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We argue that the indefiniteness of the Euclidean Einstein action is more serious in the cosmologi-
cal context than in the asymptotically Euclidean context. To correct this, we consider a positive-
definite action containing quadratic curvature terms. The physical states ¥ are now functions of
both a three-metric g,, and extrinsic curvature K,;, and satisfy a differential equation analogous to
the Wheeler-DeWitt equation. This equation has the form of a Schrédinger equation with g, play-
ing the role of “time.” By adopting Hartle and Hawking’s boundary condition on the Euclidean
function integral, we obtain a “preferred” solution to this equation. It is shown that in a simple
minisuperspace model this wave function describes an inflationary universe.

I. INTRODUCTION

In a recent paper, Hartle and Hawking! have shown
that there exists a “preferred” wave function in quantum
gravity. This wave function has been further investigated
by Hawking and Luttrell>® who argue that it might
reasonably represent the “quantum state of the universe.”
It is most conveniently defined in terms of the Euclidean
functional-integral approach to quantum gravity.* In this
approach, given a three-geometry iz\,,b one can formally
define a wave function Ylhap] bY

—Igrle,
plha]= [ Dlgale o1,

where Iggr is the Euclidean Einstein action and the in-
tegral is over all Riemannian four-geometries which in-
duce A, on one boundary and I?,,,, on the other. One can
show that this wave function automatically satisfied the
Wheeler-DeWitt equation, and hence represents a physical
quantum state. Thus one obtains a quantum state for
each choice of h,,. The preferred wave function men-
tioned above is obtained by letting ﬁab degenerate to a
point. To be more precise, if A, is a metric on a compact
three-manifold =, then ¥[h,,] is defined by a Euclidean
functional integral over all Riemannian four-metrics g,
on manifolds M whose only boundary is = such that g,
induces hg, on X. If one thinks of 1//’?[hab] as the wave

(1.1

function “arising from i’t\ab,” then yY[h,] is the wave
function “arising from nothing.”® It is a possible candi-
date for the quantum state of the universe.

Unfortunately, there is a serious problem with this idea.
The Euclidean form of the action for general relativity is
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not positive definite and hence the functional integral (1.1)
is not well defined. To deal with this problem, it has been
suggested that one must deform the contour of integration
in the functional integral from an integral over real Eu-
clidean metrics to an integral over complex metrics with
Re Igr[ga»]>0. Unfortunately, a completely satisfactory
contour has not yet been found. Since this is the main
motivation for what follows, we now review the situation
in a little more detail.
The Euclidean Einstein action is®

1

IGR[gab]=éfM(—R +2M)dV—— | KdX,

8o YoM

(1.2)

where R is the scalar curvature of g,,, A is a constant,
and K is the trace of the extrinsic curvature of the boun-
dary. The fact that I is not positive definite has main-
ly been discussed in the context of asymptotically Euclide-
an metrics (and A=0). In this context, the following
specific prescription was proposed’ for dealing with this
problem. Write a general asymptotically Euclidean metric
b as B, =0%g,, where Q is a positive function and g,
is a metric with zero scalar curvature. The positive-action
theorem® states that asymptotically Euclidean metrics
with zero scalar curvature have positive action. Thus, for -
Q =1, Igg is positive definite. For Qs41, the action in-
cludes a volume integral of —(VQ)% To make this posi-
tive, one now writes the conformal factor as Q=1+iy
and does the functional integration over all functions y
that vanish asymptotically.

There are at least two difficulties with this prescription.
First, it is simply not true that a general asymptotically
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Euclidean metric can be conformally rescaled to one with
zero scalar curvature. (A necessary condition is that the
lowest eigenvalue of the conformally invariant Laplacian
— V24 £R should be positive.) Therefore this prescription
completely omits a large class of possible configurations
from the functional integral. A second difficulty con-
cerns the presence of matter fields. Since the action for
the matter fields involves the metric, it will no longer be
positive when one rotates Q=1+iy. So the total action
(matter plus gravity) can become negative.

The situation with regard to the indefiniteness of the
Euclidean Einstein action is even worse in the cosmologi-
cal context. To see this, fix a compact manifold M with
boundary = and consider metrics g,, on M that induce a
fixed metric h,, on =. If we write g, in the form

8ap =00 » (1.3)
then from (1.2) we have
1671 Gr (&)= [, [ — QR —6(VQ)*+2A0*]dV
2
—2faMn Kd3 . (1.4)

Even if we choose A >0, this action can clearly be nega-
tive. Let us try to follow the procedure used in the
asymptotically Euclidean case. Since extrema of the ac-
tion satisfy R,, =Ag,,, it seems natural to require that
R =4A. It is tempting now to simply rotate Q—i) so
that the volume term in the action becomes positive defin-
ite. However, this violates the boundary condition that
the induced metric on = must be A, .

