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The nature of spacetimes with quasiregular singularities is discussed. Such singularities are the
end points of incomplete, inextendible geodesics at which the Riemann tensor and its derivatives
remain at least bounded in all parallel-propagated orthonormal frames; observers approaching such
a singularity would find that their world lines come to an end in a finite proper time, without en-

countering infinite tidal forces. Particular attention is paid to Taub-NUT-{Newman-Unti-
Tamburino) type cosmologies, which are an interesting class of spacetimes containing quasiregular
singularities. These cosmologies are characterized by incomplete geodesics which spiral infinitely
around a topologically closed spatial dimension: They include the R &S' and R'&(T flat Kasner
universes, the two-parameter family of Taub-NUT universes, and an infinite-dimensional subclass
of Einstein-Rosen-Gowdy spacetirnes studied by Moncrief. The global structure of each of these
spacetimes is described. The flat Kasner and Moncrief universes both possess a null hypersurface
which is a Cauchy and a Killing horizon and which contains a quasiregular singularity; the Taub-
NUT universes possess two such null hypersurfaces. Timelike geodesics exhibit two sorts of
behavior in the vicinity of any one of these null hypersurfaces: They may pass right through the hy-

persurface or they may approach it asymptotically, spiraling around a closed spatial dimension. The
behavior of scalar test fields in each of the Taub-NUT-type cosmologies is also very similar in the
vicinity of a singularity-containing null hypersurface. In each case there are three types of wave

modes: There are modes whose amplitude diverges logarithmically in the vicinity of the null hyper-
surface; there are other modes whose phase diverges logarithmically; and there are modes without

any divergent behavior. It is shown that generic finite data on an initial Cauchy hypersurface lead
to divergent test fields at the null hypersurface. The possibility of the existence of additional Taub-
NUT-type cosmologies among spatially homogeneous spacetimes of the various Bianchi types and
among inhomogeneous spacetimes is also discussed. The geodesic and scalar field behavior in these
spacetimes is used in a subsequent paper to investigate the stability of Taub-NUT-type cosmologies.

I. INTRODUCTION

A great deal of insight has been garnered over the years
into the properties of spacetime singularities. There is no
completely general definition of a singularity, but useful
definitions have been formulated for many situations, and
the existence of singularities in many general classes of
spacetimes has been proven by using these definitions.
The nature of singularities is, however, still somewhat of a
mystery. Therefore, in this paper and the following pa-
per, we will explore some of the properties of a particular-
ly intriguing class of spacetime singularity: the quasiregu-
lar singularity.

A singularity in a maximal spacetime (i.e., a connect-
ed, C, Hausdorff manifold M together with a Lorentzi-
an metric g„„)is indicated by incomplete geodesics or in-
complete curves of bounded acceleration. One usually
thinks of a singularity as the boundary of a spacetime,
since by definition a sparetime is smooth and all irregular
points have been excised. Unfortunately, no one defini-

tion of a singularity has been found which is applicable in
all situations. ' One of the more useful ways to attach a
boundary to a singular spacetime is by a b (bundle)-
boundary construction. ' The b-boundary is the projec-
tion into a spacetime of a natural boundary attached to a
higher-dimensional Riemannian manifold associated with
the spacetime. In Schmidt's original b-boundary con-
struction, the Riemannian manifold is the bundle of
frames over spacetime, with positive-definite metric in-
duced by the affine connection. Boundary points of the
frame bundle are determined by giving end points to all
Cauchy sequences which do not converge in the frame
bundle. The bundle boundary is then projected down to
make a boundary for the spacetime. There are other
(equivalent) formulations of the b-boundary construc-
tion, ' but we will only need to use the one stated in order
to describe the nature of singularities.

The major difficulty with the singularity theorems
which prove the existence of singularities in large classes
of spacetimes is that even though they predict incomplete
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geodesics in inextendible spacetimes, they do not describe
what causes the incompleteness. In other words, they say
nothing about the nature of the spacetimes or the type of
singularity present. Early attempts at classifying singu-
larities did not try to divide all singularities into different
categories but rather were meant as meaningful descrip-
tions of the types of singularities known in exact solu-
tions. ' Later classification schemes attempted to divide
all singularities of a sufficiently pathological nature into
one category or another. The first such comprehensive
scheme was proposed by Ellis and King;" it was later re-
fined by Ellis and Schmidt. '

The Ellis-Schmidt classification scheme describes the
singularity structure of a spacetime (M,g) on which the
Riemann tensor is k times continuously differentiable
(i.e., is C"); it uses a b-boundary construction to deter-
mine the location of singular points. If the b boundary is
nonempty, there are two possibilities.

1. A point q in the b boundary is a C" ( r & 0 ) regular
boundary point if the spacetime (M,g) can be embedded
in a larger spacetime (M', g') such that the Riemann ten-
sor is C' and q is an interior point in M'; or

2. a point q in the b boundary is a C" ( r )0 ) singular
boundary point if the spacetime (M,g) is not extendible
through q in a C' way.

A singular boundary point q can then be classified as a
scalar curvature singularity, a nonscalar curvature singu-
larity, or a quasiregular singularity. We have the follow-
ing definitions

1. A singular point q is a C (or C ) quasiregular
singularity (k &0) if all components or derivatives of the
Riemann tensor R,b,~, , evaluated in an orthonormal

(ON) frame parallel propagated (PP) along an incomplete
geodesic ending at q are C (or C ). In other words, the
Riemann tensor components and derivatives tend to finite
limits (or are bounded) in every PPON frame.

2. A singular point q is a C (or C ) curvature
singularity (k&0) if this is not true, and it can be
categorized as either (a) a C" (or C" ) nonscalar curva-
ture singularity if all scalars in g,b, g,b,d, and
R,b,~, ,

. . . ,„ tend to a finite limit (or are bounded), i.e.,
tend to C (or C ) functions, or (b) a C (or C ) sca-
lar curvature singularity if some scalar does not tend to a
C (or a C ) function.

Scalar curvature singularities are the best known and
most thoroughly investigated class of singularities. These
"big bang" and "black hole" singularities correspond to
one's usual concept of a real physical singularity, near
which something "physical" diverges and near which all
observers feel unbounded tidal forces. Less well under-
stood are the nonscalar curvature singularities. No curva-
ture scalars diverge in this case, yet some- Riemann tensor
components evaluated in a PPON frame along an incom-
plete curve do not tend to finite limits (or become un-
bounded). In fact, there is an ON basis in which all com-
ponents of the Riemann tensor and its derivatives
R,b,~, , . . . , are well behaved; the Lorentz transformation
which relates this basis to the PPON basis along an in-
complete curve is, however, badly behaved. The physical
effect is that all observers who fall into a nonscalar curva-

ture singularity feel infinite tidal forces, but observers can
move arbitrarily close to the singularity on other curves
and feel no untoward effects. '

The least well-understood singularities are the quasireg-
ular ones. No observers near a quasiregular singularity,
including those who fall into the singularity itself, feel un-
bounded tidal forces. In all reasonable frames the
Riemann tensor is completely finite. It is this unusual
class of singularities which is our subject. In fact, in this
paper a particularly interesting class of spacetimes with
quasiregular singularities is identified and chosen for spe-
cial consideration: the "Taub-NUT (Newman-Unti-
Tamburino)-type" cosmologies. ' ' These cosmologies
are characterized by incomplete geodesics which spiral in-
finitely around a topologically closed spatial dimension.
To our knowledge these are the only exact cosmological
solutions to Einstein s equations which possess quasiregu-
lar singularities.

We study in particular three classes of exact solutions
to Einstein s equations with Taub-NUT-type singularities:
R XS' and R'&T fiat Kasner universes, the two-
parameter family of Taub-NUT universes, and an
infinite-dimensional subclass of Einstein-Rosen-Gowdy
spacetimes which we call Moncrief universes. Therefore
our study encompasses the entire spectrum of cosmologi-
cal solutions to Einstein s equations, including flat space-
times, spatially homogeneous but anisotropic spacetimes,
and inhomogeneous spacetimes.

The plan of this paper is as follows. In Sec. II, we dis-
cuss the general nature of spacetimes with quasiregular
singularities. In Sec. III, we explore the Taub-NUT-type
examples of spacetimes with quasiregular singularities by
investigating their global structure, geodesic and test-field
behavior, and the solution of a Cauchy problem. Finally,
in Sec. IV, we examine the likelihood of the existence of
generalized Taub-NUT-type cosmologies.

II. SPACETIMES WITH QUASIREGULAR
SING UI.ARITIES

At a C" (or C" ) quasiregular singularity the Riemann
tensor components R,b,d, ,

. . . , in a PPON frame are at
least C (or C ). In this section, we will briefly review
some of the well-known general properties of this mildest
sort of true singularity, before specializing to those which
are Taub-NUT-type.

A great deal is known about quasiregular singulari-
ties. ' One of the most important properties is their local
extendibility

If a point p is a C" quasiregular singularity (k an integer
&0), then every curve y ending at p has a neighborhood
U in the spacetime M such that U is isometric to a neigh-
borhood U' in another spacetime M' with the image of y
being extendible in M'.

