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Anomalous magnetic moment of light quarks and dynamical symmetry breaking
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It is shown that in theories in which chiral symmetry breaks dynamically, quarks can have a rath-
er large anomalous magnetic moment. This has been first shown, as an example, in a modified
Nambu —Jona-Lasinio model. Next, using light-quark dynamical masses in QCD, derived and used
by various authors, the light-quark anomalous magnetic moment has been calculated. This has been
done in the one-gluon-exchange approximation using a nonsingular or singular form of the gluon
propagator in a consistent way. It has been found that not all forms of quark dynamical masses
give sensible results. Finally, some of the phenomenological consequences of the presence of such a
term have also been worked out.

I. INTRODUCTION

There has been recently a revival in interest in calculat-
ing the magnetic moment of old ordinary baryons in
terms of confined constituent quarks. ' One way to make
quantitative improvement in this direction would be to
improve the calculations of the anomalous magnetic mo-
ment (AMM) of these constituent quarks. Also the
knowledge of the AMM of quarks (at high energy) has
implications in deciding whether they have any composite
structure. That the chiral symmetry in QCD is dynami-
cally broken has been shown analytically as well as by
lattice calculations. The resultant dynamical quark mass
dominates low-energy physics. This has been shown in
quite a few works. In view of this last fact, it will be in-
teresting to study the effect of the introduction of dynam-
ical quark mass on the AMM of quarks. We will restrict
our attention to the light quarks u and d, which we can
assume, to a good approximation, to have vanishing
current quark masses.

In QED, the AMM term has the form

l CX

p.vq

In QCD, where chiral symmetry has been broken dynami-
cally, one naively expects the same' form except for the
change m~mdyz and 0'~exp C2 Taking rndyz to be pro-
portional to a, (Ref. 6), one observes that the AMM term
will be of O{(a,) ). That is, in such a theory there ap-
pears to be room for a rather large AMM term.

First of all, to have a feeling for how the things are
working, we shall consider a simple model example. Thus
Sec. II deals with a modified form of the Nambu —Jona-
Lasinio model. The modification consists in the intro-
duction of a gauge term into the original Lagrangian.
The AMM corresponding to this gauge coupling is calcu-
lated. Dynamical mass generation is assumed to occur as
in the original model. In Sec. III, we take up the QCD
case. Here we employ various forms of "running"
dynamical mass which have been calculated and used ear-
lier by different authors to calculate low-energy quantities
in hadronic physics. We shall see that not all of these

forms are suitable for getting a sensible result for AMM.
We find that the gluon propagator obtained by Baker,
Ball, and Zachariasen and the resultant quark propagator
obtained by Ball and Zachariasen can be used consistent-
ly for this calculation. In Sec. IV, we derive some
phenomenological consequences of the presence of such a
term. Section V is devoted to the discussion of our con-
clusions.

II. MODIFIED NAMBU —JONA-LASINIO MODEL

As an example, we shall consider the following La-
grangian:

W =g(i ei eel )P—,' (d~A
—„r)Q—~)—

+g l ~ f4)'+(4ixA )'1

which is invariant under the ordinary local phase
transformation

P(x)~exp[i8(x)]lt(x), A&~A& —&r)8(x)/e,

as well as the chiral (global) transformation

P(x)~e ' Q(x), Q(x)~g(x)e

Gauge terms wi11 be considered as small perturbations on
the original field theory. After the chiral symmetry has
been broken dynamically, the fermion develops mass
X(p)=I given by (neglecting the effect of gauge interac-
tion)

FIG. 1. The lowest-order diagram which contributes to the
anomalous magnetic moment of the quark in the
Nambu —Jona-Lasinio model.
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=1— ln +1
gA A m

(2.2)
mion propagator

S(p) = 1

p —X(p)
(2.3)

where A is the ultraviolet cutoff and 0 &2' /gA & 1 for
getting real A/m. Next, we shall use the resultant fer-

to calculate the lowest-order diagram given in Fig. 1.
This wi11 give the AMM telm

l lI „(p,b +q) y—„=2ig (dk) y„

m g A
ln +1

4m m A2+pyg2

'o'pvq 1/2 2m A
2m 2m /gA gA A +m2 (2.4a)

&@vs' I A
ln (forA »m ),

2A m

where (dk)=d k/(2m) . Given the equation (2.4a) and
the constraint 0 & 2m /gA & 1, one can see that the AMM
can be large.