A second problem is that there is no analog of the
positive-action theorem. For Q=1 and R =4A, the ac-
tion becomes

$mlgr=—AV— [Kd3, (1.5)

where V is the four-volume. Since the first term is nega-
tive definite and K >0 for spheres in a small neighbor-
hood of a point this action can clearly be negative. In
fact, instead of a positive-action theorem, one has the fol-
lowing:

Negative-action conjecture: Let M be a four-manifold
with boundary 2. Then for any metric on M with
R =4A, the action IR defined by (1.5) is negative.

Intuitively, the idea is that in order for Igr to be posi-
tive one needs | K <0. But this means that one has to go
past the “equator” of the geometry and by this time the
volume is too big to be canceled. It seems unlikely that
the action (1.5) is even bounded from below since one can
construct “cylindrical” spaces with R =4A and arbitrari-
ly large volume.

In short, even if we ignore the fact that one cannot con-
formally rescale a general metric to one with R =4A,°
and the fact that matter actions will no longer be positive,
this procedure does not yield a positive-definite gravita-
tional action.!°

In this paper, the problem of an indefinite gravitational
action is resolved by explicitly adding curvature-squared
terms to the Einstein Lagrangian. The idea that the fun-
damental gravitational action is not the Einstein action
but rather one involving quadratic terms in the curvature

has received considerable attention recently for a variety
of reasons.!! Here, the main motivation is to improve the
convergence of the Euclidean functional integral. We can
then adopt exactly the same boundary condition that has
been proposed for the Einstein Lagrangian to obtain a
preferred “wave function of the universe.”

In the past, theories described by curvature-squared La-
grangians were thought to suffer from instabilities and
violation of unitarity. However, these conclusions were
based entirely on a perturbation analysis off Minkowski
spacetime. There is now growing evidence!'"!? that the
perturbation theory is misleading, and that the full non-
perturbative theory will be free of these difficulties.

The idea of computing the wave function of the
universe in a theory described by a curvature-squared La-
grangian has also been discussed recently by Hawking and
Luttrell.> However their approach is quite different from
that adopted here. They add higher derivatives to mimic
the effect of a massive scalar field in the gravitational La-
grangian. But their action is not positive definite.

What is the exact form of the action that we adopt?
Perhaps the most attractive candidate for the action is
simply to take the two independent curvature-squared La-
grangians

Iy= [ A(Cupea)*+BR?, (1.6)

where 4 and B are dimensionless coupling constants.
This action was the starting point of the “induced gravi-
ty” program whose goal was to induce the scalar curva-
ture term by quantum effects.!* Unfortunately this pro-
gram has recently run into difficulty because of the
discovery of nonperturbative ambiguities in the value of
the induced Newton’s constant.!* Therefore we must in-
clude the original Einstein action term:

Izzf‘A(Ca,,cd)2+BR2-—#R . (1.7)
This action, however, is not positive definite: Consider a
metric whose curvature is small with R positive over a
large volume. Then the curvature-squared terms will be
negligible compared to the Einstein term which (for large
enough volumes) can become arbitrarily negative. Thus
we have to add a cosmological constant term A to make
the action positive. So we are led to take the fundamental
gravitational action to be

I=7% [ A(Copea? +B(R —4A)?, (1.8)

where 32wAB =1. Typically, one takes B~1 which im-
plies that A is of order one in Planck units. This is, of
course, much greater than the observational limits and is
another manifestation of the well-known cosmological-
constant problem.!> If the A? term in (1.8) is somehow
canceled in the effective action, then it is easy to show
that any extrema of the resulting I whose typical radius of
curvature is greater than the Planck length is an approxi-
mate solution to Einstein’s equation. Thus one can recov-
er general relativity in the “long wavelength” limit. It
will be shown in the next section that one does not have to
add a boundary term to this action.

The plan of this paper is the following. In Sec. II we
begin by reviewing the canonical analysis of the Lorentzi-



an theory described by the action I. This analysis shows
that physical quantum states are described by wave func-
tions ¢ depending on a three-metric g,, and extrinsic cur-
vature K, satisfying two differential equations coming
from the classical constraints. The first equation implies
that ¢ is invariant under diffeomorphisms on the three-
surface. The second has the form of a Schrédinger equa-
tion with g, playing the role of “time.” We then consid-
er the preferred wave function defined by the Euclidean
functional integral. We will see that if one analytically
continues the Euclidean extrinsic curvature to imaginary
values (corresponding to real Lorentzian extrinsic curva-
ture), then the wave function satisfies the constraint equa-
tions of the Lorentzian theory. In Sec. III this wave func-
tion is evaluated in a simple minisuperspace model. We
find that 3 represents a superposition of classical de Sitter
spacetimes. Hence it may be an appropriate description
of an early inflationary phase in our universe.