One must be careful, as Beem'- warns, to be precise in
ones definition of local extendibility (e.g., the definition
in Hawking and Ellis is incomplete), or one can find one-
self claiming that Minkowski spacetime is locally extendi-
ble. Notice that the local extendibility property points out
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the global nature of quasiregular singularities.
All known examples' ' of spacetimes with quasiregu-

lar singularities are made by cutting and gluing together
pieces of a regular spacetime (i.e., a nonsingular one). A
simple example is the Riemannian cone in two dimen-
sions: The vertex is a quasiregular singularity, since the
cutting and pasting of a flat Riemannian space to make a
cone causes two separate lines in the Riemannian space to
be only a single line in the cone; therefore, there are not
enough directions at the vertex for it to be a regular point.
In all such cut and pasted quasiregular singularities, the
singularity arises because there are too few or too many
points near the singularity for it to be a regular point. '

Ellis and Schmidt have classified such quasiregular
singularities as either elementavy or complicated. An ele-
mentary quasiregular singularity arises from identifica-
tions of a regular spacetime under a discrete group of
isometrics that leaves a set of points ("fixed points") in-
variant. Certain subclasses of elementary singularities
may be defined by describing the nature of the set of fixed
points. However, a complete classification scheme of
these relatively well-behaved elementary singularities has
not been found. Complicated quasiregular singularities
are even more difficult to characterize since they are made
by gluing together elementary quasiregular singularities.

Another useful division of quasiregular singularities ex-
ists (see, e.g., Ellis and Schmidt' and Tipler, Clarke, and
Ellis ). Quasiregular singularities can be considered spe-
cialized, holes, or primeval depending on their properties:

l. A specialized quasiregular singularity q occurs if the
spacetime is specialized on a curve y ending at q, and
points not Hausdorff separated from it, if the limiting
values in a parallel-propagated frame on y of the Weyl
and Ricci tensors are invariant under some Lorentz
transformation. Those quasiregular singularities corre-
sponding to imprisoned incompleteness (e.g. , Taub-NUT
spacetime) are necessarily specialized. In addition,
Clarke ' ' has shown that any quasiregular singularity
which can be reached from a globally hyperbolic region of
spacetime is specialized:

contains only quasiregular singularities, then every singu-
larity accessible on a future-directed causal curve is
primeval.

A handful of exact solutions with quasiregular singular-
ities are known. Here we will examine Taub-NUT, flat
Kasner with R ' X T and R &S' topology, and the Mon-
crief universes. In each, the quasiregular singularity is
specialized. In fact, each of these singular spacetimes is
Taub-NUT type: Each contains incomplete geodesics
which spiral infinitely about a topologically closed spatial
dimension.

III. TAUS-NUT- TYPE COSMOLOGIES

Flat Easner spacetime. The Kasner universes are a
special class of Bianchi type-I spatially homogeneous but
anisotropic solutions of the vacuum Einstein equations.
A particular example is the flat Kasner universe, with
metric

ds = dt +t d—g +d8 +dP (3.1)

On an R manifold, a simple coordinate transformation
converts this metric into the usual Minkowski metric; in
that case, the points t =0 in Eq. (3.1) indicate only a coor-

X4

In this section we examine three classes of exact cosmo-
logical solutions to Einstein s equations with Taub-NUT-
type singularities. We discuss in each case global proper-
ties of two inequivalent maximal Hausdorff extensions
and a maximal non-Hausdorff extension and then describe
the geodesic and test-field behaviors in one maximal
Hausdorff extension of each cosmology.

A. Spacetimes

If M is a globally hyperbolic, maximal C spacetime, if
p is the singular end point of an inextendible, incomplete
causal curve, and if the Riemann tensor is not specialized
at p, then p is a C curvature singularity.

X

The condition that the spacetime is specialized at q is usu-
ally taken to indicate that the spacetime is Petrov-type D
(although it could be Petrov-type 0 or X) and electrovac
(although the physically "unrealistic" cases of negative
pressure or negative density are possible).

2. A hole is a quasiregular singularity which develops
without reasonable cause from regular Cauchy data. A
hole-free spacetime M is one where "if S is any acausal
surface in M, then there is no spacetime M' with a 1:1
isometric mapping 9:D(S)«M' such that 0(D (S)) is
properly contained in D(8(S))," where D signifies a
domain of dependence.

3. A primeval quasiregular singularity is one that has
existed for aH time. Clarke ' has shown that if a strongly
causal spacetime is nowhere specialized, hole-free, and

FICx. 1. Penrose diagram of the covering space of a (t, P)
slice of the flat Kasner universes. R flat Kasner is only a por-
tion {Region I) of Minkowski spacetime {Regions
I+ II+ III+ IV). For R'&&T or R 0&5' flat Kasner, the
points a are identified, the points b are identified, etc. , and the
original spacetimes can be extended in two inequivalent Haus-
dorff ways across the null hypersurfaces shown: One extension
is given by Regions I+ II, and the other by Regions I+ III. A
maximally extended non-Hausdorff spacetime consists of re-
gions I+ II+ III+ IV with the point P removed.
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dinate singularity. However, if the manifold structure has
the topology R'&T or R XS', for example, in which
one or more of the spatial dimensions are wrapped up,
then the spacetime possesses a true singularity.

For an R &&S ' flat Kasner universe, the points
(t, g, B,Q) and (t,g+na, B,Q) are identified, where n takes
on all integer values from —oo to + oo, a is a nonzero
constant, and the coordinate ranges are t H (0, oo ),
QC[0,a], 8&( —oo, oo ), and PH( —oo, oo). For an
R'&&T flat Kasner universe, the points (t, g, 8,$) and
(t,g+na, 9+mb, /+le) are identified, where n, m, l take
on all integer values from —~ to ao, a, b, c are nonzero
constants, and the coordinate ranges are t H (0, ~ ),
QC[O, a], 8&[0,b], and QC[0,c]. Both the R &S' and
R ')& T cosmologies can be extended through t =0 to one
of two inequivalent maximal Hausdorff spacetimes with
metric

ds =+2dg'dt'+2t'(dP') +(dB') +(dP') (3.2)

where t'=t2/2, g'=P+ lnt, 8'= 8, and P'=P.
Figure 1 illustrates the covering space for a (t, g) slice

of either R'&&T or R )&S' flat Kasner; it is simply a
portion of an (x,x') slice of a two-dimensional Min-
kowski spacetime with ds = —(dx ) +(dx ') . Region I
(x &

~

x '
~

) is isometric to a slice of the original flat Kas-
ner cosmology, since the coordinate transformation
x =t cosh(g) and x'=t sinh(g) yields a Minkowski
metric with the point identification

(x,x ')~( x 0 cosh(na) +x ' sinh(na),

x'cosh(na)+x sinh(na)) . (3.3)

The physics beyond the surfaces x =x' (x'&0) and
x = —x' (x'&0) is not, however, determined from the
evolution of Cauchy data given on a spacelike slice in the
original flat Kasner spacetime. The boundaries
x =

~

x '
~

are Cauchy horizons; one must choose the type
of extension made across these boundaries. An analytic
extension across x =x' (x' &0) into Region II or across
x =x ' (x '

& 0) into Region III yields one of the maximal
Hausdorff spacetimes given by Eq. (3.2); choice of the
upper (lower) sign gives a metric analytic over Regions I
+ III (Regions I + II). If both extensions are per-

formed, however, the resulting spacetime is non-
Hausdorff. In fact, one can extend the original flat Kas-
ner spacetime to a maximal non-Hausdorff spacetime
which includes Region I+ II+ III+ IV, modulo the ac-
tion of the isometry group of this spacetime, but which
excludes the point P =(x,x ') = (0,0). Since timelike and
null geodesics hit P, even this maximal non-Hausdorff ex-
tension is incomplete. For a discussion of the extension
process, see the Appendix.

The point P which must be omitted in the original flat
Kasner spacetime and also in any extensions, including
those which are non-Hausdorff, can be identified as the
location of a singularity. This singularity is quasiregular
according to the Ellis and Schmidt classification
scheme, ' since the Riemann tensor in any frame is con-
vergent, in fact zero. It is the only singular point in the
non-Hausdorff extensions; it exists in both Hausdorff ex-
tensions as well, so we term it an essential quasiregular

singularity. In the Hausdorff extensions, the entire line
x =x ' (or the line x = —x ') in the covering space forms
the boundary of the manifold, and is a quasiregular singu-
larity according to the classification scheme. %'e term the
boundary line a nonessential quasiregular singularity (ex-
cept for the point P) since the line is nonsingular in the
non-Hausdorff extension or in the alternate Hausdorff ex-
tension. In the Hausdorff extensions the boundary line
maps into t'=0, g'=+ oo in the metrics of Eq. (3.2), so
the singularity is contained in the t'=0 null hypersurface,
but with infinite values of P'.

Taub-NUT spacetime. Taub-NUT spacetime' is
an analytic extension of the original Taub universe, the
spatially homogeneous, anisotropic, vacuum solution to
Einstein's equations with topology R ')&S and with Bian-
chi type-IX symmetries. The Taub metric is

ds = —U 'dt +(21) U. (dg+cosBdg)2

+(t +1 )(sin Bdg +dB ), (3.4)

where

+(t '+1')(d 8 '+ sin'8 dP '), (3.5)

g= g+t (21) '+(2K+ )
' ln(t t+)—

+(2K )
—' ln(t t )—

with K+ =+1 (t+ t )[(t+ ) +1 ] '. I—n both extensions,
the region t ~ t & t+ is isometric to the original Taub
spacetime, and both extensions have closed timelike lines
in the NUT regions (i.e., for t &t and t & t+). There are
still incomplete geodesics, although no larger Hausdorff
extension is possible; any further extension is non-
Hausdorff. A global picture of Taub-NUT spacetime is
given in Fig. 2. The points P are quasiregular singulari-
ties, ' and the lines t =t+ and t =t are Cauchy and
Killing horizons in this maximal non Hausdorff space-
time. For further discussion, see Hawking and Ellis and
the Appendix.

