg+cosOdp)

+(t '+1')(d8'+ sin'8 1P') (5.16)

If we specialize to the case a =0 by turning off the sca-
lar field, the metric reduces to

to+ =m+co/21=m+(m +1 —b )'

Thus if the scalar field is turned off, so that Q~co, then
U-6 and 8 -constant, which is the behavior of these
quantities for the Taub-NUT or Brill universes. But for
a )0, then co/0 & 1, so that U- LV and
B -6' —+0 as b,~0: the metric behavior is then
quite different. Furthermore, the curvature scalar R is

R = SmT= —2(a/AB )— .

U = (t t )(t t+ ) /—(t '+1'), — — ——a /UB ——a /5 (5.21)
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which diverges as b, ~O. The addition of a generic
lowest-mode scalar field causes the quasiregular singulari-
ty to be converted into a scalar curvature singularity.

%'e can now test our stability conjecture using the
Batakis-Cohen models. The lowest-mode scalar test field
on Taub-NUT spacetime has the form

4=4p+a lnT, (5.22)

=@p+—tanh ( t —m ) —A,
—a )2l

Q Q

C'o+ inn1 (5.23)

near r+, the same kind of behavior @ has in the test-field
case as given by Eq. (5.22). Furthermore, in the Batakis-
Cohen models the curvature scalar converges as 6~0 if
and only if a =0, as predicted by our conjecture; other
scalars constructed from the curvature tensor also con-
verge if a =0, so the singularity is quasiregular if and
only if a =0:otherwise it is a scalar curvature singularity.

where @p is the lowest mode contained in Eqs. (2.8b) and
(2.8c), and a lnT is the lowest-mode contribution from Eq.
(2.8a), where a is a constant and T=t t+ —Fo.r this
mode, the scalars T& and T& T" constructed in Sec.
IIIC from the minimally coupled stress-energy tensor
converge at T =0 if and only if a=O. According to the
conjecture given in Sec. IV, one therefore predicts that if a
lowest-mode scalar field is introduced into a cosmology of
the proper symmetry, and back-reaction is fully accounted
for, the resulting cosmology will have a quasiregular
singularity if a'=0 and a scalar curvature singularity if
a&0. This is exactly what happens in the Batakis-Cohen
universes. The scalar field is then, from Eqs. (5.10) and
(5.11),

e=e'p+a

4~Ti'„=4 i'C „—,'5—'(4 e +M'e') .

the geometry satisfies the field equations

R"„=8~(T"„—,'—O'„T) .

These equations reduce to

cP+t-'+ —@"=—M @e ',
+t —1 ~ ~et ~2@2e2

a'=2t WR" +2t4@',

a =t(W'+ W')+t(& '+C') —1/4t,

(5.25)

(5.26)

(5.27a)

(5.27b)

(5.27c)

(5.27d)

2t W( W+ t 'W W")+—2r4 (4 +t —'4 —4 ")
~2(g)2 20 (5.27e)

where overdots and pri~es mean partial derivatives with
respect to t and 8. The first equation is the scalar field
equation; the second is from the R 2 or the R z Einstein
equation; the third is from the R i equation; the fourth is
from a linear combination of the R p and R'i equations;
and the last is from the R p or the R 'i equation.

Note that in the case of a massless field there is a total
decoupling of @ from W, and the differential equations
for 4& and W become identical; furthermore, these equa-
tions are the same as that of a scalar test field propagating
on a Kasner background. This case of massless source
fields has been discussed in detail by Carmeli, Charach,
and Malin, and by Charach and Malin. The conven-
tions and notation in these papers differ somewhat from
those used here and by Moncrief.

With M =0, the solutions of Eqs. (5.27b) and (5.27a)
are

W =a+p 1nt + g [a„Jp(nt) sin( n 8+y„)

B. Scalar fields in Moncrief universes

+t —2w(dy)2 (5.24)

with coordinates ( t, g, 8,$) on an R ' X T spacetime.
Here a =a(t, 8) and W = W(t, 8) This universe .contains
a minimally coupled scalar field @=@(t,8) which is a
solution of Eq. (2.7) and which has the stress-energy ten-
sor

The conjecture introduced in Sec. IV can also be tested
in the context of scalar fields in Moncrief universes. To
do so, we must first exhibit classes of exact solutions of
the coupled Einstein-scalar field equations which reduce
to the Moncrief universes when the fields are turned off.
Some of these solutions have quasiregular singularities;
others have scalar curvature singularities.

