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A scheme is discussed for constructing anomaly-free, charge-vectorial chiral sets of fermions
which acquire masses by coupling to the Higgs doublet of the standard model.

I. INTRODUCTION

The standard SU, (3) X SUir(2) XUi (1) model (SM)
(Refs. 1 and 2) of electroweak interactions has so far
passed every experimental test. Maintaining this har-
mony with experiment imposes a strong restriction on any
proposed extension of the SM. Many extended models
which have been proposed, for example, the grand unified
and/or supersymmetric models, have involved expanding
the theoretical framework of the SM. In this paper we
continue a program aimed at extending the SM without
the introduction of larger groups or new theoretical ideas.
The objective of this program is to clarify and enumerate
the physical parameters and experimental signatures of
fermions which in addition to the familiar three families
of quarks and leptons are allowed by the basic principles
of the SM and by. the restrictions imposed by present ex-
periments.

Fermions in the SM form multiplets which we denote
as (r„2I +1)L tt, where r, is the color representation,
I the weak-isospin representation, and Y the weak hy-
percharge. The electric charge of any member of the rnul-
tiplet is Q =I3 + —,Y. The subscript L (R) denotes a
left- (right-) handed field. The hypercharge anomaly (the
only anomaly which will concern us) of such a state is

A =(+)d, (2I +1)Y

The plus (minus) sign applies to L (R), and d, is the
dimensionality of the color representation.

The relevant basic principles of the SM are the follow-
ing.

(1) The electric and color currents are vectorlike.
(2) The breaking of SUir(2) XUr(1) into UEM(1) is in-

duced by the neutral component of an I = —,', Y=1,
color-singlet scalar field (the Higgs doublet) acquiring a
vacuum expectation value.

(3) There is no Y anomaly
Condition 1 implies that for every left- (right-) handed

field there is a corresponding right- (left-) handed field
with the same charge and color quantum numbers.
(There is thus no color and charge anomaly. ) As will be-
come clear from the discussion in Sec. II, this feature is
necessary to allow a charge- and color-conserving mass
for each colored or charged particle. Condition 2, which
states that the SUir(2) XU&(1) symmetry is broken in the
I~= —,', b, Y=+1 channel, is satisfied to considerable ac-
curacy for the usual quarks and leptons. We ignore the
possibility of additional Mir ——1,—, , . . . symmetry-
breaking effects. Condition 3 is required for renormaliza-
bility.

Since the Y anomaly cancels among the ordinary
quarks and leptons in the SM, the contribution to the
anomaly coming from any additional particles must can-
cel among themselves. Such a cancellation would occur if
the new particles were completely vectorlike in
SU, (3)XSUir(2)XU&(1). However they could also be
vectorlike with respect to the color and electric charges
but chiral (i.e., non-vectorlike) with respect to I and
combined in such a way that the Y anomaly vanishes. In
the first case b.I =0 mass terms could exist without
violating the underlying SU, (3)XSUir(2) XUz(l) symme-
try. ' In the second case such mass terms could not be
present, and every charged or colored particle (but not
necessarily charge and color neutral particles) would have
to acquire a b,I = —,', b, Y =+1 mass as a consequence of
the symmetry breaking. ' This latter scenario is followed
by the usual quarks and leptons in the SM.

In this paper we consider the construction of new chiral
sets in the SM which follow the second scenario above.
We will insist that with the possible exception of color
and charge neutrals all particles can have
6Y =+1 mass terms. In the construction of these sets we
will not insist that the Y anomaly cancels, because given
sets i with anomalies A; we can always combine them
into a larger anomaly-free set by taking n; multiplets of
set i such that gn;A; =0. (Recall that the sign of the
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anomaly changes when we exchange the labels L, and R in
set i ).

The remainder of this paper discusses the problem of
constructing the chiral sets. In Sec. II the problem is for-
mulated and simple examples of chiral sets are presented.
In Sec. III a procedure is given for generating the general
chiral sets. %'e have not succeeded in writing such sets in
general closed form but instead state a systematic method
of construction which also leads us to some conjectures on
the general form. Section IV states some implications of
this work. In an appendix we list the most useful ("low-
lying" ) chiral sets.