111. QCD WITH CHIRAL QUARKS

A. The model

&&K(p,q, k), (3.1)

where K denotes the full, exact, renormalized quark-
antiquark Bethe-Salpeter scattering kernel, which contains
two distinct pieces: X =Ep+ECNp where Lp admits the
famihar skeleton expansion

Kp(p, q, k)=ig I &(p, k)D(g(p —k)l ~(k+q p+q)

Following Delbourgo and Scadron, ' we shall assume
that in QCD with light quarks (u and d), chiral flavor
symmetry is realized in the Nambu-Cxo1dstone mode.
QED will also be assumed to be operative, but its effect
on the mass splitting of u and d quarks will be ignored.
In literature various forms of running quark masses have
been derived and used for calculating low-energy hadronic
quantities. They can be classified in two main categories:
(i) solutions based on the asymptotic behavior of QCD,
and (ii) solutions based on the infrared behavior of QCD
We shall use them in the quark propagator in the follow-
ing Schwinger-Dyson equation satisfied by the
quark —electromagnetic-current vertex function:

I „(p,p +q) =Z2y„—f (dk)[S(k)I &(k, k +q)S(k +q)]

(2.4b)

'(p) =p —X(p') (3.4)

with X(p ) given by Eq. (3.3), a consistent way would be
to calculate the lowest-order vertex diagram given in Fig.
2. It turns out that the Pauli form factor F2(0) defined
by (mD~m)

rp(p+q, p)=F1(q2)yp+ '
~p„q.F2(q2) (3.5)

becomes complex when (3.3) is used (but with the replace-
ment X~m in the denominator). Evidently the form
(3.3) which mimics a massless scalar propagator is not
suitable for the low-energy region. As a remedy, follow-
ing Cornwall, we shall parametrize X(p ) as

X( 2) MA
2A —p

(3.6)

This gives the expression

l

ta, where the instantons are unimportant. It has been ar-
gued on experimental grounds" that the following asymp-
totic solution emerges (in Landau gauge):

4mD
X(p )~~ = (3.3)

p2~~ P

up to a logarithm which will be ignored. This solution
has been successfully used by Pagels and Stokar to calcu-
late the pion decay constant, electromagnetic form factor
of the pion, and quark electromagnetic self-energy in
QCD. Writing

+ 0 ~ ~ (3 2)

in terms of the quark-gluon vertex function. QED contri-
butions to Xp will be ignored'. ECNP denotes the nonper-
turbative instanton contributions and vanishes to any fin-
ite order in perturbation. "

B. Solutions based on asymptotic properties

Lane, ' in his pioneering work, had shown that in an
asymptotically free theory (such as QCD) the kernel is
well approximated by the ladder kernel for large momen-

FIG. 2. Correction to the quark-photon vertex by single-
gluon exchange.
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+2(q') =—g C2m i ' —m(1 —x) 2m (1—x)
2 O

y 2 2 2 2 2 24~ o o m —q y(1 —y) m x+(A —m )(1—y) —q xy(1 —y)
(3.7)

which for q =0 reduces to

g C2 I 8 C2 m2 m2
F2(0)= + 2 ln

4~ 2~ 4ir m(A —m ) A —m

2C
f(A Im )

4m

A4
ln + —1

m4 A' —m' m' (3.8a)

(3.8b)

where

MAm=X(p )I& ——
2 2,

A —m

provided that it can be solved for m for a given M and A.
The first term on the right-hand side of (3.8a) is the stan-
dard result whereas the second term becomes complex for
m &A.

The plot of f vs A Im in Fig. 3 shows that it starts
with a negative value and at A /m =7.8 it becomes zero.
As A /m becomes infinitely large, it tends to —,', the
standard result. Cornwall has given an estimate of
M=300 MeV and A=600 MeV. But with this set of
values, a solution to the equation

MA
A —m2 2

does not exist. As an example, the following set of values
satisfy this equation: M=300 MeV, A=900 MeV, and
m=360 MeV; and for this set f(A /m )=—0.11.