II. COSMOLOGICAL WAVE FUNCTIONS

The wave function ¥ is, of course, a function on config-
uration space. In order to identify the appropriate config-
uration space as well as to find the differential equations
that ¢ must satisfy, one must do a canonical analysis. We
therefore begin this section with a discussion of the
canonical theory. The second half of this section then ex-
amines the Euclidean functional integral which defines 1
and discusses its semiclassical evaluation.

A. Canonical analysis of the Lorentzian theory

The Lorentzian form of our fundamental gravitational
action I is

T=—4 [ AC150aC™™+ B(R —4A)? . @1

This actlon has been cast into canonical form by
Boulware.!$ We now briefly review his results.

Fix a compact three-manifold =. The canonical vari-
ables for the action I can be taken to be the following: a
three-metric g,, on X and its conjugate momentum p?%°
which is a symmetric second-rank tensor density that in-
volves third time derivatives of the metric; and a tensor
K,, on I together with its conjugate momentum P%°
which is also a symmetric second-rank tensor density that
involves second time derivatives of the metric. If we
evolve (guy,Kap,P%p?) to obtain a four-dimensional
spacetime, then all these fields except p® acquire a simple
geometric interpretation: g, is the induced metric on the
surface =, K, is its extrinsic curvature, and P is simply
related to the four-dimensional curvature by

P%— _2¢q"(24E® + Bq®R) , (2.2)

where g =detg,,, E®®=C%"",t, is the electric part of
the Weyl tensor with respect to the unit normal to 2, and
R is the four-dimensional scalar curvature. (Boulware in
fact chooses — P as a “position variable” and K, as the
conjugate momentum. The resulting formalism is of
course completely equivalent. However, we will see in
Sec. IIB that, from the standpoint of quantization, the
945, K, Tepresentation is more convenient.)
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The variables (g,p,K,5,P,p?) cannot be chosen indepen-
dently. Just as in general relativity there are constraints
arising from the invariance of the action under diffeomor-
phisms. These constraints are

1 Ty2_

P2
- 8Aq1/2( ab

C=Kzp® —
abP 144Bq/

+ 5P KK +3Ry,)— PR — KK, + K?2)
+3 Dy Dy P — A" A(Cppoqt )’

—2BAq'?(*R +K,,K®—K?)+4A%Bq'*=0 (2.3)

and
Co=—3P®D, Ko +D,(Kp P)+D,pl =0, (2.4)

where ( )* means square the tensor with the metric g% [so
(Ca,,cdt 4)2 involves just spatial derivatives of K, ] and
PJ, and P are the tracefree and trace parts of Py,.

In the standard canonical approach to quantization the
physical states of the system are represented by functions
on configuration space ¥(q,,K,;) satisfying the operator
version of the constraints:

Cy=0, (2.5)
C, =0, (2.6)

‘where C and C,, are obtained by replacing p* by

(1/i)8/8q,, and P® by (1/i)8/8K,, in (2.3) and (2.4).
These constraint operators have similar factor-ordering
and regularization problems as the analogous operators
arising from the Einstein action.

The vector constraint (2.4) has exactly the same inter-
pretation as the analogous constraint in general relativity.
Classically, it generates diffeomorphisms on the three-
surface. Quantum mechanically, it requires that the wave
function depend only on the equivalence classes
{(g45,K,p)} where two pairs (gq,Kz) and (gap,K,;) are
said to be equivalent if they are related by a diffeomor-
phism on the three-surface . This is easily seen as fol-
lows. Let N™ be any vector field on £. Then from (2.4)
and a simple integration by parts we have

S NmCo= [ S —TPN"D,, Ky
—P%K,, D,N™—p°D,N, ]

=—3 [JH LK) PP+ (L ygap ] . (27)

Therefore, replacing P by (1/i)8/8K,, and P% by
(1/i)8/8q,, we see that f N™C,, =0 says that ¢ is un-
changed if we simultaneously change g,, and K,, by the
diffeomorphism generated by N™.

The scaler constraint (2.5) is the analog of the
Wheeler-DeWitt equation for the Einstein action. In-
terestingly enough, the form of this equation is quite dif-
ferent. The Wheeler-DeWitt equation resembles a wave
equation on the configuration space. Equation (2.5) has
the general structure of a Schrodinger equation with the
three-metric g,, playing the role of time. With the sim-
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plest choice of factor ordering, this equation takes the fol-
lowing form:
5 ) 3 3