Consider an Einstein-Rosen-Gowdy diagonal metric

ds =e '( dt +d8 )+te (d—P)

+b„Np(nt)sin(n 8+5„)j (5.28)

@=a+pint+ g. [a„Jp(nt)sin(n8+y„)
n=1

+b„Np(nt)sin(n 8+5„)], (5.29)

where Jp and Np are Bessel and Neumann functions, and
the constants a, p, a„, b„, y„, 5„(and those with tildes)
are arbitrary. It is then possible to find a general expres-
sion for a (t, 8) using Eqs. (5.27c) and (5.27d); the result is
given by Carmeli et al.

The Moncrief universes" result if @=0and if the con-
stants in W are chosen to be b„=O and p= —,', so that the
curvature tensor converges as t~0+. This tensor can be
found from curvature forms computed by Cxowdy' ' in
the orthonormal frame

(ep, e i,eq, ei) =(e 'd/dt, e 'd/d8, t ' e d!dP, t ' e 8/BP)

in which one finds

(5.30)
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R—=e '(a' —a"),
0101

R =e ' a W+ —+a'W'+ —W — W+-~ 1, , 1 " 1

2020 2t 2t' 2t

2

(5.3 la)

(5.3 lb)

R =e ' a' W+ —+aW' —W' —W' W+—
2021 2t 2t

(5.31c)

~ 1R—=e a'W'+a W+ ——W"—W'
2121 2t

2

(5.31d)

R—=e
3030

~ ~ 1—a 8'———a' S"+ + 8'— 8'——
2t 2t

(5.31e)

R—=e
3031

~ 1—a' 8'——
2t

—a8"+ 8"—8" W ——
2t

(5.31f)

1R—=e ' —a'W' —a W ——+ W"—W'
3131 2t

(5.31g)

/2 2R—=e ' W' —W +2323 4t2
(5.31h)

together with other nonzero elements found from the symmetry properties of R„„2 . Moncrief's choice of b„=O and
P= —,

' makes e ' converge as t~O+, and each component of R-~-s converges there as well. Then by introducing new
coordinates

P'=2/ —2lnt, 8'=8, P'=P, (5.32)

Moncrief obtains a metric which can be analytically extended through the null hypersurface to negative values of t'.
We now seek a class of solutions for a nonzero N. We can retain Moncrief's choice for W, since Eqs. (5.27a)—(5.27e)

decouple 8 and 4 in the massless case. It is also possible in the M =0 case to let a =a~+a@, where

a~ ——2t8 8',
ag t(W + W' ——) —1/4t,

a @——2t+4',
a~ =t (C '+C '),

so that Eqs. (5.27c) and (5.27d) are automatically satisfied. The function a (t, 8) must be continuous, so

J d8 =2t f d8(WW+CC')=0;
7r

Moncrief's choice of 8'automatically makes dO 8'8' =0. The second integral is

I d8&@'=m g a„b„n sin(5„—y„)[J0(nt)N0(nt) —J0(nt)N0(nt)],
n=1

(5.33a)

(5.33b)

(5.33c)

(5.33d)

(5.34)

(5.35)

in which the Wronskian J0N0 J0N0&0, so for each —term in the sum at least one of the following must be zero: a„, b„,
or sin(5„—y„). This constraint permits divergent as well as convergent modes of @.

We now investigate the nature of the singularity at t =0. The scalar field for small t has the form

N=s(8)lnt+u(8)+O(t lnt), (5.36)

where

and

s (8)=@+—g b„sin(n8+ 5„)
@=1

(5.37)

u (8)=a + g a„sin( n 8+y„)+—g b„ ln —+C sin(n 8+5„);2 — n

n=1 7T ~ 1
2

(5.38)
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we assume the constants have been chosen to satisfy Eq. (5.34), and we have used the expansions Jo(x)=1——,x
+O(x ) and

%0(x)=—(lnx+C —ln2) — x lnx+O(x ),
2m

where C is the Euler-Mascheroni constant.
Using Eqs. (5.33c) and (5.33d), we then find

a@——s (8) lnt+2 f dO' [s (8')u'(8')]+ —,
' (s'(8)) t ln t+O(t lnt),

so that the stress-energy scalar is

(5.39)