Moncrief spacetime The Moncrief u. niverses are an
infinite-dimensional class of Einstein-Rosen-Gowdy
spacetimes without curvature singularity. They have di-
agonal metrics

ds =e '( dt +dB )+t e dg +e —dP (3.6)

where U(t)= —1+2(mt+1 )(t +1 ) ', m, l are positive
constants, $,8,$ are Euler angle coordinates on S with
ranges 0&% &4', 0&8&~, and 0&/ &2m, and
t & t & t+, where t+ =m + (m +1 )'~ . The constant- t
spatially homogeneous hypersurfaces of Taub spacetime
turn null at t+ and t; there are extensions across these
lightlike hypersurfaces into regions isometric to the NUT
spacetime of Newman, Tamburino, and Unti. In the
NUT universes, constant-t hypersurfaces are timelike, and
the spacetimes are spatially inhomogeneous and acausal.
The extensions of Taub spacetime are discussed by Misner
and Taub, ' Ryan and Shepley, ' and Hawking and
Ellis.

There are two inequivalent analytic maximal Hausdorff
extensions of Taub spacetime, given by

ds = U(21) (dP+cosBdg) +2(21)(dg+cosBdg)dt
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+—e (dP') +e '(dg') +e b(dP')2, (3.9)

where

and

b'(t', 8') = g a„' Jo(nt'~')sin(n 8'+ y„)
n=0

(3.10)

The coordinate ranges are t H (0, 0() ), g E [0,2'],
8e [0,2~], and P e [0,2~].

Two inequivalent maximal Hausdorff extensions across
the null hypersurface t =0 are given by

defined on an R '
&j T manifold with

b (t, g) = g a„Jo(nt) sin(n 8+y„) (3 7)

a(t, g)=b(t, g)+ f ds s
Bb (s, g)

0 cps

2

2
r)b (s, 8)

ae
(3.8)

FIG. 2. Penrose diagram of the covering space of a (t, (tj)

slice of the maximal non-Hausdorff extension of Taub-NUT
spacetime. Each point represents a two-sphere. The points P
which are omitted from the spacetime are quasiregular singular-
ities, and the null hypersurfaces t =t+ are Cauchy and Killing
horizons.

2
Bb' ' g'a'(t', 8') =b'(t', 8')+. —, f ds' 4s'

Bs

r)b(s', 8')
BO'

(3.11)

The region t ~ 0 is isometric to the original spacetime de-
fined by Eq. (3.6); the original and extended coordinates
are related by the transformation t'=t l2, P'=2(f+1nt),
O'=8, and P'=P, where we have imposed the appropriate
coordinate identifications on g', 8', and P'.

These extensions across the null hypersurface at t'=0
have been chosen to be analytic. We illustrate the analyti-
city explicitly in order to introduce notation which will be
used in later sections of this paper. Clearly a' and b' are
analytic. This implies immediately that all metric com-
ponents except for g, , =+(4t') ' [exp(2a') —exp(2b')]
are analytic. To examine g. .. one can expand a' and b'
in power series away from t':

where Jo is the regular Bessel function of zeroth order.
To avoid convergence of series questions, only a finite
number of the coefficients a„are allowed to be nonzero.

I

and

oa I j
Bi) g t f(2j)(gi)

o (j()24j
(3.12)

~t'/&~ ~ 1 1 2~ —k/&~(ti Bi) y ( I f + y (j ) [kf(2k)f (2j —2k)+( k)f (2k+1)f(2j 2k —1)]-
j=o 4J V')' k oj«')='[V —k)(]'

(3.13)

where

f(8') = g a„sin(n 8'+ y„) (3.14)

I

Therefore, the g, , component is

2a' 2b'g„=+,[e
' —e4t' (3.20a)

(„) d "f(8')
d 0'"

Thus, near t'=0 one finds

b'(t', 8') =f(8')+ „' f' '(8')t'+O(t' ), —

a'(t', 8') =f(8')+ „[f'"+2(f'")']t'+O(t')—,

e+2b' e+2f[1+ 1 f(2)ti+O(t'2)]
e+2a' e+2fI 1+ 1 [f(2)+2(f(1))2]t'+O(t.'2)I

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

=+ ,' e'~(f"')'+O(t')— (3.20b)

which is clearly analytic (cf., Moncrief ). Therefore,
both of the inequivalent Hausdorff extensions of Eq. (3.9)
are analytic. As for the R'&T and R )&S' fiat Kasner
and Taub-NUT spacetimes, each of these extensions is
maximal, and one cannot make both extensions and still
retain the Hausdorff nature of these spacetimes. This
point is further discussed in the Appendix. The null hy-
persurface at t =0 in the maximal Hausdorff extensions is
a Cauchy and Killing horizon which contains a quasiregu-
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lar singularity, in the sense that the boundary points t =0,
are the end points of incomplete geodesics. A

quasiregular singularity is still present in a maximal non-
Hausdorff extension, and its location at P is clearly illus-
trated in Fig. 1. t 0 0

B. Cieodesic behavior

(3.21)ds =2dgdt+2tdg +d8 +dP

(2) R '&&S3 Taub-NUT spacetime with

ds = 2(2l) (dg+cos8dp) +2(2l)(dg+cos8dp)dt

+(t +l )(d8 +sin 8dg ) . (3.22)

(3) R '
&( T Moncrief spacetime with

ds = [e—' e—]dt + ,'e "df—dt
4t

In this section we examine the behavior of geodesics in
one maximal Hausdorff extension of each Taub-NUT-
type cosmology considered in Sec. III A. In particular, we
look at the extensions:

(l) R '&& T or R &&S' flat Kasner spacetime with

FIG. 3. Noll and timelike geodesic orbits for an extended
R'&& T or R'XS' flat Kasner universe: 3 (t g) slice is shown.
(A) Null geodesic behavior when 8 and P are both constant
(a=0). (B) Null geodesic behavior when 8 and P are not both
constant (a & 0), or timelike geodesic behavior (a & 1).

obey dg/dt = —(2t) ', and so spiral infinitely as they ap-
proach t =0. If C»0, then the tangent vector is

(C,2+ 2at) '~2

—[C(+(C) +2«)'~ ]

+ e 2b(dy)2+ e 2a(d 8)2+e 2b(dy—)2
4

(3.23) C2

C3

(3.26)

where primes on the coordinates have been suppressed.
The equations governing the geodesic paths x"(k) are

u". u =0, (3.24)

t+2tg=C, ,

g=C2,

2$(t+tg)+a=0,

(3.25a)

(3.25b)

(3.25c)

(3.25d)

where C~, Cz, C3 are arbitrary constants, and
o.=C2 +C3 —E. The case +=0 corresponds to null
geodesics with no 8 or P motion. If also /=0, then
t =C&, so these geodesics are straight lines extending from
t =+ oo to t = —oo, passing through t =0, and they are
complete in the affine parameter A, . If P&0, then
t= —C&, so that if C»0, the null geodesics follow the
paths /=go —In

~

t ~, which start at t =+ ao or t = —oo

and then spiral in the f direction as they approach t =0.
These geodesics are incomplete, approaching t =0 in a
finite affine length in spite of spiraling an infinite number
of times as t~O If P&0, .but C~ ——0, the geodesic is con-
fined to the null hypersurface t =0.

If a&0, both null and timelike geodesics are permitted,
and there can also be 8 and P motion. If C~ ——0, geodesics

where u"=x"=dx"/dA, and where A, is an affine param-
eter. We scale k so that E =u"u& ——0, —1 for null and

' timelike paths, respectively. We will show that in the
neighborhood of the null hypersurface which evolves in
each cosmology, the geodesic paths behave similarly in all
of the Taub-NUT-type universes.

Flat Kasner spacetime. Four first integrals of the
motion in extended flat Kasner spacetime (with either
R ')& T or R &S' topology) are

and so

l [(C,'+2«)'"+C, j
dt 2t (C +2rrt) ~ (3.27)

These geodesics all begin at t =+ oo, and depending upon
the choice of sign, either spiral toward t'=0 from above,
or else pass through the t =0 hypersurface to the negative
t region, turn back at t = —C& /2a, and spiral toward
t =0 from below. All a&0 geodesics are incomplete; see
Fig. 3.

Each geodesic on the extended flat Kasner spacetime
corresponds to a straight-line geodesic in the I+ III (i.e.,
x &x') region of the covering (Minkowski) spacetime, as
pictured in Fig. 1. The slope and x intercept of the
straight lines may be identified as the extended flat Kas-
ner geodesic constants +(1+a)'~ and C&, respectively.
Thus the C& ——0 geodesics are those which strike the ori-
gin xo=x'=0 of Minkowski spacetime. A geodesic seg-
ment which crosses the line x ' = —x (for x &0) is a
pass-through segment in flat Kasner, passing through
t =0 at a finite value of f. A geodesic segment which ap-
proaches a boundary point x'=x (including x =0) is a
spiraling segment in flat Kasner, approaching t =0 as
li~ ao. The behavior of geodesics as illustrated in Fig. 3
is easily understood by considering the straight-line time-
like geodesics in the x & x' region of the covering space-
time.