Kapi——=Gopog —o— o+ 4
ab! 8qab abed SKab ‘ach +da 8Kab

+V, (2.8)

where G4 is a “metric” which depends only on g,, and
is positive definite. Although g,;, probably contains infor-
mation about physical fields as well as the time, the fact
that it naturally appears in a first-order form might have
a significant effect in improving our understanding of
time in quantum gravity. Notice that since g,, and K,
are independent variables the quadratic term is indepen-
dent of the usual factor-ordering problems present in the
analogous term in the Wheeler-DeWitt equation. Howev-
er the linear-momentum term does have factor-ordering
ambiguities since A4, as well as ¥ depend on both g,, and
K,,. The precise expressions for Gy, A4, and V can be
read off from (2.3)."7

The fact that wave functions in this theory depend on
K, as well as g, has an important consequence. Penrose
has argued'® from considerations of entropy that the “big
bang” should be very different from the “big crunch.” In
a theory where the quantum states are functions only of
the three-metric, it is difficult to understand how this
asymmetry could come about. However in this theory,
the structure of the wave function for small three-volume
and K >0 can be quite different from its structure for
small three-volume and K <O0. If the preferred wave
function defined by the Euclidean functional integral has
this property, then this might provide a possible “explana-
tion” for the observed time asymmetry of our universe.

B. Euclidean functional integral

The canonical analysis discussed above shows that the
appropriate configuration space for the theory described
by the action (2.1) consists of pairs (g,,,K ;) Where g, is
a metric and K,; a symmetric tensor on a compact three-
manifold 2. We can now obtain a preferred Euclidean
wave function ¥z by adopting the same boundary condi-
tion on the functional integral as used for the Einstein La-
grangian. That is

¢E(qabaKab )= fD[gab le —1lel »

where the integral is over all Euclidean metrics g, on
manifolds M whose boundary is = such that the induced
metric and extrinsic curvature on X are g, and K,
respectively.

Before discussing the relation between ¥z and the phys-
ical states of the theory, i.e., wave functions satisfying
(2.5) and (2.6), we first consider the question of whether
the action I given by (1.8) should be supplemented by
boundary terms. For the Einstein action there are two
separate arguments which require that a boundary term be
added to the integral of the scalar curvature. In the first
argument, the boundary term is obtained by demanding
that solutions of the classical field equation be extrema of
the action under all perturbations that vanish on the
boundary, i.e., 8q,, =0. In order to satisfy this condition
one has to “cancel” the second derivative terms in R by
adding the integral of the extrinsic curvature. The analo-

(2.9

gous condition for the curvature-squared action [ is that
solutions be extrema of I under all perturbations satisfy-
ing 6q,, =8K,, =0 on the boundary. This is because one
expects to get a unique classical solution only if one fixes
both ¢q,, and K,;, on the boundary. But, it is easy to veri-
fy that solutions of the classical field equation are indeed
extrema of I (with no extra boundary terms added) under
all perturbations satisfying these conditions.

The second argument, which leads to the same boun-
dary term for the Einstein action, is the following. Con-
sider a transition from an initial configuration (gq,K;) on
a surface =, to a configuration (¢,,K,) on a surface 2,,
followed by a transition from (¢,,K,) to a final configu-
ration (g3,K3) on a surface ;. One expects that the am-
plitude to go from the initial to the final configuration
should be obtained by integrating over all configurations
on the intermediate surface X,. This requires

I[g,+g,]1=1[g1]1+1[g.],

where g; is a metric that induces (¢,K;) on 2; and
(g,,K,) on 3,,g, is a metric that induces (g,,K;) on =,
and (g3,K3) on 23, and g;+g, is the metric obtained by
taking the union of the two. Since g; and ¢, induce the
same metric and intrinsic curvature on 3, the four-
dimensional curvature of g;-+g, will not contain any .8
functions (although it may be discontinuous). Hence con-
dition (2.10) is automatically satisfied by the action (1.8)
without having to add any boundary terms. Since the con-
figuration space for the Einstein Lagrangian is smaller,
the three metrics induced on =, by g; and g, will still
agree; but the extrinsic curvatures need not. This results
in a 8 function in the Ricci curvature proportional to the
difference of the extrinsic curvatures on =,. Hence condi-
tion (2.10) will hold for I only if one includes the sur-
face term.

To summarize, in both cases the action I given by (1.8)
satisfies the desired properties without having to add any
surface terms.!’

We now turn to the relation between 1 and the physi-
cal states of the theory, i.e., wave functions annihilated by
the constant operators. Since ¥ is a function of Euclide-
an extrinsic curvature, one would not expect it to satisfy
(2.5) and (2.6). If we choose coordinates near X so that the
Lorentzian extrinsic curvature is K% =0dq,,/dt, then the
Euclidean action can be obtained from the Lorentzian ac-
tion by formally setting 7=it. The Euclidean extrinsic
curvature is then

(2.10)

d d
KE — g’:” - g‘;" — _iKL . (2.11)
Thus we expect that
¢(qabaKaI}))E¢E(qab7"‘iKaLb) (212)

will satisfy the Lorentzian constraint equations. We now
show that, at least formally, this is indeed the case.