T=TI'„=— g& N~@4~
—2»(c? 2 (g)l 2)

4~

e
'

t '" 'exp[ —4 f dO' s(8')u'(8')][t s (8)+O(ln t)] .
4m

(5.40)

Therefore a necessary condition for convergent T is
s (8)=0, i.e., we must require that P=0 and b„=O for all
n. Thus if the field @ has any divergent mode, T also
diverges. Furthermore, from the contracted field equa-
tions R = —8~T, the curvature scalar also diverges in this
case. In other words, the spacetime has a scalar curvature
singularity at t =0 if 4& has an divergent mode, i.e., if P
or any of the bn is not zero.

Now suppose N is convergent at t =0; then using the
series expansion for Jo(?]t) we have

@=C?o(8)+@](8)t+@2(8)t +
where

(5.41)

@o——a+ g a„sin(nO+y„),
n=1

g a»?1 S1I1(?]8+y» ),
n=1

etc. Use of Eqs. (5.33c) and (5.33a) then gives

a@——c+ —,(&bo) t +(C?] + , No@']—)t".. .

(5.42a)

(5.42b)

(5.43)
—2a+

where c is a constant. In this case e converges, as do
T, R, and all components of the Riemann tensor as given
by Eqs. (5.31a)—(5.31h). Therefore, since (i) all the
R-&& components have finite limits as t~O+ along the
curves of constant IQ, O, QI, and since one can show, as
Moncrief has, that (ii) each of the curves of this normal
congruence has bounded acceleration as t~O+; (iii) the
basis fields e]~] define a Fermi-Walker transported frame
along each of these curves; and (iv) the time-dependent
Lorentz transformation which carries e~ ] to a parallel-
propagated basis is well behaved, then R -&-& in aaPy5
parallel-propagated basis has finite limits along each of
the normal trajectories, and each of these solutions is ex-
tendible. In fact, one can show, in parallel with our dis-
cussion in paper I, that there are two inequivalent maxi-
mal analytic Hausdorff extensions, each containing a
quasiregular Taub-NUT-type singularlity.

Therefore if only convergent modes of N are chosen,
these spacetimes form a class of (massless minimally cou-
pled scalar wave) solutions to the Einstein equations

I

whose form is precisely that of the Moncrief universes,
with the function a (t, O) replaced by a (t, O)+a@(t,O)
Therefore the generalized models are obviously extendible
and have quasiregular singularities.

In order to test the conjecture of Sec. IV, consider now
a minimally coupled scalar test field of the form

e= g gb,'"T? e'"' (5.44)

@=a+g a„Jo(nt)sin(nO+y„) (5.45)

which has to be rewritten in terms of the Moncrief coordi-
nates t', ]t?', O', P' of Eq. (5.32) in order to compare with
Eq. (5.44). The result is simply

@=a+g a»JO(n(t')'~ )sin(nO'+y)» (5.46)

which is equivalent to the 4& of Eq. (5.44): that is, the
bo can be f~~~d ]n terms of cY and the a„and y„. T
spacetime containing these convergent modes we found to
have a quasiregular singularity, so the conjecture is indeed
correct in this case.

Suppose instead that one or more divergent test-field
modes of the form

4& =in Tg g (a? TJ )e '

J
(5.47)

are introduced onto a background Moncrief universe.

on a Moncrief universe. That is, we have set ~=0, @=0
in the most general solution of Eq. (2.8), so that
C?=@(t, 8); we have also chosen only convergent modes,
so that ao "——0 for all x, k, ,]]t. Therefore, according to

. Theorem II, the stress-energy scalars T"& and T& T"
converge at the singularity. Furthermore, these modes for
N lead to finite T~ I3& in all PPON frames, according to
Theorem I. Therefore, according to the conjecture, if
these convergent v=0, p=O modes are placed into a
Moncrief universe, and back-reaction is fully accounted
for, the singularity will remain quasiregular. This is ex-
actly what was found in the previous section: The conver-
gent modes were expressed there in the form
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Therefore since ao &0 for some A, , both stress-energy
scalars T"& and T& T" diverge for this test field, accord-
ing to Theorem II. Then our conjecture predicts that a
scalar curvature singularity will appear if such modes are
added to the universe, and the spacetime is allowed to ad-
just to the field. Again, this is what we have already
found to be true. We expressed the divergent modes in
the form

@=p lnt + g b„NO(nt) sin(n 8+5„)
n=1

,
' pl—nt'+ g b„XO(n (t')'~ )sin(n8'+5„)

n=1

(5.48a)

(5.48b)

in Moncrief's coordinates. Equations (5.47) and (4.48b)
are equivalent; the ao can be found to make the expres-OA, O

sions the same, for given p, b„, and 5„.
The conjecture therefore survives the tests for both con-

vergent and divergent field modes, for which back-
reaction leads to quasiregular and scalar curvature singu-
larities, respectively.