Taub-NUT spacetime. Geodesics in Taub-NUT space-
time have been investigated by Misner and Taub, ' Shep-
ley, and Ryan and Shepley. ' The spacetime has four
Killing vectors:

g~ ———sing —cosP cot8 —csc8, (3.28a)
a a
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a 8
g2 ——cosp —sing cotg —cscg (3.28b)

P= +2t '/—'[g (t, g, g) ]'/',
(3.33a)

(3.33b)

g3 ——a/ap,

~ = —a/aq,

(3.28c) where

(3.28d) g(«8)= 8'—+k'e"' ' «— (3.34)

and four corresponding constants of the motion,

p, =u&gp, (a =1,2,3),
p ll

—u "qp,

(3.29)

(3.30)

where u" is a solution of the geodesic equation (3.24).
Define also p =pq —p~I, where p =p'p„ then orienta-
tion of the coordinate axes to let p( ——p2 ——0 and p3 ——p )0
gives p~~ =p cosg. The first integrals of motion are then

t=+ke 'bF(t, g, g),
g=k't 'e "[1+F(t,g, g)],

where

F(t g 8) [e2(b —a)+4t (ki) 2e4bg (—t g 8)]l/2

(3.35a)

(3.35b)

(3.36)

These geodesics spiral infinitely in the (tj direction as
t~O, since 11t/Idt = t '—. If k'&0, then

+[(4(2)—1 2+ U( 2(t2+i2) —1 E)]1/2

1t)=(2lU) '(t+p~((2&) ') —p(((t'+&')

0=0,
p (t2+/2) —I

(3.31a)

(3.31b)

(3.31c)

(3.31d)

The quantity e ' '~1 as t~0, so upper signs in Eqs.
(3.35) correspond to spiraling behavior, since then
d1t//dt — 2t —', lower signs correspond to pass-through
behavior, since then dP/dt is finite as t~O.

A complete description of the geodesics, including their
completeness, requires the solution of the 0 equation of
motion

(3.32b)

(e2a e2b)t'2 e2bt'y+ t e2bq2
4t 2 4

From these equations one can study the behavior of geo-
desics in the vicinity of the null hypersurfaces at
t+ ——m+(m +l )'/ For ex. ample, in the neighborhood
of t+ let t =t+(1+5) where 5&&1. If p~~ =0, then
d1t//dt =/It ——1/(2l5); these geodesics all spiral as the
singularity at t+ is approached. If p~~&0, there are two
cases corresponding to the upper and lower signs in the
equation for t. For the upper ( + ) sign,
dg/dt- —1/(l5), and the geodesics spiral. . For the lower
( —) sign, d fldt -constant, and the geodesics pass
through t =t+ without obstruction.

Spiraling geodesics wrap up an infinite number of times
in a finite affine length, since Eq. (3.31a) can be used to
show that A, -6' for spiraling geodesics in a compact
neighborhood of t=t+. these geodesics are all incom-
plete. Some geodesics which pass through t =t+ are
complete; see, for example, Ryan and Shepley. ' Geodesic
behavior near t+ (or t ) in Taub-NUT is qualitatively
the same as that near t =0 in the IIat Kasner universes,
and geodesic paths near t+ resemble those near t =0 in
Fig. 3.

Moncrief spacetime Geodesic b.ehavior in the Moncrief
universes is complicated by the spatial inhomogeneity of
these spacetimes. The lower degree of symmetry allows

only two independent Kilhng vector fields and only three
easily obtained first integrals of motion. The remaining
second-order equation is nontrivial, so we investigate geo-
desic behavior only in the region of interest near t =0.
Three first integrals are

t+tg=k', (3.32a)

()() =k e

e2(b —a)b~ j2+e —2(a+b)bi j2 0 (3 37)

where x"=dx"/dA, , but where an overdot or prime on a
or b means a partial derivative with respect to t or 0. Us-
ing the first integrals of Eqs. (3.32), this equation becomes

8+2a 8 2+(a +b )k2e2(b —a) @a e
—2a

where

+2agG(t, 8, 8)=0,

2t'/ [g(t, g, g)]'/ (if k'=0),
k'e F(t,8,8) (if k' 0) .

(3.38)

(3.39)

We wish to find t, 1t/, 8,$ as functions of t near t =0.
We begin by assuming 0 can be expanded as a power
series in t for a particular geodesic:

0 00+ 01t +02t + (3.40)

Then the functions a (t, g) and b (t, 8) can also be written
as power series in t, and therefore t, g, g, p can be found as
functions of t and the coefficients 8; using the known
first integrals. Finally, constraints on the 8; can be found
using the second-order 0 equation.

Using Taylor series, the function f(8) .defined by Eq.
(3.14) is

f(8)=f(8,+g,t+g, t'+ . )

=fo+ 81fo"t +(82fo"+ —,
' 81'fo")t'+

(3.41)

bl
8+a'8 +2atg+ —(a' —b'e2(b —a))t'2 e2(b a)—

4t 2

+e2ag 2+e —2bp 2

where k and k' are constants. If k'=0, then

(3.32c)
where

d(a)f(g)
d0"

(3.42)
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(3.43a)

(3.43b)

Therefore, along the geodesic,

b(t, O(t))=fo+(Olfo + g fo )t+O(t )

a(t, O(t))=fo+[Olfo + 4 fo + z (f()") ]t+0(t') .

t'2 [1 4—t(dOldt)z] l—e
—za[kize zb—+4t(kzezb E)]

(3.44)

All quantities on the right can be expanded in powers of t
along the geodesic; the result is

Now O=dOld A. =tdOldt; either Eq. (3.33a) or (3.35a) can
. then be solved for t to give in each case

+2tl/2 o(k2 o E)l/z~g(t3/2)

if k'=0, and

(3AS)

ot 1+[28 2 28 f(l) f(2) (f(1))2+2 o(k~) —2(k2e o E)]tI +0(t2) (3.46)

C. Test-field behavior

In order to understand more fully the nature of the null
hypersurface which forms a barrier between the globally
hyperbolic and noncausal regions in each maximally ex-
tended Hausdorff Taub-NUT-type cosmology, we exam-
ine the behavior of scalar test fields in a neighborhood of
the null hypersurface. We find that these fields behave
quite similarly in each cosmology.

The scalar wave equation is

(Cl —gR —M )=0, (3.47)

if k'&0.
Geodesic completeness can be described using these two

expressions. Both Eq. (3.45) and Eq. (3.46) can be in-
tegrated to give the affine parameter A, in terms of t. If
k'=0, then A, -+t'/ for small t, so all such geodesics
spiral an infinite number of times in the f direction as
t~0, and all are incomplete. If k'&0, A, -+t, and there
are two classes of geodesics: the upper sign corresponds
to those which spiral infinitely in a finite affine length
and are therefore incomplete; the lower sign corresponds
to those which pass through t =0 without obstruction.
However, if the geodesic is timelike, it is nevertheless in-
complete, since it turns around at some t &0 and then
spirals infinitely, in a finite proper time, just below t=0.
Null geodesics with k'=0 may be complete or incom-
plete, however, as in flat Kasner or Taub-NUT. Figure 3
is again a good representation of timelike geodesic paths
near i =0.

To complete the description of geodesics near the singu-
larity, one can easily find expressions for $,8,$ analogous
to Eqs. (3.45) and (3.46) for t, expanded in powers of t
along a geodesic. Finally, the results may be substituted
into the second-order equation (3.38), which in effect im-
poses constraints upon the coefficients 8;. The result is
that Oo and 8] are arbitrary constants, corresponding to
the value of 8 and the slope dOldt of the geodesic as
t~0. The higher coefficients Oz03, . . . , are then deter-
mined by 8& and other known quantities.

F/at Kasner spacetirne In. the extended fiat Kasner
coordinates ( t, f,8,$), Eq. (3.47) becomes

—2t@ „—2N, +2&,g+4 go+4 pp
—M 4=0 .