II. STRUCTURE OF THE CHIRAL SETS

A chiral set is composed of left-handed and right-
handed weak isospin multiplets-, which combine in pairs
to give color-singlet, AI = —,', AY=+1 masses to all the
particles in the set. %e call a chiral set irreducible if, as-
suming all allowed mass terms are actually present, the
multiplets cannot be separated into two or more subsets
such that there are no mass couplings involving multiplets
in different subsets. Only irreducible sets will be con-
sidered explicitly, since reducible sets are simply collec-
tions of particles obtained by combining those in two or
more irreducible sets.

If a multiplet within a chiral set is represented by a set
of fields g;, the charge-conjugate fields p;, as well as the
g;, are available for the construction of mass terms. It is
thus a matter of convention whether the set is considered
to contain the multiplet associated with g; or the charge-
conjugate multiplet associated with g';. But the charge
conjugate of a left- (right-) handed multiplet is a right-
(left-) handed multiplet, and thus the chiralities of the in-
dividual multiplets within a chiral set are ambiguous
without further definition, which we discuss below.

All mass terms have either the Dirac or Majorana form.
Thus, since they must also be color singlets, any two mul-

tiplets in an irreducible chiral set must transform accord-
ing to the same or according to conjugate representations
of the color group. Thus, by considering the charge con-
jugate of multiplets as necessary, it is possible to require
that all m.ultiplets in an irreducible chiral set transform
according to the same color representation. If the repre-
sentation is not self-conjugate (1,8,27, . . . ), this condition
determines the chirality of each multiplet (to within a
charge conjugation of the whole set). It also implies that
all mass terms are of the Dirac form. Further, since a
Ll = —, mass term is obtained by combining a multiplet
of isospin I with another multiplet of isospin I + —,,
the multiplets of a given chirality have multiplicities
which are either all even or all odd. For irreducible chiral
sets which transform according to self-conjugate represen-
tations of the color group, this last feature can be incor-
porated simply by considering the charge conjugate of any
multiplet for which it is not a priori satisfied. All mass
terms are then of the Dirac form independently of the
color representation.

It is convenient to represent a chiral set by dots and
crosses located at the vertices of a two-dimensional square
lattice. The dots and crosses represent left- and right-

( i,n)l. '" "+(1,n —1)z",
with anomaly

A = Tn (n —1)(2n —1) .

(2.1)

(2.2)

The upper (lower) sign corresponds to the neutral state at
the bottom (top) of the left-handed multiplet.

Henceforth we will require that the multiplets in a
chiral set can combine to generate Ll = —,', hY=+1
masses for all the states. Then the multiplets in Fig. 1(a),
do not by themselves comprise a chiral set. Suppose
another right-handed triplet is included with the two mul-
tiplets in Fig. 1(a). If its hypercharge is one unit less than
the hypercharge of the quadruplet in Figs. 1(a) (two units
less than the hypercharge of the triplet), the three multi-

4 X

~ X

4 X

x
~ X

~ X

4 X

~ X

{a) {b) {c)
FIG. 1. Three configurations involving a left-handed qua-

druplet and a right-handed triplet. The two pairs of multiplets
in (a) and (b) can combine to form a hI = 2, hY = +1 mass

term. No such mass term can be constructed with the pair of
multiplets represented in (c), since their hypercharges differ by
more than unity.

handed particles, respectively, and a multiplet of multipli-
city M ( =2I + 1) is indicated by a vertical column of M
dots or crosses located at adjacent vertices. The hyper-
charges of the multiplets are indicated by the overall ver-
tical positions of the multiplets in such a way that all dots
and crosses in the same horizontal row correspond to the
same electric charge. No absolute scale for the hyper-
charge is necessary. That is, a set obtained from another
by adding a constant y to the hypercharges of all the mul-
tiplets does not correspond to a different representation.
Also, two representations which differ only in the inter-
change of dots and crosses are not to be distinguished,
since one is simply the charge conjugate of the other.

A mass term is constructed by coupling a column with
M dots with a column of M+1 crosses. Since the mass
term carries hypercharge Y=+1, the smaller multiplet,
"lines up" horizontally with the larger multiplet either at
the top (highest charge) or the bottom (lowest charge).
Thus all members of the smaller multiplet are matched in
charge with members of the larger multiplet, with one
member of the larger multiplet unmatched. As an exam-
ple, Figs. 1(a) and 1(b) show the two possible configura-
tions wherein a Al = —,, 6Y =+1 mass term can be con-
structed with a left-handed quadruplet and a right-handed
triplet. No such mass term can be constructed with the
multiplets in Fig. 1(c), since their hypercharges differ by
more than unity.