C. Solutions based on infrared properties of QCD

Several authors have pointed out that the effective
gluon propagator could be written just as in QED with
the replacement (modulo gauge terms)

e2 g 2(k2)
SPv 2 SPv 2 C2

k k

where f (k )-1/k as k ~0 (which, in a rough sense,
corresponds to a linearly rising potential at large distances
in configuration space). Some authors have also calculat-
ed the form of the quark propagator in chirally symmetric

QCD using this kind of effective gluon propagator and
found solutions which break chiral symmetry (dynamical-
ly) ' and which are entire functions with neither poles nor
branch points. In the following we shall use the singular
effective gluon propagator, and the chiral-symmetry-
breaking quark propagator which has been used along
with it or, consistently, which has been derived using such
a singular gluon propagator. Furthermore, following
Acharya and Narayana-Swamy, we shall assume for
small momenta, where ENp is expected to dominate over
Ep, that the leading (most singular) term in K has the
ladder form with a singular effective gluon propagator,
D&„(k)—k (Fig. 2). "This approximation to the
dynamics may be regarded as an effective strong-coupling
approximation. " Works of Cornwall and Richardsons
support this hypothesis.

If we use expression (3.6) for X(p ) (and the mass-shell
condition) along with the singular part of the gluon prop-
agator

I2 &2

P~ gP~ 4 gP~ 2 2 ~ 2k (k —p +i@)

which has been used by Cornwall for calculating f~, etc.,
then the Pauli form factor becomes linearly divergent as

p —+0. Cornwall has argued that p should be kept finite
and equal to a typical hadronic mass scale. On the other
hand, if, following Cornwall, quarks are assumed as con-
fined particles having no mass shell, then the Pauli term
does not arise.

Acharya and Narayana-Swamy have also examined the
feasibility of dynamically broken chiral symmetry in
QCD with zero-bare-mass quarks interacting via single
gluon exchange when the gluon propagator has the in-
frared behavior: Dz -k . They have found that the
chiral symmetry can be, although not necessarily, realized
in the Nambu-Goldstone mode with

S '(p) = —m (p ) =constant . (3.9)

I ) I i I i I l I i I i I l I

) 2 3 4 5 6 7 S 9
h lm

FIG. 3. Plot of f(A2/m2) vs A2/m2. f=0 for A/2m~27 8, .
and for large A /m 2, f asymptotically approaches the standard
result.

As can be easily checked this result is too strong to give
the Pauli form factor.

The form of the gluon propagator introduced by Baker,
Ball, and Zachariasen and the resultant chiral-sym-
metry-breaking quark propagator derived by Ball and Za-
chariasen (BZ) is the one which we have found to be the
most suitable combination for this calculation. Baker,
Ball, and Zachariasen have found that in the infrared re-
gion in axial gauges the singular part of the gluon propa-
gator has the same spin structure as that of the free prop-
agator:
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D(s)( )
Z(M)AM

4 pv

2q~n~+q~n~ qpq n
+

q n (q n.)

(3.10)

The angular average of the tensor part of (3.10) vanishes.
This kills any possible infrared divergence.

In a chirally symmetric QCD, using the longitudinal
part of the quark-gluon vertex, BZ have found that the in-
troduction of the singular gluon propagator (3.10) can
break chiral symmetry so that the resultant quark propa-
gator will have the form

S(p) =pF(p')+G(p')+(pH+I)& . (3.11)

F(p') =— l %(l 1;—p /PM ),

G(p )=Ci@(2;—,; —p /PM ),

(3.12a)

(3.12b)

We have taken this opportunity to work out the derivation
of F and G, and found that the correct expressions for F
and G are slightly different from the ones found by BZ:

Ci ' ——S '(0}=300MeV . (3.13)

If we take the asymptotic behavior of (3.11) and compare
it with the usual form of the Euclidean fermion propaga-
tor for asymptotically large momenta, then we find that
m(p ) ~1/p, which may be compared to (3.3). Thus we
see that the quark propagator defined by Eq. (3.11) and
(3.12) has correct momentum dependence even for asymp-
totically large momenta.