The mode solutions are

(3.48)

@„„=v„&(t)exp[i(~P+AO+pP)], (3.49)

( t 'K~0) = g a&&attn+ e™inI
t

I

n=0

if a =0, then

n=0
(3.51)

r(t;)(=0)=(1+Ins t
~

) g a„"t"+g b„' "t". (3.52)

The ao" and bo " are arbitrary constants, and the recur-
sion relations are

KA,P,

a„"+",— ( all )( ),
2(n + 1)(n + 1 iv)—

g KA,P

2(n + 1)(n +1+i)()

(3.53a)

(3.53b)

pe,p q I OA,p 2 OA,p
2(n +1)' n +1 (3.53c)

For the R '
&( T cosmology the general wave solution is

therefore

where each )(,A,,p is a positive or negative integer (or zero)
if the corresponding coordinate is periodic, or a continu-
ous parameter. if the corresponding coordinate is un-
bounded. The function r„„(t)obeys

tr,„+(1 i x)r',~+—,' q.r„~ 0,——— (3.50)

where q =A, +p +M . The solutions may be expressed
in terms of Hankel functions as has previously been
shown in the electromagnetic field case; ' however, we
are interested primarily in the field near the t =0 singu-
larity, so it is more convenient to express the solution as a
power series. If )l&0, then

where CI is the Laplace-Beltrami operator, g indicates the
coupling (g'=0 for minimal coupling and g'= —,

' for con-
formal coupling), and M is the mass. Since each cosmolo-
gy we consider is a vacuum solution of the field equations,
the curvature scalar R =0, and so scalar wave behavior is
independent of curvature coupling.

where

q)(O) +@(1)+@(2)

Ey( '=ln
)
t

~ y pa„~)'t" e'~ +&&'

A, ,p n

(3.54)

(3.54a)
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) + 0+~8+W4)
n

K, A,P ll

(3.54b)

C (2) ~ ~ K&Pt n i (K/+A, 8+OP)~a„ i e
K, A, P lg

(3.54c)

Here the sum g„&„is over all integer values of a, A, , and

p from —oo to + oo, including ~=0. For the 8 &S'
I

cosmology, where g is the periodic coordinate, the sums
over A, and p become integrals, and the coefficients a„"
and b„" " become continuous functions of A, and p. Note
that in both cosmologies, N' ' is independent of g, and
has a logarithmic amplitude divergence as t~0; 4'" is
finite in amplitude but has a logarithmic phase diver-
gence; and W' ' has no divergences.

Taub-NUT spacetime. In the extended Taub-NUT
coordinates ( t, g, 8,$), the wave equation (3.22) becomes

(t —2mt l )&0 «—+2(t —m)@, (t +I—)I 'N, ~ tl —'@ ~+cot W& ~~ 2co—t8(sin8)

+&0 ee+cotM& e+(sin8) @~~—(t +l2)M2@=0 .

The mode solutions are

@„„(t,$,8,$)=r„(t)e '"~d q„(8)e '"~,

(3.55)

(3.56)

where p is an integer, because 0 & P & 2m. with 0 and 2' identified, and a. is an integer or half-integer, because 0 &f & 4~
with 0 and 4nidenti. fied. The function d„„(8)obeys

cot8— +(sin8) (p +~ —2pwcos8) d„„=A(A,+1)dz~
dO

(3.57)

g(1 g)F"+ [c ——(a +b + 1)g]F' abF =0—
with

(3.59)

(3.60a)

(3.60b)

(3.60c)

which is an equation encountered in the quantum
mechanical problem of the symmetric top, where $,8,$
are Euler angles of the top. The d&„(8) are therefore
the well-known Wigner functions, except that a and (as
we will show) A, can take on half-integer as well as integer
values.

If we let

(I g) ~@+K~ /2g ~P —z~ /2F(g) (3 5g)

where /=sin (8/2), then F(g) satisfies the hyper-
geometric equation

regarding allowed values are as follows.
(1) If A, is an integer (A, =0, 1,2, . . . ), p and ~ can each

take on all integer values from —A. to +A, .
(2) If A, is an integer (A, = 1,2, 3, . . . ), v can also take on

half-integer values from —Ipt+ —,
'

up to Ip I

——,
' for

given p, where p can take on all integer values from —A,

to +A, , excluding zero.
(3) If A, is a half-integer (A, = —,', —,', —,', . . . ), a can take on

all half-integer values from —A, to +A, , and for given a,p
can take on all integer values from —

I

a.
I
+ —,

' to

The equation for r„(t) is

(t' —2mt 12)r, + 2(t —m) (t2+l2) —r, —

A(i, +1)—~2+ +(t2+l2)M2 t~ =0 .
l

(3.63)

The series

F(g) = Q P„P
n=0

(3.61)

It can be solved by power series about either of the t =t+
hypersurfaces. Let t =t++T, where t+ means either t+
or t; then if a.&0,

with

(n +a)(n +b)
(n +1)(n +c) (3.62)

r, (T)= g a„" T"+exp ln
I
T

I g b„" T",
. n=O

(3.64)

truncates at some n if b is zero or a negative integer; this
it must do to keep d„„(m) finite. The truncation condi-
tion may be stated as follows: Let
x =

I
p+v I +

I p —tr I; then if & is an integer
(A, =0, 1,2, . . . ), x must be an even number (or zero), with
x & 2A, . If A, is a half-integer (A, = z, —,, . . . ), x must be an

odd number, with x &2A, . If A, is a half-integer, a must
also be a half-integer; but if a. is a half-integer, A, may be
an integer or a half-integer. In terms of p and sc, the rules

g a„T"+ g b„T", (3.65)
n=0

L

where the ao and bz are arbitrary and the recursion re-
lations for subsequent a„and b„can easily be obtained.
The complete solution of the wave equation in the vicinity

ro(T) = 1+in

where the ao and bo are arbitrary. The recursion rela-
tions for the other a„" and b„" are easily obtained. If
a=O,
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of t+ or t is therefore

(I&(t q g y) (I)( )+(I)( )+(I&( ) (3.66)
@()) ~ ~ b«k)tTn i«(tt+{t+/t))nl T I]d2, (g) i)ty

n e PK
K, A, ,P n =P

where

(X) A 00

4&' '=ln g g g a„"T" d&p(0)e'"~
+ A, =Op= —A. n =p

(3.66a)
I

Ct(2 )

where

K, A, P Pf =0
«Xtt Tn t«)bd 2,

( g ) t)t4)
n PK

(3.66b)

(3.66c)

X=—X X X+X X X +X X X
g —p&—

(p&p)

(3.67)

Here each sum is from the lower limit to the upper limit
noted for the quantity i(, iL, or (L(, increasing by integer
steps. Note that except for the form of the I9 dependence
and the selection rules for the indices, scalar waves on the
Taub-NUT universe are very similar to those on the flat
Kasner universe.

Moncrief spacetime In t.he extended Moncrief coordi-
nates (t,f, g, p) of Eq. (3.23), the wave equation (3.47) be-
comes

tN „—(I) t+—2(I& tp+ —(I) 88+ —(e ' ' —I)@pg

+ —,'e '+"'C)
&4)

——„'M e '(I&=0. (3.68)

Mode solutions have the form O'=F""(t,g)e'"~e')'~ where
v and p are integers, and I' "obeys

tF "" (1 2i—ti )F ')'+——,' (F'")" g"—"(t, 0)F'"—=0,
(3.69)

where overdots and primes denote partial derivatives with
respect to t and 0, respectively, and where

F«)t(t g) g A«)t(g)tn+ei«c)nI t
I QB«P(g)tn (3.73)

for n~O, and

Fo)(t, 0)=(1+in
~

t
~

) g A„'"(0)t"++B„'"(0)t" (3.74)

O(t ): —(1 2i)()A—) + —,
'

A() A()g() ———0,
—(I+2ii()B)+ 4Bp Bogo=O ~—

(3.75a)

(3.75b)

0(t'): —2(2 —2ii()A2+ —,
' A)' —(Apg)+A)g())=0,

(3.76a)

—2(2+2ix)B2+ ,'B,"—(Bpg) +—B)gp)=0,

for i( =0, where the A„""and B„"are periodic functions of
E9, and c is a number to be determined.

Substitutions of F"" (for i(&0) into Eq. (3.68) yields an
infinite set of constraint equations in the coefficients, one
for each time dependence. The equation of order t ' is
—i nc (i tie —2it()Bp"——0, so that for nonzero i(, c, and Bp"
we must choose c=2. The subsequent equations are then

M«tt(t g) (e 2(a b) 1 ) + P e 2(a +b—) + e2a
t 4 4

(3.70) (3.76b)

Equation (3.68) cannot be separated in general, but it can
be solved by power series. Using Eqs. (3.16) and (3.17) re-
lating a (t, g) and b (t, g) to

etc. Thus each Ao" (0) and Bo"(0) is an arbitrary period-
ic function, and the subsequent A„""(0) and B„""(0)are
determined by the relations

f ( 0)= g afsin(j 0+yf ),

we can write

g'"(t, g)= g g'"(0)t
m=0

(3.71)

A„(0)= 4A„" )(0)—g AJ(0)gn i )(0)
j=0

n —1

B„(0)= ,'B„" )(0)—. g B—J(0)g„j )(8)
j=o

n (n —2iit),

(3.77)

n (n +2i~),

where the g"" can be expressed in terms of f(0): for ex-
ample,

2 Mg«tt(0) ~2(f (g)) + e4f(8)+ e2f(8)
4

(3.72)

Guided by the wave solutions in the flat Kasner universe,
let

(3.78)

for each it(&0) and (M. For the ~=0 modes, substitution
of F" into Eq. (3.68) yields a similar set of equations,
which can be satisfied if Ao" (0) and Bo"(0) are arbitrary
periodic functions, and the subsequent A„" and 8„"are
found from

n —1

A„(0)= —,'A„" )(0)—g Ai(0)gn J )(0)
j=0

(3.79)
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n —1

B„(0)= , B„—" ) (0)—Q BJ(0)g„j )(0)—2nA„(0)
j=p

(3.80)

A Kjtl( g ) g KA,P ice (3.81)

for ~=0 and any p. Therefore all of these functions can
be determined from the Ap's and Bp's.