The multiplets in Figs. 1(a) and 1(b) form a chiral set
when the unmatched member is a charge and color neu-
tral without mass, and we can now give in closed form the
chiral sets involving neutrals. Let n be the multiplicity of
the larger multiplet. Then the chiral set is
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. plets are represented as in Fig. 2(a). With these three mul-
tiplets one can construct M = —,', b, I'=+1 masses for
all the particles except for a linear combination of the two
crosses in the second row and, separately, in the third row
(the linear combinations orthogonal to whatever combina-
tions couple to the quadruplet). To also give masses to
these two linear combinations without introducing new
massless particles it is necessary to add a left-handed
doublet with the same hypercharge as the quadruplet.
The resulting four multiplets are shown in Fig. 2(b). The
sum of all possible M = —,', b, F=+1 Dirac mass terms
constructed with these four multiplets induces a mass for
each of the six left-handed and six right-handed particles.
The configuration in Fig. 2(b) thus corresponds to a chiral
set as defined above.

Chiral sets may be classified by the number pL (p~ ) of
left- (right-) handed multiplets in the chiral set. We may
restrict ourselves to sets for which pL &pz since sets
where p~ &pL are equivalent to these via charge conjuga-
tion. It is then convenient to define p

—=pL. The chiral set
in Fig. 2(b) has p =pi ——pz ——2. The unique chiral set
with p= 1 is shown in Fig. 3. It can be written as

(r„2)L +(r„1)g+'+(r„l )g

Two chiral sets with p=2 are shown in Fig. 4. In the
second set, Fig. 4(b), the multiplicities contain an arbi-
trary constant. The freedom to add a constant to the mul-
tiplicities of all the multiplets by changing the value of M
is characteristic of sets where pL

——pii. It does not occur
when @Leap~. Three chiral sets which are simply com-
binations of two sets with p= 1 are shown in Fig. S. The
sets represented in Figs. 5(a) and 5(b) are irreducible,
whereas the one in Fig. 5(c) is reducible.

For arbitrary p we say that a chiral set is simp/e if it
does not result from a combination of sets with smaller
values of p. A simple chiral set is necessarily irreducible,
although as the examples in Figs. 5(a) and 5(b) illustrate,
an irreducible set need not be simple. In the following we
will be interested in constructing simple chiral sets, since
for any p the chiral sets which are not simple are already
implicit in the structure of the sets with smaller values of
p. The only simple chiral sets for p =2 are those
represented in Fig. 4.

Consider the chiral set configurations for p=3 shown
in Fig. 6. The two configurations in Figs. 6(a) and 6(b)
are simple, but the configuration in Fig. 6(c) results from
combining the sets represented in Fig. 2(b) and in Fig. 3.
However, from the configuration in Fig. 6(c) one can gen-
erate a simple chiral set by "hinging" the doublet of dots
in the second column and the singlet in the third column

FIG. 3. The unique chiral set with p= l.

~ ~ x x
~ X X

x
~ x x

~ 0 x X

o ~ X X

~ e x x

of crosses about the second row from the top. This hing-
ing is indicated by the arrows in Fig. 7(a), and the result-
ing new configuration is shown in Fig. 7(b). Similarly, if
the doublet of dots and the singlet cross in Fig. 6(b) are
hinged about the third row from the top of the figure, a
simple chiral-set configuration results, which, however, is
the same configuration as would be obtained by turning
the configuration in Fig. 6(b) upside down. This inversion
of a chiral-set configuration, which can also be viewed as
a hinging of the entire configuration about any row, al-
ways leads to a single chiral set with the same simplicity
and reducibility. It is thus more economical not to con-
sider a configuration and its inverse as distinct. This
point of view will be adopted in the following.