Let M be a manifold containing a compact three-
dimensional submanifold = (not on its boundary). Given
gas and K5 on = we define ¥z (q,,KL ) by the Euclidean
functional integral (2.9). Since there is no external mea-
sure of time, ¥z does not depend on where = is placed in
M. If we took a different submanifold =’ and put the



31 QUANTUM COSMOLOGY WITH A POSITIVE-DEFINITE ACTION 1173

same fields q,,,K5 on 3', then the value of ¥ is left un-
changed. But by the “same fields” we mean that there ex-
ists a diffeomorphism ¢:3—3' which takes the fields on
= to the fields on 3’. Hence ¢ must be invariant under
diffeomorphisms. (One can think of a diffeomorphism as
just corresponding to a ‘“‘change of variables” in the func-
tional integral.) Now consider an infinitesimal diffeomor-
phism generated by a vector field £°. Taking the variation
of both sides of (2.9) and assuming the measure is invari-
ant we get

0= [ Dlgl [ [, €%Vt |e~118).

where C°°=81/8g,, is the classical (Euclidean) field
equation for the action I. Using the fact that V,C%=0,
we can integrate by parts inside the large parentheses to
obtain

0= [Dlgl [fzcabgadz,, }e—’lgl .

The quantity in large parentheses is just the (Euclidean)
constraint equations. Equation (2.14) shows that the
operator versions of these constraints automatically an-
nihilate the wave function.

Unlike the case of the Einstein Lagrangian, the opera-
tor version of the Euclidean constraints is not the same as
the operator version of the Lorentzian constraints. This is
easily seen as follows. The Euclidean constraints are ob-
tained from the Lorent21an constraints (2.3) and (2.4) by
setting K5 =iKE, pf=ip2®, and leaving g, and P°® un-
changed. The Euclidean constraint operators are obtamed
from the constraints by replacmg P, _8/8KE and
pE — —8/8q,,. The net effect is thus to send g,,—qp

—(1/i)6/8q,, (which agrees w1th the Lorentzmn
operator equation) and K5 —iKE, P— —5/8K]
(which does not). Thus to obtain a solution of the
Lorentzian operator constraints we must analytically con-
tinue the Euclidean wave function to imaginary values of
the extrinsic curvature:

(2.13)

(2.14)

U gas - Kap 1= [4ab, — K33 ] - (2.15)
This procedure will yield a solution to the constraints (2.5)
and (2.6) for any wave function defined by the Euclidean
functional integral. By adoptlng Hartle and Hawking’s
preferred boundary condition,! we obtain a unique physi-
cal state which might represent the quantum state of our
universe.

One cannot, of course, calculate the functional integral
(2.9) exactly. (In fact, the precise form of the measure is
still an open question.) However, one can get some infor-
mation about ¥ from a semiclassical approximation.
Since we are interested in ¥z only for imaginary values of
the extrinsic curvature, the semiclassical approximation is
somewhat complicated. For example, it is not sufficient
to minimize the Euclidean action with g, and KZ fixed
on the boundary and then analytically continue
Ve(gap, K5 )=e ™n%a'  This is because the analytic
continuation may cross “Stokes lines” where the asymp-
totic form of the integral (for small #) changes character.
Instead, one must do a steepest-descents analysis in which
one looks for complex extrema of the action with q,, and

— iK% fixed on the boundary. Then, if one can deform
the original contour of integration into a steepest-descents
contour passing through this extrema, the semiclassical
approximation to v is

¢(qab’KaLb)zN ~1l8a] ) (216)

where g,, is the complex extremum and N includes con-
tributions from quadratic fluctuations.

We now briefly explain what is meant by complex ex-
trema of the action. Given a real manifold, one can al-
ways complexify the tangent space and introduce complex
tensor fields. (Since we want to consider the boundary of
our manifold dM =X to be a three-dimensional submani-
fold, it is better not to view M as a complex two-
manifold, even when this is possible.) A complex metric
is simply an invertible, symmetric second-rank complex
tensor field. There exists a unique, torsion-free covariant
derivative compatible with each complex metric, and one
can write down the field equations just as for real metrics.
The only subtlety comes at the boundary. The unit nor-
mal to 2 can be defined by taking any function f such
that f =0, V,f50 on = and setting

Vaf
he= W . (2.17)

The problem is that the square root in the denominator is
only defined up to an overall sign. In other words, one
cannot distinguish the “outgoing” and “ingoing” normals
for a general complex metric. This does not affect the
definition of g,, but it does affect the definition of K.
In our case this ambiguity is resolved as follows. Since we
begin with an integral over real Euclidean metrics, there is
a well-defined outgoing normal. We now require that as
we deform the contour of integration, the unit normal
changes continuously. This gives a well-defined definition
of Kab'

We conclude this section with a few remarks about
another representation for the quantum theory based on
the action (2.1). Instead of choosing (g,s,K ) to be “posi-
tion variables,” we could have chosen the configuration
space to consist of pairs (gg,,P?). Although the resulting
theory should be completely equivalent, the (g,;,P%) rep-
resentation is less desirable for at least three reasons.