VI. CONCLUSIONS

In this paper, we have discussed the stability of Taub-
NUT-type cosmologies, with particular regard to the sta-
bility of their singularity structures. The quasiregular
singularities contained in these cosmologies seem unphysi-
cal, in that the world lines of freely falling observers come
to an end in a finite proper time, even though the ob-
servers do not encounter unbounded tidal forces. One
could forgive the presence of such singularities in exact
solutions of Einstein's equations if it could be shown that
they are unstable, in the sense that the addition of matter
or fields to the idealized cosmologies would convert the
singularity into something more physical, such as a scalar
curvature singularity at which tidal forces become infi-
nite.

We have made predictions about the stability of Taub-
NUT-type quasiregular singularities under back-reaction
based on the behavior of test field stress-energy scalars
and tensors evaluated in parallel-propagated orthonormal
frames. These predictions are useful, because the back-
reaction calculations themselves are generally difficult or
nearly impossible to carry out. We have said that a test
field mimics a particular type of spacetime singularity
(quasiregular, nonscalar curvature, or scalar curvature) if
the stress-energy tensors and stress-energy scalars of the
field behave in a way analogous to the behavior of the
curvature tensor and curvature scalars in the Ellis and
Schmidt singularity classification scheme. We have con-
jectured that if a test field mimics a particular type of
singularity on a Taub-NUT-type background spacetime,
then a full back-reaction calculation would change the
Taub-NUT-type singularity into the type of singularity
mimicked.

Similar classical wave modes mimic similar singulari-
ties in each class of Taub-NUT-type cosmologies. Most
waves mimic scalar curvature singularities; only very spe-
cial wave modes mimic nonscalar curvature or quasiregu-
lar singularities. Comparison of these test-field results

with exact solutions of the Einstein-Maxwell-scalar field
equations supports the back-reaction conjecture. The ex-
act solutions include generalized Taub-NUT spacetimes
containing lowest-mode scalar and electromagnetic fields,
and generalized Moncrief spacetimes containing lowest-
mode scalar fields.

In further studies, one would hope to generalize these
results to include all Taub-NUT-type cosmologies. In ad-
dition one would like to rest the back-reaction conjecture
against Taub-NUT-type cosmologies with other source
fields and source matter. There are two areas of particu-
lar concern: One is the existence of further Taub-NUT-
type spatially inhomogeneous spacetimes, and the other is
the existence of Taub-NUT-type spacetimes with quan-
tum matter source fields. The latter are rather unlikely
given the results of vacuum polarization calculations on
R'XT and R XS' flat Kasner. The former are more
probable especially since Moncrief has already proven the
existence of large classes of vacuum inhomogeneous
Taub-NUT-type models. Therefore testing the back-
reaction conjecture not only involves the fundamental
question of the nature of singularities; it is intimately con-
nected with the search for inhomogeneous exact solutions
and the interrelationships of gravitation with other fields,
and the quantum nature of both.
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APPENDIX: PARALLEL-PROPAGATED
ORTHONORMAL FRAMES

e (a) (P)p l(aP)
P (Al)

where g~ p~
——diag( —1, 1, 1, 1). The vector e ~q~ is tangent

to the curve; Eqs. (Al) and (A2) may be solved in princi-
ple to find the other frame vectors. The result depends
upon whether the geodesic spirals infinitely as it ap-
proaches the singularity or passes right through the singu-
larity; these geodesic types are described more fully in pa-
per I. We call the corresponding orthonormal frames
spiraling and pass-through, respectively. The results given
here are for the larger class of geodesics, those which do

A parallel-propagated orthonormal (PPON) frame is a
set of four vectors e~~~ (a=0, 1,2, 3) carried along a time-
like curve; these vectors satisfy the orthonormality and
parallel-propagation conditions
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not end at the essential quasiregular singularity (for exam-
ple, in the flat Kasner case the results are for geodesics
with C~&0, in the notation of paper I).