The chiral-set configurations in Figs. 6(a) and 6(b) and
in Fig. 7(b) represent the only simple chiral sets with
@=3. The configuration in Fig. 7(b), however, results
from hinging the one in Fig. 6(c). Thus the configura-
tions in Fig. 6 may be considered to be the basic configu-
rations for @=3 in the sense that any configuration corre-
sponding to a simple chiral set is either included among
them or can be obtained from one of them by hinging.
These three basic configurations have the form of a
"pyramid" arising from the fact that the maximum
charges of the dot and cross multiplets decrease by unity
as one moves column by column away from the multiplets
with the largest maximum charge located at the center of
the configuration. The three pyramids in Fig. 6 are ir-
reducible.

It is consistent with our experience in constructing
more general chiral sets that the configuration for any
simple chiral set is either included among the irreducible
pyramids or can be obtained from them by hinging. For
example, consider the five irreducible pyramids with p=4
shown in Fig. 8. Except for the pyramid in Fig. 8(e), they
represent simple chiral sets. The three simple chiral-set
configurations in Figs. 9(d)—9(f) result from configura-
tions in Fig. 8 by hinging as shown in Figs. 9(a)—9(c).
There are other possible hingings of the configurations in
Fig. 8, for example, the hinging of the configuration in
Fig. 8(c) shown in Fig. 10, but they either lead to an unac-
ceptable set where not every particle acquires a Ll

FIG. 2. Additional multiplets included with the pair in Fig.
1(a). (b) represents a chiral set allowing b,I = 2, AY=+1
masses for all the states.

FIG. 4. The only simple chiral sets with p=2. The horizon-
tal lines in (b) indicate the possibility of extending the entire fig-
ure vertically with dots and crosses. This notation is used in
subsequent figures as well.
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FIG. 7. A hinging of the pyramid in Fig. 6(c) which leads to
a simple chiral set.

(c)

FIG. 5. Three examples of nonsimple chiral sets with p=2.

hY =+1 mass, or they lead to configurations which are
simply inverted versions of the ones given. Although
there are irreducible pyramids with p=4 other than those
shown in Fig. 8, they are not simple nor can they be
hinged to form simple configurations. All the simple
chiral sets with p=4 are represented by the configurations
in Fig. 8 and in Figs. 9(d)—9(f).

Up till now we have considered only examples with low
values of p. However, some simple observations may be
made about generalizations of the sets we have considered
as well as about systematics with p. For example, the
chiral sets of Figs. 3, 4(a), 6(a), and 8(a), in which (n —1)
left-handed n-plets combine with n right-handed (n —1)-
plets generalize in a clear way. Their anomaly is

A =d, n (n —1)(2n —1)Y .

Comparing to Eq. (2.2) for the chiral set involving a neu-
tral, we are tempted to combine these to make an
anomaly-free chiral set. This is the choice made by nature
in the SM, with n=2.

For a generalization on p, we first note that pL and pz
cannot both be odd. This rule follows because the multi-
plicities of one chirality are all even, and the multiplicities
of the other chirality are all odd. Thus, if pI and p~ were
both odd, the number of particles of one chirality would
be even and the number of the other chirality would be
odd (the sum of an odd number of odd numbers is an odd
number). But then not every particle could acquire a
Dirac mass. As a corollary, we note that when there are p
multiplets of each chirality then p must be even.

Finally, we observe that in all the examples of simple
chiral sets discussed above p~ equals either p (and only
when p is even) or p+ 1 (when p is either even or odd).
We conjecture that this is a general feature of all simple
chiral sets.

In Sec. III we give a systematic scheme for constructing
all the irreducible pyramids corresponding to arbitrary p.

III. CONSTRUCTION OF IRREDUCIBLE PYRAMIDS

For arbitrary p the irreducible pyramids have p multi-
plets of one chirality and, if p is even, either p or p + 1

multiplets of the other chirality or, if p is odd, p + 1 mul-
tiplets of the other chirality. That is, if there were more
than p+ 1 multiplets of the other chirality at least one of
them would have a maximum charge that was more than
one unit less than all the maximum charges of the p mul-
tiplets with the former chirality (since the maximum
charges of the multiplets decrease by unity as one moves
out column by column from the pair of dot and cross
multiplets at the center of the pyramid). As is clear from
the discussion in Sec. II in connection with Fig. 1, such
multiplets could not couple with any of the p multiplets
to form a AI = —,', AY=+1 mass term.