First, the scalar constraint equation (2.5) changes its
character completely Since the only quadratic momen-
tum term in the (g,,,P%) representation is K,,p®, the
analog of the Wheeler-DeWitt equation would no longer
resemble Schrodinger’s equation but rather a second-order
equation in a space whose metric has six positive and six
negative eigenvalues at each point. Second, the condition
for the composition of amplitudes in the (gg;,P%) repre-
sentation is more complicated than I[g;+g,]=I[g;]
+1[g,]. In fact, this latter condition can no longer be sa-
tisfied for any choice of boundary terms. This is because
the extrinsic curvature need not be continuous across the
boundary, so the four-dimensional curvature computed
from g;-+g, may contain 8-function contributions. Since
the action involves the square of the curvature, the left-
hand side can diverge when the right-hand side is finite.
Finally, it is difficult to obtain nontrivial information
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about (g,,,P®) from a semiclassical approximation.
One can show that the wave function defined by the Eu-
clidean functional integral with g,, and P held fixed on
the boundary automatically satisfies the Lorentzian con-
straint without any analytic continuation. Although this
would normally be a significant advantage, in our case it
is not, since the metric which minimizes the action hold-
ing g, and P fixed on the boundary is in fact indepen-
dent of P%. The curvature becomes discontinuous on the
boundary.

A simple example will illustrate this last point. Let ¢
be a function on the unit ball B in E* and set

Slel= [, (V).

We wish to minimize .S subject to the condition that on
the boundary of B, =0 and V*p=K where K is some
constant. Consider a sequence of functions @r, Which are

(2.18)

constant for r <rg<1 and then “bend” to satisfy

V2¢J,O=K at r =1. One possibility is
—K(1—r)%/(8—6ry), O<r<rqy,
Pr\ "= K (r —1)(r +1—=2r0) /(8—6rg), ro<r<1.

(2.19)
It is easy to see that both ¢, and (p',o are continuous at
r =ry and @, satisfies the boundary conditions for all 7.
The action S[g, ] is clearly minimized by taking the lim-
it ro—1. In this limit, the action approaches zero. In
particular it is independent of the value of K. Since the
action / does not contain any terms involving derivatives
of the curvature, a similar thing can happen here. Thus,
nontrivial information about %(q,,,P®) can only be ob-
tained by computing the quadratic fluctuations.

III. MINISUPERSPACE MODEL

In this section we apply the general formalism  dis-
cussed in Sec. II to a simple minisuperspace model. The
model is obtained by restricting consideration only to
metrics with isotropic three-surfaces. Since metrics of
this type are all conformally flat, the Weyl squared term
in the action I (1.8) will play no role. Furthermore, we set
A=0. Although a physically realistic theory probably
needs A >0, to include a positive Newton’s constant, the
choice A=0 is made for the following reason. It simpli-
fies the semiclassical evaluation of the wave function con-
siderably, and yields some information about the A >0
case. This is because A is negligible for certain regions of
the configuration space. A complete analysis of the case
A >0 will appear in a forthcoming paper.?’ For now we
consider the simpler theory, and show that with A=0, the
resulting wave function describes an inflationary universe.

We begin this section with a canonical analysis of the
Lorentzian theory. Then we evaluate the functional in-
tegral semiclassically and interpret the resulting wave
function.

A. Canonical analysis
We write the spacetime metric in the form

ds?=e?M(—dn?4+dQ3?) , 3.1

where dQ;? is the metric on a unit three-sphere. The
four-dimensional scalar curvature is then given by

R=6e¢e (1+a'?+a"), (3.2)

where a prime denotes d/d7. The Lorentzian action is
2.1

=—18B7* [ (1+a' 2 +a"Vdn . (3.3)

To cast this fourth-order action into canonical form we
must first vary I with respect to the highest derivatives
and set the results equal to a new variable Q:
— 87 2 ’2 "
Q=——,=36Br(1+a'“+a"). (3.4)
Sa

Solving for @' in terms of Q we next write the action in
the form

T=[(a'Q'—Han , 3.5)
where
H(a,a',Q)=(14+a'?)Q —Q%/m (3.6)

and we have set m =(7272B). The momenta conjugate to
a and Q are now defined in the usual manner:

81
PQ-— SQ' =a , (373)
81
Pu=22—_0'—2a'Q. :
“= 22'Q (3.7b)

The Hamiltonian is then
H=P,Q'+P,a'—L
=PuPy+(1+Py?)Q —Q%/m . (3.8)