Flat Kasner spacetime. Using the geodesic equations
given in paper I, one can easily write the tangent vector to
timelike geodesics; the result is

~(o) = 0
(A3)

+(1+2at)'"
(2t) —'[1+(1+2at) '~']

C2

C3

.(A4a)

C3

where C2, C3, and a=1+C2 +C3 are constants; we
have chosen C] ——1. The upper and lower signs designate
pass-through and spiraling geodesic segments, respective-
ly. The other PPON frame vectors are

—a '[1+.(C2 +C3 )(1+2at)' ]
(2t) '[1+(I+2at)'~']

C2 7

C2a '[I+( I+2at)'~2]
0
1

(A4b)

C3(a ')[I+(I+2at)'~ ]
0
0
1

(A4c)

Taub-RUT spacetime. The timelike frame vector in
Taub-NUT spacetime is again determined from the geo-
desic equations:

(A5)

0

+ yl/2

(21U) '(p~(/21+ V'~ ) p~~(t +1 —)
(o)

I9 0

where V=[p (21) +U(pz (t +1 ) '+1)], and 1, p~~, pz, and p=(p~~ +pj )' are constants. If p~~ &0, upper and
lower signs correspond in the vicinity of the null hypersurfaces t+ to spiraling and pass-through geodesic segments,
respectively. If p~~ & 0, this behavior is reversed. All geodesics spiral if p~~

——0.
One cannot find exact closed-form solutions. of Eqs. (Al) and (A2) for the other Taub-NUT frame vectors. However,

we need them only to order T in the neighborhood of t+, where T =t t+. For definite—ness we take p~~ &0. Define
L =t+ +1 and W=(pz L '+1); then for pass-through PPON frames,

e(])=I
—1(sing cosg) 'T

L —t+T
1(sing) 'T

(A6a)

ep(2) =8 -1/2

(21) 'p

——,pii
'W [piit+L +—1 W (2t+pii ) ]T

—lpL I. T

pt+I. T

(A6b)

p2(21) 'sin~g cosg —1t+ 'sing tangWT

(1+cos g)(2cosg) 'W+[1 sing tang(2t+p~~ ) ']
e~~q~ W' (pj cos——8+L) ' X[W —2t+ picot 81 L '(W+pz cos OL ')]T

II. 'sinOT
—W+(2p, 'L '+ 1 )t+L 'T

(A6c)

For spiraling PPON frames,
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0

l(l+cos 8)(2sinOcosO) 'T
p —3/2

L —I;+T
—l (sinO) 'T

(A7a)

e", , =L

—ILt+ 'tanOT

—L cotO+t+(2 sinOcosO) '(3 cos 8—1)T

IT
L (sinO) ' —t+(sin8) 'T

(A7b)

(p(((2l) ' —lp sin 8(t+L cos8) 'T
—p((t+(2l T) '+[(2p(() 'W —p(((2/ L) '(L +l )]

e(3) —— + fl W (2t+p((') '+pt+(2L cosO) '(3cos 8—2sin'8)]T

0
pL ' —2pt+L T

(A7c)

Moncrief universes The ta.ngent vectors of spiraling and pass-through k'~0 geodesics near the t =0 null hypersurface
in Moncrief's universes are, respectively,

e(0) 0

—2fo

2k't 'e '+k'e '[ —48 f'" f"'+28 '—
——'(f"')'+2(k') ' '(k' '+1)]

—2fo—k'e g,
2fo

(A8a)

e(o)P
0

0[28 2 ( (f(())2+2(k') —2e 0(k2e 0+1)]
—2fop (A8b)

where k, k', and 8( ——dO/dt i, o are constants which par-
tially define a geodesic, and

f(8)=g a„sin(n 8+yn ),

where the constants a„and y„partially define the space-
time. If Oo=O(t =0), fz"' d "f(8)/dO"

i z ()
——and

fo ——f (Oo). Only terms of order t ' and order to are in-
cluded above, although higher-order terms can be comput-
ed as well. The approximations we have used to find the
geodesics complicate the calculations of the other frame
vectors, but they can also be found in principle. In this
paper we have restricted our use of Moncrief universe
frame vectors to involve only e~[0).
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