The irreducible pyramids in Figs. 4, 6, and 8 have the
feature that the multiplicities of the multiplets remain the
same or decrease by two as one moves column by column
away from the multiplets with the largest maximum
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We conjecture that the configurations for all simple chiral
sets can be obtained by hinging these irreducible pyra-
mids. However, we have not proven this conjecture nor,
for that matter, have we been able to construct a sys-
tematic scheme to generate all the possible hingings of
these pyramids which lead to simple configurations.

Since the chiral sets most likely to be useful are the
ones with small values of p, we list in the Appendix all
chiral sets and their Y anomalies through p =pL ——4. We
do not separately list sets which differ from those given
by exchanging left and right chiralities.

~ 0 ~
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X X X
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~ 0 X X

~ ~ ~ X X X

~ X

~ ~ X X
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~ ~ ~ ~ X X X X

~ ~ ~ ~ X X X X
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(d) (e)

(b) (c)

FIG. 6. Three chiral sets with p=3. The two sets in (a) and
(b) are simple, but the one in (c) is not simple.

FIG. 8. Five irreducible pyramids with p=4. The example
in (e) can be generalized by adding an arbitrary non-negative in-
teger n to the multiplicities of all the multiplets.
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FIG. 11. An example of a reducible pyramid.
FIG. 9. Three simple chiral sets as they result from hinging

the pyramids in Figs. 8(c) and 8(e).

~ ~ X X

)44 ~ XX(
~ ~ ~ ~ XXiXX
4

I
~ ~ ~ XI X X X

~ ~ X X

Ia)

~ ~ X

~ 4 X X

~ ~ X

~ ~ X

~ ~

X X

X X

X X

FIG. 10. A hinging of the pyramid in Fig. 8 which leads to a
set where not all the particles can acquire M = 2, 4F=+1
masses.

charge at the center of the pyramid. This feature is
characteristic of all irreducible pyramids. For example,
consider the pyramid in Fig. 11, in which the multiplicity
four of the third column of dots is two larger than the
multiplicity two of the second column of dots. It is evi-
dent (see discussion in connection with Fig. 1) that no
LE = —,, hY=+1 mass term can be constructed between
dot (cross) multiplets in the third and fourth columns
with cross (dot) multiplets in the first and second columns
(counting out from the center of the pyramid). The py-
ramid in Fig. 11 is thus reducible; any pyramid not satis-
fying the above rule must also be reducible.

Consider an irreducible pyramid with p multiplets of
one chirality and p+ 1 multiplets of the other chirality.
The pyramid of this kind with the largest number of dots
and crosses is composed of p multiplets with multiplicity
p+ 1 together with p= 1 multiplets of multiplicity p.
Such a pyramid for p=6 is shown in Fig. 12(a). If one
deletes the two lowest dots and the two lowest crosses in
the two outside columns of this pyramid, one obtains the
irreducible pyramid in Fig. 12(b). Similarly, if the lowest
two dots in the fifth column and the lowest two crosses in
the sixth column are deleted from the configuration in
Fig. 12(b), the pyramid in Fig. 12(c) results. Continuing
in this way removing the bottom two dots and crosses in
four more pairs of columns yields the irreducible pyra-
mids in Figs. 12(d)—12(g). In Figs. 12(fl and 12(g) the
subpyramids constructed with the first two pairs of
columns of dots and crosses, and with the remaining
columns of dots and crosses, are individually chiral set
configurations. These pyramids are therefore not simple.
However, there are allowed M = —,', hY=+1 mass
terms which are not already allowed by the subpyramids
(for example, the multiplet in the second column of dots
can couple with the multiplet in the third column of
crosses), and hence the pyramids in Figs. 12(f) and 12(g)
are irreducible.
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FIG. 12. Irreducible pyramids with p= 6. As illustrated in

(b)—(j), and as discussed in the text, all irreducible pyramids
with p=6 can be obtained by deleting pairs of dots and crosses
from the pyramid in (a).

New irreducible pyramids can be generated from those
in Figs. 12(c)—12(g) by deleting the bottom two dots and
crosses in the pairs of outside columns. For example, the
irreducible pyramid in Fig. 12(h) is generated in this way
from the one in Fig. 12(e). Further, the irreducible
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pyramids in Figs. 12(i) and 12(j) are generated from the
one in Fig. 12(h) by successively deleting pairs of dots and
crosses in the second column, and then in the second and
third columns, from the outside of the pyramid in Fig.
12(h).