Again we shall evaluate the ladder graph given by Fig.
2, but here the quark-photon vertex will be the complete
one:

where we have followed the notations of BZ. According
to BZ, functions H and I may be dropped in case one is
working in the gauge n p =0. Henceforward we shall as-
sume this special choice of gauge for convenience,
wherein we may set H =I =0. To find out Ci, instead of
following BZ, we shall follow the normalization pro-
cedure introduced by Cornwall (remembering that our
Green's functions are Euclidean):

I „(p,p+q)=Z2y +go C2 f (dk)y2S(k)I „(k,k+q)S(k+q)y D2„(p —k) . (3.14)

Following Ref. 9, we shall approximate the full quark-photon vertex by the longitudinal one. Since the quark-photon
vertex and the quark-gluon vertex obey similar Ward-Takahashi identities, following Acharya and Narayana-Swamy,
identical longitudinal decompositions (except for the difference that the quark-gluon vertex will have a color matrix) can
be written for both vertices, at least for small momentum transfer. Thus, we shall write

24'y„k''+(k +k' )y„y„k''+ky„S(k)I & (k k')S(k') = — (F+F')y&—+ '(F' F) "—
2
— " +(O' —G) " " +g terms (3.15)

for the quark-photon vertex as well, for small q =k' k. Here F—=F(k) and F'=F(k'}, etc. It is to be noted that if the
mass-shell condition is not used (which is the case for the confined quarks we are dealing with), then the contribution to
the Pauli form factor can come only from the last term in the square brackets of Eq. (3.15}. Thus we are interested in
calculating the integral

d k G(k' )—G(k ), (k —p)2n +(k —p) n2, (k p)2(k —p)—n
Jll k )4 kI2 k2 y2 yP YP }o 2a (3.16)

Angular integration in (3.16) was performed, for the sake of simplicity, by assuming q to be in the same direction as p
(for details see Appendix). For a general direction of q the result of integration is (all Euclidean y matrices are anti-
Hermitian):

I„=q„[y„,y„) n21+ P, . p q+q 8+v~2 2 G(k )

(p +q)' ~' (k'+p'+p q)'

2/4—m f dkG(k)
0

(q4 4k2q2)1/2 2
2+

q (k +p +p.q) (q 4k q )'~ (k +p—+p.q)

"2n f dk G(k ) — f dk G(k ) +n& terms,
(p+q)'

(3.17)

where the constant vector n has been chosen to be perpendicular to the hyperplane defined by p, q, and (io&„q ) We.
have not been able to locate any formula in the literature which can be used to perform various integrations, which ap-
pear in (3.17), analytically, if the transcendental form given by Eq. (3.12b} is used for G (k ). However, the integrations
can be done in certain limiting cases:

(i) When p, q «PM so that the series expansion for @ function is valid and it can be approximated by the first few
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terms in the series:

r

Ii -—q [y. yi]Ci ~' 1+ p 9+0
(p +q)'

1+ 4 p'+p q+ 4 (p'+p q)'
PM 5 PM 2p+pq

1

(p +q).(2p +q)

4 (q +2p.q)

PM
4 8 (p'+p q) (p+q). (2p+q)

3PM' 5 P'M4 p. (2p +q)

', —2+(.+1) 1
'"+""+'

q r 3PM (r+1)'~2 —1

+— —+4 —2 ( 1)'"1
5 P'M4 ' (r+1)'"—1

+q„ terms+ n„ terms, (3.18a)

where

4p (p+q)
I „(p,p +q)

io&„q— Ci[ —, —N(2; —,; —p /PM )
P(M )M

p
Now, on taking the p~0 limit,

I ~—,C 1—4m 2q
' 3PM' SPM'

+q& terms+n& terms, (3.18b)

This gives us

4mq„[y,y„—]Ci +q& terms+n& terms .
3PM'

(3.18c)

+y„ terms+ . ] .

(3.21a)

If we substitute numerical values for the quantities ap-
pearing in Eq. (3.21a), namely, P(M )M =(8j3m) &((0.16
CxeV)2 (Ref. 13) and p =(0.3 GeV) (Refs. 5 and 6), then
we get

I „(p,p+q)= — "
)& —,+y„ terms+

2)& 300 MeV

(3.21b)

Similarly,

Ci 4I &(O,q) = i cr&„q„——+y& terms+ (3.19) I &(p +q,p) = X —, +y& terms+

(3.21c)
where dots indicate other possible Lorentz structures.