Now because each A„P and B„"is periodic, one can
write

I

Here

1 (flat Kasner),
a= . 2 (Moncrief),

t+ /l (Taub-NUT)

and

(3.85)

BK/l( g) g b KkP ice (3.82)

so that the most general solution of the wave equation can
be written

f,„(g,g, g)= .
e "~+ +"~' (flat Kasner or

Moncrief),
e'"~d &(0)e'"~ (Taub-NUT) .

(3.86)

where

(y(p)+ q)( &)+(y(2)

K, A, ,P n =0
~K(y+2»

I
~

I )e&(~8+PC)t e e

(3.83)

(3.83a)

(3.83b)

The coefficients are different in each case; simple recur-
sion relations for the a„'s and b„'s exist for the flat Kas-
ner and Taub-NUT cases, since the wave equation is se-
parable. For the Moncrief waves the coefficients may be
found by the method outlined previously. The summation
signs in Eq. (3.84) denote sums or integrals as the space-
time topology requires.

D. The Cauchy problem

KA, ,P n =0
K&p n i(K/+A. 8+pp)
n (3.83c)

@(0)+@(& ) +q)(2) (3.84)

where

@' '=ln
~

T
~ g ga„"T" f()~(0,$),

A, ,p n

(3.84a)

Here each parameter ~, A, ,p extends from —oo to + oo, in-
cluding zero. The ap's and bp's are arbitrary constants,
and the subsequent a„and b„coefficients can in principle
be found from them. The solution is almost identical in
form to that in the flat Kasner case. However, in the
Moncrief case, terms of fixed A, are not solutions, because
of the nonseparability of the wave equation. That is, indi-
vidual modes in the @ given above are not generally solu-
tions of the wave equation. In the special case that a, p,
and M are all zero the function g""(t,g)=0, and so Eq.
(3.68) is separable. The wave equation in t and 0 is then
essentially the same as that in the flat Kasner spacetime,
and the individual modes (each with a different A, ) are
solutions of the wave equation.

Summary of test-field behavior. The scalar wave solu-
tions are similar on all of the Taub-NUT-type spacetimes.
To display the similarities, let T be the time away from a
singularity ( T = t for the flat Kasner and Moncrief
cosmologies, and T =t —t+ for the Taub-NUT cosmolo-
gy). Then the general wave solution is

The Cauchy problem on a Taub-NUT-type spacetime
consists in finding a solution of the wave equation (3.47)
subject to the conditions

@~, =A ($,0,(b), (3.87a)

=B($,0,$),
Bt

(3.87b)

where 3 and B are bounded functions of the spatial coor-
dinates with periodicities as required by the spacetime to-
pology. The hypersurface t =tp must be spacelike, so
to~0 for the flat Kasner and Moncrief universes, and
t &tp &t+ for the Taub-NUT universe. We will show
that finite data on tp generally evolves into divergent
fields as one approaches the T=O null hypersurface.

From the mode solutions given by Eqs. (3.84), clearly 4&

converges as T~O if and only if the coefficients ap ",
which enter into the ln

~

T
~

terms, vanish for all A, ,p; it is
possible to find Cauchy data at to which is consistent
with this convergence condition. The mode coefficients
ap "and bp "can all be evaluated in terms of 2 and B in
the usual way, by multiplying the expressions for @~,

and i)@/Bt ~, by wave modes and integrating over the

coordinates $,0,$.
We now specialize to the R 'X T flat Kasner spacetime

for simplicity; other spacetimes can be treated analogous-
ly. If one expresses 2 as the Fourier series

K, A, ,P
g b&~pTn ix'ac) Ir nI fx (p g p) (3.84b) A ($,0,$)= g A, ),„exp[i (~Q+Ag+pP) J (3.88)

K, A,P
(3.84c)

with a similar expression for B, one finds that the coeffi-
cients ap ——0 if and only if the Fourier coefficients Apgp
and Bp~p are related by
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Bozp A oxp, g an &to g an to
n=0

where

(3.89)

n= ( —1)"q"
(3.90)

2)i( n t )2

with q =A, +p +M . The coefficients bo " are then
given by

bo Aokp g aero
n=0

(3.91)

The convergence of 4& therefore restricts the
independent (i.e., ~=0) Fourier terms of the Cauchy data.
If neither A nor 8 has 1~ =0 modes, then 4 converges and
also N has no x =0 modes, because all coefficients
a o

" bo——"=0 More generally, if the P-independent
modes of A and 8 are related by Eq. (3.89), then @ still
converges, but it may have the P-independent modes

@(g y) g g bokprn i(18+@/) (3.92)
A, ,p n

along with g-dependent modes which are in no way con-
strained by the convergence condition. Thus generic Cau-
chy data at to yield a divergent field at T=O, but Cauchy
data may be chosen which lead to a convergent field.

In the case of massless scalar fields without 8 or P
dependence, an exact expression for the field in terms of
the Cauchy data is

0 (t, P) =A (g)+ —,f (&o) f dg'8(f'), (3.93)

where

/=/+2 J dt'If(t') (3.94)

and f(t)=2t for flat Kasner, f(t)=t for Moncrief, and

f ( t) = 2lU(t) for —Taub-NUT. Expanding 8(P) in
Fourier series

8 (P) = g B~oexp(i ~/) (3.95)

and evaluating the integral in Eq. (3.93), one sees that
C&(t,f) converges as T~O if and only if Booo=0. This
result is consistent with the general R'XT flat Kasner
case, because if A, =@=M=0, then q=O, so ao ——1 and
a„=O for n&0, according to Eq. (3.90). Then conver-
gence of @ allows arbitrary A~ and B~, except that
Booo ——0, according to Eq. (3.89).

IV. GENERALIZED TAUB-NUT-TYPE COSMOLOGIES

The exact solutions of Einstein's equations studied in
Sec. III all had quasiregular singularities with very similar
characteristics; in this section we will discuss the generic
occurrence of this Taub-NUT-type behavior in spatially
homogeneous and in spatially inhornogeneous cosmolo-
gies.

A. Spatially homogeneous cosmologies

The occurrence of a quasiregular singularity in the Bi-
anchi type-I model, flat Kasner, and the Bianchi type-IX

model, Taub-NUT, leads one to wonder whether such a
singularity can evolve in other spatially homogeneous
cosmologies. It is well known that all spatially horno-
geneous and isotropic cosmologies, i.e., the Friedmann-
Robertson-Walker universes, have scalar curvature singu-
larities. Only when the spacetime has less symmetry (i.e.,
the isometry group is three- or four-dimensional rather
than six-dimensional) are other types of singularities pos-
sible. ' Therefore only in the Kantowski-Sachs
universes ' or the anisotropic Bianchi models could
Taub-NUT-type behavior occur.

In each maximal Hausdorff Taub-NUT-type cosmolo-
gy, the evolution of a null hypersurface is a key feature:
It forms the barrier between a globally hyperbolic region
of spacetime and a noncausal region which contains
closed timelike lines. The null hypersurface is both a
Cauchy horizon and a Killing horizon, and it contains a
quasiregular singularity. We saw in Sec. III A and in the
Appendix, that the singularity is a topological defect in
each of these spacetimes, which remains even when we re-
lax the Hausdorff requirement on the spacetime and con-
sider the maximal non-Hausdorff extensions of these
manifolds.

Here we consider a basis (a lightlike evolution basis)
which may be used in the neighborhood of a null hyper-
surface in any Bianchi spatially homogeneous cosmology.
This allows us to consider in detail the occurrence of
Taub-NUT-type singularities in the general Bianchi type-I
and -IX cosmologies and to discuss the possibility of
Taub-NUT-type singularities in other spatially homogene-
ous cosrnologies. The existence of such a lightlike evolu-
tion basis can be described by the following theorem,
which was stated by Ryan and Shepley. '

Theorem I. If H (t) is a hypersurface invariant under a
three-dimensional simply transitive group 6, and H(t )
has lightlike geometry, then in a neighborhood of a point
in H(t ) there exists a basis of one-forms Io" I such that
(1) cr =dt where t parametrizes the homogeneous hyper-
surfaces H and t is not unique, (2) o'=banco where bz are
components of the t-dependent matrix 8(t) which is non-
singular at each r, (3) the one-forms co' obey
de'= —,CJ'km''Au" where the Cjk are the structure con-
stants of the group G, and (4) in the o" system, the metric
takes the block-diagonal form

ds'=2(o )(o')+f(t)(a')'+(o')'+(o')', (4.1)

where f(t ) =0.
The proof of this theorem in the SO(3,R) case (i.e., Bi-

anchi type-IX case) was first given by Shepley; the proof
for a general spatially homogeneous cosmology was ob-
tained by Konkowski. We will now use the theorem to
investigate Bianchi type-I, Bianchi type-IX, and general
homogeneous vacuum cosmologies.