Classically, this Hamiltonian is constrained to vanish.
In the quantum theory we require that the Hamiltonian
operator must annihilate the wave function. As discussed
in the last section we want to quantize in a representation
where a and Pp=a’' are the configuration variables.?!
Therefore, we replace Py with x and Q with — P, to ob-
tain

H=xP,—(1+x2%P,—P,*/m . (3.9)

To obtain the Hamiltonian operator we replace P, with
(1/i)3/8a and P, with (1/i)0/0x. Thus physical states
of the theory must satisfy

2 p
xii’éz_IQJL+i§'£+ix2—pM , (3.10)
3t mox?  dx ox

where we have replaced a with the more suggestive vari-
able ¢ and written the last term with an arbitrary parame-
ter p reflecting ambiguities in factor ordering. This equa-
tion is just the ordinary Schrodinger equation for a one-
dimensional system governed by the time-independent
Hamiltonian

. (3.11)

—1 2
Ho(x,p)=——= ‘%+(1+x2>p
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The relation between H, and H is the following. Since
H is independent of «, P, is constant. Hj is simply
— P,. The equations of motion generated by H are com-
pletely equivalent to those generated by H. The only
difference is that for H, the solutions are parametrized
by t whereas for H, they are parametrized by 7. Note
that H is not bounded from below.

Given any function ¥(zy,x) one can in principle evolve
(3.10) to obtain an allowed quantum state of the system.
In the next section we find which quantum state corre-
sponds to placing Hartle and Hawking’s boundary condi-
tion on the Euclidean functional integral.

B. Semiclassical evaluation of functional integral

We now consider positive-definite metrics of the form:

ds?=e**"M(dn>+dQ5?) . (3.12)
The scalar curvature is
R=6e"2%(1—a?—a") (3.13)

[cf. (3.2)]. Recall that to obtain the “wave function of the
universe” one must first compute

¢E(a0,ab)=fD[a]e —Ilal | (3.14)
where the Euclidean action is
I[a]=%fR2dV (3.15)

and the integral is over all metrics which are regular at
the origin and induce a; and @y on the boundary. To see
what regularity at the origin corresponds to for (3.12), we
briefly consider an alternative form of the metric

ds?=a*(r)(dr’+r2dQ;?) .

This metric is clearly regular at the origin if
a(r)=a(0)+0(r?). Now comparing (3.12) and (3.16) we
obtain

dr r da

—=dn, 1+———=a'.

r m it aar ©
Therefore the origin corresponds to 7= — « and regulari-
ty at the origin requires that for 7 <<0, a’'~1+0(e?").
After computing ¥z(ag,ay) one must then analytically
continue g to — ix( to obtain a solution to (3.10).

As we discussed earlier, in the semiclassical approxima-

tion, it is not sufficient to minimize the Euclidean action,
—TIin(ag.a))

(3.16)

(3.17)

and then analytically continue VYg(ag,ap)=e
from real a; to imaginary values. Instead, one must do a
steepest-descents analysis. This involves finding complex
extrema of the action which satisfy the boundary condi-
tions (denoting the boundary by 7=0):

a'(n)=1+0(e™) for n<<0,
a(0)=qay, (3.18)
a'(0)=—ix0 .

If the original contour of integration can be deformed into
a steepest-descents contour passing through the extrema
a(n), then the semiclassical approximation to ¥ is

Ylagxg)=N e 1le]l (3.19

where N includes contributions from quadratic fluctua-
tions. In the following we will concentrate on just the ex-
ponent. We now find the complex extrema of the action I
satisfying the boundary conditions (3.18).

Setting the variation of I with respect to a equal to zero
we obtain the field equation

[(1—a'?—a") =2a'(1—a'?—a”)]'=0. (3.20)
Using (3.13) this simplifies to
e22R’'=constant . (3.21)

Since the scalar curvature must be finite at the origin
where a— — «, this implies that R =constant. Hence,
all (isotropic) extrema of I have constant scalar curvature.
This result clearly holds for complex a as well as real a.

Since we have reduced the fourth-order equation (3.20)
to the second-order equation R =constant, it is not clear
that there will exist solutions satisfying our boundary con-
ditions. Indeed, in the case of real a, one can show that
all metrics with a regular origin and R=constant are in
fact spaces of constant curvature. Since a’> —1 for all
spaces of constant curvature, there do not exist solutions
with ay < —1 on the boundary. (If one tries to minimize
the action with ay< —1 then the volume becomes un-
bounded, i.e., “the solution goes off to infinity.”) Howev-
er, we will now show that there do exist complex solutions
satisfying (3.18) for all a,x.