Other irreducible pyramids corresponding to p=6 are
generated by deleting pairs of dots and crosses from the
irreducible pyramids in Fig. 12. Some of these may result
from deleting the last two crosses in the outside column.
The two pyramids in Figs. 13(a) and 13(b) result in this
way from deleting the outside pairs of crosses in Figs.
12(i) and 12(j). These pyramids have six columns of
crosses as well as six columns of dots. Whenever the
numbers of left-handed and right-handed multiplets are
the same, the pyramid can be generalized by adding any
integer n to the multiplicities of all the multiplets. Thus,
for example, the two pyramids in Figs. 13(a) and 13(b) can
be generalized to those in Figs. 13(c) and 13(d).

Beginning with the irreducible. pyramid having p + 1

multiplets of multiplicity p with one chirality and p mul-
tiplets of multiplicity p+ 1 with the other chirality one
can generate all the irreducible pyramids corresponding to
the given value of p by successively deleting pairs of dots
and crosses as in the examples discussed above. If pairs of
dots and crosses are deleted from the bottoms of two
columns, the dots and crosses must be in the same two
rows, and the multiplets in the two columns must be cap-
able of combining to form a b,I = —,', b, Y=+1 mass
term. Further, if the resulting pyramid is to be irreduci-
ble, it must satisfy the rule discussed earlier in this section
regarding the way the multiplicities can vary as one
moves out column by column from the center of the
pyramid. This last condition implies that a deletion of
dots and crosses can only occur from a pair of columns
which extend one row below the columns to which they
are immediately adjacent. Whenever p is even the pro-
cedure of deleting pairs of dots and crosses will lead to
pyramids with p multiplets of either chirality. As illus-
trated in Fig. 13 for p=6, such pyramids can be general-
ized by adding an integer n to the multiplicities of all the
multiplets.

IV. CONCLUSIONS

We have described a method for the construction of
chiral sets of fermions consistent with the principles of
the SM. If such sets exist with a M = —,

' mass scale
much higher than that of the usual fermions of the SM,
then they might not have been detected up to now because
of decoupling phenomena. Nevertheless their existence
would have consequences both for rare processes at low
energies, through (small) mixing with the usual fermions,
and for high-energy processes through direct production
and decay. Detailed calculations of mixing with the usual
fermions would reveal such consequences in terms of the
new mass scale; in particular, because we have done noth-
ing in our approach to alter the gauge and Higgs sector of
the SM, couplings to and through Z's and 8"s are
predictable. Work along these lines is in progress.
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APPENDIX
We list here all allowed simple sets through p=4. Fig-

ures are indicated in each case, and we work for a given
r, . The charge spread b.Q is defined as the maximum
charge of the set minus the minimum charge. The multi-
plicity M is the multiplicity of each charge starting with
the maximum charge. A is the anomaly.

1. Fig. 3, ,

(2)1.+(1)g+'+(l)g

~ X

~ ~ X X

~ ~ ~ X X X

~ ~ ~ ~ X X X X

~ ~ ~ ~ ~ X X X X X
~ ~ ~ ~ ~ 0 X X X X X X

X X X X X

X

(a)

~ X

~ ~ X X

~ ~ ~ X X X

~ ~ ~ ~ X X X X

~ ~ ~ ~ ~ X X X X X

~ ~ ~ ~ ~ ~ X X X X X X

~ X
~ ~ X X

~ ~ ~ X X X

~ ~ ~ ~ X X X X

~ ~ ~ ~ ~ X X X X X

~ .0 ~ ~ 0 ~ X X X X X X

(b)

~ X

~ ~ X X

~ ~ ~ X X X

~ ~ ~ ~ X X X X

~ ~ ~ ~ ~ X X X X X

~ 0 ~ ~ ~ ~ X X X X X X

6'
M=[1,1] .

2. Fig. 4(a),

(3)L, +'+(3)L, '+(2)g+'+(2)g+(2)g

hQ =3,
3 = —30d, Y,
M=[1,2, 2, 1] .

3. Fig. 4(b),
~ ~ ~ ~ ~ ~ X X X X X X

~ ~ ~ ~ ~ X X X X X ~ ~ 0 ~

(c)

FIG. 13. Generalizing two irreducible pyramids with
pI. ——p~ ——6 by adding an arbitrary integer n to the multiplicities
of all the multiplets.