Bianchi type-I. A Bianchi type-I model is characterized
by structure constants C,', =0. The invariant basis I x; I is
IB~,B2,83I with dual one-forms co'=dx', co =dx~, and
co3=dx3. Therefore, by Theorem I, if a null hypersurface
evolves at t =t, in a lightlike evolution basis the metric
takes the form of Eq. (4.1),

ds =2cr o''+f(t)(cr') +(o ) +(o )
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~ ~—2b3 2b2 =0, (4.3a)

2fb3 f»
b +b +f=o

3 2
(4.3b)

2b2f
b

=0, (4.3c)

2b3f =0.
b3

(4.3d)

Since f (t) is assumed not to be a constant, Eqs. (4.3c) and
(4.3d) imply that b2 and b3 are constants, and Eq. (4.3a)
or (4.3b) implies that f= at +b, where a and b are con-
stants. Therefore, at t = t, the Riemann tensor R" =0,
so that any Bianchi type-I cosmology that evolves a null
hypersurface is flat at the null hypersurface. Further-
more, if we translate coordinates to relocate the zero of t,
we can write the metric of Eq. (4.2) in the flat Kasner
form of Eq. (3.21),

ds =2dgdt+2t(dg) +(dB) +(dP)

at t=o. By continuity, it must take this form in a neigh-
borhood of the null hypersurface. Therefore, whether a
vacuum Bianchi type-I spacetime which evolves a null hy-
persurface develops in addition a quasiregular singularity
depends entirely upon the topology of its manifold. In
Sec. III A we showed that a flat Kasner metric defined on
R produces an extendible spacetime, but that the same
metric on an R &&S' or R')&T manifold leads to the
development of a quasiregular singularity. Here, the
spacetime metric takes the flat Kasner form near the null
hypersurface, so exactly the same results are predicted.

VVe are considering general vacuum Bianchi type-I
models; one would therefore like to know whether the
homogeneous hypersurfaces can have a topology other
than R, R )&S', and T . Ellis has discussed this ques-
tion for orientable hypersurfaces while drawing heavily on
the work of Wolf. Ellis shows that the only compact
hypersurfaces invariant under the Bianchi type-I group
have the topologies T, T with one coordinate twisted by
m., and T with all three coordinates twisted by ~. The
noncompact possibilities are R,R Q S,R Q S with the
S' coordinate twisted by m, R')& T, and R'& T with the
T coordinates twisted by m. Because all of these possible
topologies for the homogeneous hypersurface involve
identifications (except for the case of R ), one would ex-
pect geodesics to "wrap up" with a finite affine length in
all except R . Arguments against large Hausdorff exten-
sions for the four-dimensional spacetimes would be the
same as before, and in every case (except R ), a Taub-

where f (t ) =0. Since C,', =0, the matrix 8(t) is diagonal
at t =t and o =dt, o'=dx', o. =b2dx, and o =b3dx
therefore,

ds =2dtdx'+f(t)(dx') +b2 (dx ) +b3 (dx ) . (4.2)

The functions f ( t), b2(t), and b3(t) are constrained by the
field equations to obey the relations

NUT-type quasiregular singularity would form.
Bianchi type-IX. A similar analysis applies to Bianchi

type-IX cosmologies. ' %'e will state only the results.
Any vacuum Bianchi type-IX spacetime which contains

a null hypersurface is described by a metric which can be
transformed into the Taub-NUT form

ds =2dtco'+f(t)(co') +b (t)[(co ) +(cg3) ] (4.4)

in a neighborhood of the hypersurface. Here
des'= 2e~kco Aco, b(t)=[at+(4a) ']' where a is a
constant, and f ( t) equals zero at the null hypersurface.

Again, the topology of the homogeneous hypersurfaces
is important. All such hypersurfaces can be covered byS, and are thus necessarily compact. As Ellis argues,
possible topologies are S,P (real projective space),
S /Z„(n &2, and Z is the cyclic group), S /D~(rn & 2,
and D is the binary dihedral group), S /'r, S /0, and
S /I (where T, 0, and I are the binary symmetry groups
of the regular tetrahedron, the regular octahedron, and the
regular isosahedron, respectively). The only other possi-
bilities involve these manifolds with extra identifications
corresponding to reflections or twists by ~. The compact-
ness of these three manifolds leads one to expect that if a
null hypersurface exists, geodesics will wind up in finite
proper time as in the Taub-NUT case, the spacetime will
be inextendible to a larger Hausdorff manifold, and a
quasiregular singularity will occur.

The general Vacuum case. The possibility of Taub-
NUT-type Bianchi type-I and -EX vacuum cosmologies
has been considered in detail; we now focus on the oc-
currence of Taub-NUT-type singularities in general spa-
tially homogeneous vacuum cosmologies.

In all Taub-NUT-type cosmologies the quasiregular
singularity has been located in a null hypersurface. For
any Bianchi cosmology, Theorem I gives the metric of Eq.
(4. 1) at a null hypersurface; one must then find the
Riemann tensor and require that Einstein's equations are
satisfied at the null hypersurface. The analysis is tedious,
since one must consider each Bianchi type and all physi-
cally realistic stress-energy tensors; then one must test
each resulting spacetime for the incomplete geodesic
behavior which characterizes a maximal Hausdorff
Taub-NUT-type cosmology (see, e.g. , Clarke '). In order
to find exact solutions of Einstein s equations with Bian-
chi symmetries and Taub-NUT-type singularities, we
know of no substitution for this long, tedious procedure.
There is, however, a way to show that one expects Taub-
NUT-type cosmologies of each and every vacuum Bianchi
type, and furthermore, that one would expect Taub-
NUT-type Kantowski-Sachs universes.

In the vacuum Bianchi type-I and the Bianchi type-IX
cases, a Taub-NUT-type singularity was associated both
with the evolution of a null hypersurface and with a
spacetime manifold whose homogeneous hypersurfaces
were identified in some sense. The identifications caused
classes of null and timelike geodesics to spiral infinitely
with finite length as they approached the null hypersur-
face. In the general vacuum case, a Taub-NUT-type
singularity is also expected to occur whenever a spacelike
hypersurface turns null in a spacetime with identified
homogeneous hypersurfaces, since one again expects ir-
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removable incomplete paths.
Ellis and Schmidt' introduce the idea of an elementary

quasiregular singularity. An elementary quasiregular
singularity is defined as a singularity that arises from
identifications of a regular spacetime under a discrete
group of isometrics that leaves a set of points invariant.
The set of invariant points, the fixed points, must be de-
leted from the spacetime, since the spacetime can no
longer be regular if they are left in after the identifications
have been made. Since any geodesic which ends at an ex-
cised fixed point is incomplete, the spacetime would be
singular, and since the spacetime is regular, the singulari-
ty would be quasiregular.

Clearly, the singularities in vacuum spatially homo-
geneous Taub-NUT-type cosmologies are elementary
quasiregular singularities: The deleted fixed points are
points in the null hypersurface; the manifold identifica-
tions are due to discrete subgroups of the isometry group
of the spacetime. Such discrete subgroups are possible in
all spatially homogeneous cosmologies (except some
homogeneous ones), including both the Bianchi cosmolo-
gies and the Kantowski-Sachs cosmologies. ' One might
at first think it would be easy to list all the discrete sub-
groups of the isometry group in each case and therefore
enumerate all vacuum spatially homogeneous Taub-
NUT-type cosmologies. Unfortunately, as Ellis and
Schmidt point out, ' one cannot currently do this. The
problem is equivalent to finding all discrete subgroups of
the Lorentz group which give allowed identifications (e.g. ,
not the reflection t~ t) and generat—e fixed points. This
is an unsolved problem (see, e.g. , Schwarz ). Therefore,
at present, all one can say is that Taub-NUT-type cosmo-
logies are possible in each Bianchi class and in the
Kantowski-Sachs models. Furthermore, one can note that
a Taub-NUT-type singularity will occur only when an
otherwise regular spacetime is identified under a discrete
subgroup of the isometry group.

B. Spatially inhomogeneous cosmologies

The Moncrief universes are, in some sense, an inhomo-
geneous generalization of the R ' X T flat Kasner
universe. One might, therefore, reasonably expect similar
inhomogeneous generalizations of the other Tabu-NUT-
type spatially homogeneous cosmologies: R XS' flat
Kasner, Taub-NUT, and the spacetimes discussed in the
previous section. In this section, we more fully discuss
these expectations.

Generalized Moncrief uni Uerses In additi. on to
Moncrief's infinite-parameter families of inhomogeneous
vacuum Taub-NUT-type solutions we have discussed,
the existence of other classes of inhomogeneous cosmolo-
gies with Taub-NUT-type properties has been established
as well. In particular Moncrief has described the ex-
istence of an infinite dimensional family of Taub-NUT-
type spacetimes defined on an R')&T manifold which
satisfy the vacuum Einstein equations on some neighbor-
hood of their Cauchy horizons. In subsequent work he
has extended the construction of generalized Taub-NUT-
type inhomogeneous cosmologies to those on R ' XS
manifolds. In both cases, he assumes the existence of a
single Killing vector field and shows that these cosmolo-

gies are exact solutions to Einstein s equations in a neigh-
borhood of a compact null hypersurface. This compact
null hypersurface is a Cauchy horizon and a Killing hor-
izon, and it contains a quasiregular singularity in the
sense that the boundary points t =0,g' = oo are the end
points of incomplete geodesics.