We start with the metric for a real four-sphere:
e %*=M cosh(n+c) , (3.22)

where M >0 and c¢ are constants. The scalar curvature is
related to M by

R =12M?. (3.23)
Taking the derivative of both sides of (3.22) we obtain
a'= —tanh(n+c) (3.24)

which shows that the boundary condition as n— — « is
satisfied for all M and c¢. For real ¢, |a’'| <1 for all 5.

However, we now let ¢ =i6 where —w/2<0<w/2.
Then
e~ %=M cosh(7n+i0) (3.25)

has R=constant and satisfies the boundary conditions
(3.18) provided

e ®=Mcosd, xo=tanf . (3.26)

We thus obtain complex extrema of I satisfying (3.18) for
all agp, xo.

We could have obtained exactly the same solutions by
starting with a real space of constant negative curvature,
as we now show. The metric for a space of constant nega-
tive curvature is

e %= —Nsinh(n—d), (3.27)

where N >0 and d are constants. (The point 17 =d corre-
sponds to infinity.) The scalar curvature is now
R =—12N?and
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a'= —coth(n—d) . (3.28)

Setting d =igp (0 <@ <) we obtain a solution satisfying
the boundary conditions (3.18) provided

e *=iNsinp, xo=coty . (3.29)

But the first condition says that N must be imaginary. If
we set N =—iM and ¢=0+/2, then this solution be-
comes identical to the one given by (3.25) and (3.26).

We now compute the action for these solutions:

0
I1=187B [ (1—a'’—a"Ydn . (3.30)
From (3.24) we have
a"=(a'?—1). (3.31)
So o
I=727B [ (a/>—1)dn
—ix
=m [ (a'*~1)de’
=mli(xo+x0°/3)+ %], (3.32)

where we have again set m =72?B.

Now fix ag and x,. It seems likely that the solution
given by (3.25) and (3.26) is the only exact solution satis-
fying the prescribed boundary conditions. Although a de-
tailed steepest-descents analysis is difficult for the
infinite-dimensional path integral (3.14), it is reasonable to
expect that the original contour of integration can be de-
formed to pass over this extrema. Thus, in the semiclassi-
cal approximation,

Wagxo)~e el (3.33)

where I is given by (3.32). Replacing oy with ¢ and x,
with x we obtain our final result:

¢(x,t)=e—im(x+x3/3) , (3.34)

where we have dropped the irrelevant constant 2m /3
from the action. Notice that the wave function is time in-
dependent. This is a direct result of the fact that the ac-
tion is scale invariant, and hence is unchanged if a con-
stant is added to a.

We now ask if ¢ satisfies the Hamiltonian constraint of
the canonical theory (3.10). Notice that

1oy _ 2
7 ox m(l1+x°) .

(3.35)

If we choose the factor-ordering parameter p =2 in (3.10)

then the constraint equation becomes
103|100

1 o 2
ot i Ox |im Ox +1+x9

V. (3.36)
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Therefore i is an exact solution of the canonical con-
straint equation. It is perhaps surprising that the semi-
classical approximation to the wave function satisfies the
exact constraint equation. This is probably a result of the
high degree of symmetry imposed on the metric together
with scale invariance of the action. The fact that a cer-
tain choice of factor ordering is picked out is not surpris-
ing. It is (presumably) just the factor ordering which cor-
responds to choosing a scale-invariant measure in the path
integral.?> Notice that even though the one-dimensional
Hamiltonian H, is unbounded from below, the wave
function obtained by imposing Hartle and Hawking’s
boundary condition on the path integral corresponds to a
zero-energy eigenstate.

The wave function ¥ has a simple physical interpreta-
tion. It satisfies the operator equivalent of [see (3.35)]

p=—m(l4+x?). (3.37)
Recall from (3.4) that p = —Q = —mRe?*/12 and x =c'.
Therefore, classically, (3.37) becomes

R=12¢ (1+4a'?). (3.38)
Taking the derivative of both sides of this equation and
using (3.2) we find R’=0. In other words, Eq. (3.38) de-
scribes a classical spacetime of constant positive curva-
ture, i.e., de Sitter spacetime. Notice that the value of the
curvature R is not fixed by this equation. For a given a,
any value of R >12e 72 can satisfy p=—m(1+x2).
Since a=t, we arrive at the following physical interpreta-
tion of y: The “wave function of the universe” ¥(x,t) cor-
responds to a superposition of classical de Sitter spacetimes
with R >12e~%. In this sense the wave function i can
be said to describe an inflationary universe.

Since there is no length scale in this model, one could
not expect to see a transition from the inflationary phase
to a Robertson-Walker phase. In the future we will inves-
tigate more complicated models which include A >0 and
anisotropy. We hope to show that the wave function de-
fined by imposing compact boundary conditions on the
Euclidean functional integral with a positive-definite ac-
tion gives a reasonable description of the observed
universe.
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