(n)1+'+(n)1" '+(n +1)~+(n —1)z,
bQ =n,
A =6d, nY,

M=[1,2, 2, . . . , 2, 2, 1] .
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4. Fig. 6(a),

(4)Y+2+(4)Y+(4)F—2+(3)Y+3

+(3)F+1+(3)F 1+(3)F 3

AQ =5,
A= —84d, Y,
M=[1,2, 3,3,2, 1] .

10. Fig. 8(b) inverted,

(5)l. + +(5)l".+(5)L, '+(3)L, +'+(4)~+'

+(4)g+'+ (4)11 '+ (4)I1 '+ (2)21+',

bQ =6,
A = —6d, (23Y+5),
M=[1,3,4,4, 3,2, 1] .

5. Fig. 6(b),
(4)F+1+(4)Y—1+(2)Y—1+(3)Y+2

+(3)&+(3)& '+(1)~Y ',
bQ =4,
A = —6d, (9Y—1),
M=[1,2, 3,3, 1] .

11. Fig. 8(c),

(s},'+'+(s); '+(3); '+(3)i '+(4)&+'

+(4)21 +(4)21 '+(2)Z +(2}2t

bQ=5,
A = —6d, (16Y—10),

M=[1,2, 3,4,4, 2] .

6. Fig. 6(b) inverted,

(4)Y+1+(4)Y—1+(2)Y+1+(3)Y+2

+(3)g+(3)11 '+(1)11+',

bQ =4,
A = —6d, (9Y+1),
M=[1,3, 3,2, 1] .

12. Fig. 8(c) inverted,

(5)L, +'+(5)L, '+(3)l".+ +(3) +'+(4)"+

+(4)21 '+(2)g+ +(2) +'

EQ =5,
A = —6d, (16Y+10),
M=[2,4,4, 3,2, 1] .

7. Fig. 7(b),

(4)Y+(2)F+2+(2)Y—2+(3)Y+1

(3)Y—1+( 1 )Y+3+( 1 )F—3

EQ =3,
A = —24dc Y

M=[2, 2, 2, 2] .

13. Fig. 8(d),

(n}r+(n.)L, +(n)L, +(n —2)L +(n+1)f,
+'

+(n +1)g +(n —1)21 +(n —3)~

&Q =n+1,
A =6d, [(4n —3)Y n+2], —
M=[1,2, 3,4,4, . . . , 4, 3, 1] .

8. Fig. 8(a),

(5)l".+ +(5)L, '+(5)L, '+(5)i +(4)g+

+ (4)rt+'+ (4)I1 + (4)21 '+ (4)g

b.Q =7,
A = —180d, Y,
M=[1,2, 3,4,4, 3,2, 1] .

14. Fig. 8(d) inverted,

(n)l. + +(n)L+(n)L +(n 2)l+ —+(n+1)~+'
(+n 1+) 21+(n —1)~+ +(n —3)z+',

bQ=n+1,
A =6d, [(4n 3)Y+n ——2],
M=[1,3,4,4, . . . , 4, 3,2, 1] .

9. Fig. 8(b),
(5)F+2+(5)F+(5)F 2+(3)F 2+(4}F+3

+(4)21+'+ (4)11 '+ (2)~

bQ =6,
A = —6d, (23Y—5),
M=[ 1,2, 3,4,4, 3,1] .

15. Fig. 9(d),
(5)"+'+(5) '+(3) +'+(3) '+(4)"+'

+ (4)21 + (4)g '+ (2)21+'+ (2)g

AQ =5,
A= —96d, Y,
M=[1,3,4,4, 3, 1] .
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16. Fig. 9(e),

(5)L, +'+ (5)g '+ (3)L, '+ (3)L,+'+ (4)g"+'

+(44+(4)z '+(2)tt '+(24+'

bQ =5,
3 = —96dc F
M=[2,3,3,3,3,2] .

17. Fig. 9(f),
(4)1.+ +(2)1+"+(2)L+ +(2)L, +(3)~+

+(3)"+'+(3) +'+(1)
kg=3,
A = —12d, (F—1),
M=[2,3,3,2] .
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