In both the R ' & T and R '
&& S generalizations

described by Moncrief, the compact null hypersurfaces
which evolve are ruled by closed null generators. Howev-
er, analytic vacuum (or electrovacuum) spacetimes with
compact null surfaces ruled by closed null orbits neces-
sarily have a Killing symmetry. Therefore, since the as-
sumption of a Killing symmetry is essential to the con-
struction of generalized Moncrief universes, more general
examples (i.e., those without such a Killing symmetry) are
not possible. Finally, Moncrief has shown that the
R ' X T generalized Moncrief universes are unstable
under generic linear perturbations. We expect R'&S
generalized Moncrief universes to behave similarly. Both
the linear perturbation analysis by Moncrief and the
studies by Moncrief and Isenberg indicate the instability
of these spacetimes and a probable change in the nature of
the singularities in these models if a complete back-
reaction calculation is carried out.

The general case. The discovery by Moncrief and Isen-
berg that a Killing symmetry is necessary to obtain
Taub-NUT-type spacetimes with compact null hypersur-
faces shows that large classes of such spacetimes are not
to be expected. However, one need not have compact hy-
persurfaces to obtain Taub-NUT-type spatially homo-
geneous cosmologies: Elementary quasiregular singulari-
ties occur whenever identifications are made of a regular
spacetime in such a way that points have to be deleted
from the manifold. Therefore, there may be large classes
of inhomogeneous spacetimes which evolve identified but
noncompact null hypersurfaces.

Again, one sees that the presence of a Taub-NUT-type
quasiregular singularity is a topological effect, a defect in
the topology of the spacetime itself. Furthermore, in an
inhomogeneous spacetime, one expects that in addition to
elementary quasiregular singularities, complicated
quasiregular singularities might occur: These could be
elementary quasiregular singularities pasted together, or
other, possibly more physical, types of quasiregular singu-
larities.
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APPENDIX: MAXIMAL NON-HAUSDORFF
EXTENSIONS

A fiber-bundle approach best exhibits the impossibility
of making both Hausdorff extensions simultaneously for
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X

Q =R'xS' (~,gz) which will give, in turn, analytic extensions of
(M,g).

Call the Hausdorff extension corresponding to Eq. (3.2),
upper sign, (P,g~), where gv is given by
ds =2dgdt+2t(df) . Call the Hausdorff extension cor-
responding to Eq. (3.2), lower sign, (M,g) where obviously

gt is given by ds = 2df—dt+t(dg) . Both extensions
are analytic. To see the relationship between the two ex-
tensions, we go to the covering space shown in Fig. 1.
The covering space (M o,gv) of (M,g~) can be described in
double-null coordinates (u, u). The metric gz is given by

ds =t du dU, (A 1)

'72

FIG. 4. R'&&T flat Kasner as a fiber bundle (M,B,~,G).
The bundle (M, B,m) consists of the bundle space M =R '

&( T,
the base space B =T, and the projection ~: R ')& T'~ T . The
typical fiber is ~ =R')&S', and the structure group 6 is the
isometry group of the flat Kasner spacetime. The family of
open sets I uj) covers T, and P~.„ is a homeomorphism of a „
onto M.

the spatially homogeneous Taub-NUT-type cosmologies,
R'&& T and R &S' flat Kasner and R'&S Taub-NUT,
proving that each must be maximal. Furthermore, this
process produces non-Hausdorff extensions, including one
which may be termed the maximal non-Hausdorff exten-
sions for each spacetime. (Hawking and Ellis first used
this method for Taub-NUT spacetime. ) Extensions of the
spatially inhomogeneous R'&&T Moncrief universes are
more complicated and mill be discussed separately at the
end of this appendix.

Usually a non-Hausdorff spacetime is physically un-
desirable since spacetime points are not separable and geo-
desics may bifurcate. ' In these universes, however, no
geodesics bifurcate, and the non-Hausdorff property is a
mere technicality. For further discussion of non-
Hausdorff spacetimes, see Hajicek. " '"

Here, for definiteness, consider an unextended flat Kas-
ner universe with a metric g given by Eq. (3.1) and a man-
ifold M =R'0&T (This analy. sis is applicable also to
R )&S' flat Kasner and to R'&S Taub-NUT when ap-
propriate changes are made. ) M is considered to be a
fiber bundle over the two-torus T with fiber a =R '&&5'
(see Fig. 4); the bundle projection rt: M~T is defined
by (t, g, 8,$)~(8,$). The group of translations T3 maps
fibers into fibers so that the pairs (~,g) are all isometric,
where g is the metric induced on the fiber by g on the
bundle M. In particular, the fiber ~ is the (t, P) plane
and g is given by ds = dt + t (dP) . —

The tangent space T at any point in M can be decom-
posed into a vertical subspace V and a horizontal subspace
H. V is spanned by the vectors Blat and BIB/; H is
spanned by the vectors 8/88 and 8/BP. The metric g on
T can be decomposed therefore into tmo parts: g~ on V
(where gz ——g) and gH on H [where gH is given by
ds =(d8) +(dP) ]. The interesting part of g is con-
tained in gz. We therefore consider analytic extensions of

where

u =/=/+In
~

t
j

U=$=1t —1n~t
~

. (A3)

This metric is analytic on Wo, i.e., in Region I of Fig. 1.
Actually, g~ is analytic on the entire covering space
M which is Regions I+ II+ III+ IV. The space (M,gy)
itself has a one-dimensional group of isometrics which is
the Lorentz group of a two-dimensional Minkowski
spacetime. Let 6 be the discrete subgroup of the Lorentz
group generated by a nontrivial element of the isometry
group. Then the action of 6 on ~ (i.e., Regions I+ III)
or on X (i.e., Regions I + II) is properly discontinuous, so

(M,gv)/G and (M,gz)/6 are Hausdorff spacetimes.
However, the action of 6 on the combination Ã and ~
(i.e., Regions I+ II+ III) is not properly discontinuous,
and it is easy to show that the quotient space
(I+ II+ III, gz)/6 is a non-Hausdorff manifold, Final-
ly, one finds that even though (~,gz)/6 (where
~ =I + II + III+ IV) is not a manifold,
(~ —IP],g~)/6 [where P=(0,0)] is a manifold.

By combining these extensions of the (t,P) plane with
the (8,$) coordinates, corresponding extensions of the en-
tire manifold (M,g) are possible. Such an analysis illus-
trates that the two inequivalent Hausdorff extensions of
Eq. (3.2) really are unextendible analytic, maximal
Hausdorff extensions, and it shows that
(M —[P =(0,0, 8,$) I,gz}/6 is the maximal non-
Hausdorff extension.

This maximal extension shows the global properties of
the spacetime most clearly. The omitted point P is a
singularity (in fact it is a quasiregular singularity, a topo-
logical defect in the spacetime), the surfaces u =0 or U=O
are Cauchy horizons, and Regions II and III are static
spacetimes which contain closed timelike lines. In fact,
these static regions are isometric to the Rindler wedge
with metric, ds = —(x') dt +(dx') +(dx ) +(dx ),
which has the same form as the unextended flat Kasner
metric of Eq. (3.21) but with x and t interchanged. '

By analogy with other Taub-NUT-type spacetimes, one
expects a Moncrief universe to admit a non-Hausdorff ex-
tension without bifurcating geodesics. Such an analysis is
complicated, however, by the spatial inhomogeneity, of a
Moncrief universe which manifests itself in metric coeffi-
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cients with spatial, in addition to time, dependence. In
the simpler Taub-NUT-type spacetimes, we carried out
non-Hausdorff extensions by making both maximal Haus-
dorff extensions simultaneously. To attempt an analogous
extension here, define two "asymptotically null" coordi-
nates:

u =2(/+in
~

t
~

) (A4)

U=2(p —1 nit i).
Then the metric (3.23) becomes

&
(u —u)/2

ds (e '+e )du du
8
(u —u)/2

+ (e —e ')(du +du )
16

(A5)

+e 2ad g2 +e 2bd y2— (A6)

lim(e —e ')=0,
~~0

(A7)

and the (u, v)-coordinates turn null. It is for this reason
we term these coordinates "asymptotically null. " Furth-
ermore, in the limit that Eq. (3.8) becomes the unextended
flat Kasner metric, Eq. (A6) takes the double-null 'form

As the null hypersurface at t=0 is approached, the
second term in Eq. (A3) vanishes since

used in the flat Kasner maximal, non-Hausdorff exten-
sion.

It is interesting to examine the metric (A6) in a neigh-
borhood of the null hypersurface at t=O. In that limit
the metric approximates the flat Kasner metric:

e (u —U)/2

ds (AS)du du+d8 +dp

and one can draw a ( u, u) slice which locally resembles the
covering space of maximal non-Hausdorff flat Kasner (see
Fig. 1). As in the flat Kasner case, identifications due to
the topology of the spacetime indicate that the point
I' =(u =O, U =0), must be omitted from the spacetime.
Clarke ' has proved that the Moncrief universes contain
an essential singularity, one that cannot be removed by a
global extension, and this analysis has shown the location
of that singularity.

Of course, this analysis has not proved that the non-
Hausdorff extension which appears valid in a neighbor-
hood of t=O is actually a valid global extension. One
might possibly be able to use a fiber-bundle analysis to
make such a global extension even though spatial inhomo-
geneity would greatly complicate it. What this analysis
has done is to provide a good picture of the singularity
structure of these universes. It shows the location of the
topological defect in these spacetimes, the point I', and it
illustrates that the remaining portion of the surfaces at
t=O (i.e., u=O, U&0 and u&O, U =0) are Cauchy hor-
izons.
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