(ii) On the other hand, in the limit q~0 (but with finite

Il, = —q„[y„,y„], —6 (p )
6 (0)

p 2

In the Minkowskian metric, this can be written as
~ ' V
&~pvVI;(p+q p) I Mink —

2
X 9

+y& terms+ (3.21d)

+q„ terms+ n& terms.

This gives

(3.20) where we have followed the common practice in assum-
ing the same form for md„„(p ) in the spacelike region
(p &0) as in the timelike region.
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+y& terms+ (3.21e)

where C is a number, expected to be —1, which takes into
account the non-Abelian character of the gluon. There
will be a similar change in Eq. (3.19).

(iii) When q »p -pM, since momentum transfer is
no longer small, relation (3.15) can be applied only for the
quark-gluon vertex. We are assuming that when Eqs.
(3.15), (3.16), and (3.17) are used in Eq. (3.14), the result
so obtained can be extrapolated for large q. In that case

P (M )M CiC'
I p(p, p +q) —I cJp»q»

4p q

+y„ terms+ (3.22a)

Since the longitudinal parts of the quark-gluon and
quark-photon vertices are the same [Eq. (3.15)], their
transverse parts are not expected to be much different
from each other. Thus one expects that the counterpart
of Eq. (3.2ld) for the quark-gluon case will be

&opvq C
2X300 MeV 9

1 1Pp= 3(4Pu Pd) Pn=Y(4Pd Pa) —. (4.2)

If we take the simple expression for the quark (Dirac)
magnetic moment in units of the nuclear Inagneton as

(4.3)
mq.

where Mz is the proton mass, mq is the effective mass of
the quark defined by Eq. (3.13), and eq is the electric
charge of the quark in the unit of the proton charge.
Thus from Eqs. (4.3) and (3.21d) we have (in nuclear mag-
netons)

moments of the proton and neutron in terms of the mag-
netic moments of the corresponding constituent quarks in
the following manner:

p = g (Bt
~

pqo.,' ~

Bt ), (4.1)

where
~

B t ) stands for the state vectors of the baryon in
question and in the present case, it represents the regular
SU(6) state vectors. The well-known relations between the
baryon magnetic moments and the corresponding
constituent-quark moments are

P M CiC'
I I,(p,p +q)

~
M;„k- i o„—„q"

4p q

+yz terms+ . - (3.22b)

Mp
pq —— eq(1 ——,),

mq
(4.4a)

(4.4b)

P (M )M CiC'
PIJ,(p +q p) io»q»' 2 24p q

+y& terms+ (3.22c)

P'(M')M'C, C
I;(p+q p) I Mink —i'

4p q

+y„ terms+ . (3.22d)

where C is another number, which it is hoped is —1, and
appears for the same reason as C in Eq. (3.21e).

IV. EXPERIMENTAL CONSEQUENCES
OF THE ANOMALOUS-MAGNETIC-MOMENT TERM

A. Baryon magnetic moment

If we make the usual assumption that the baryon mag-
netic moments arise solely from the constituent-quark
moments, then following Barik add Das, ' and references
given therein, we can obtain expressions for the magnetic

In this section we shall explore some of the experimen-
tal consequences of the presence of the Pauli terms given
by Eqs. (3.21) and (3.22).

This result, when substituted in Eq. (4.2), gives

p& ——2.79, p„=—1.86 (4.5)

which can be compared to the experimental numbers 2.79
and —1.91, respectively. Numerical results obtained in
(4.5) might be accidental (particularly in view of the fact
that the value chosen for mq was a bit uncertain), but
what is remarkable is the fact that the dynamical mass,
given by Eq. (3.13) (which was so chosen in a different
context, namely, in the calculation of the pion decay con-
stant ), together with AMM given by (3.21d) (where again
the same dynamical mass was used) can yield a number
which is so close to the experimental one.

B. Spin-dependent potential energy between quarks

Here we shall calculate spin-dependent potential energy
between a heavy quark and a light antiquark. The light
antiquark may be regarded as moving within, the strong
field provided by the heavy quark. Our argument below
will not be as airtight as we might wish. For the sake of
simplicity, we shall depart from our earlier convention
and assume that the quarks may be treated as on mass
shell within the framework of the confining potential. '
A simple calculation of the spin-dependent part of- the po-
tential with one-gluon exchange in the nonrelativistic lim-
it shows" that

p1Xp 1 P1X p &O2 P1XPV(q)= ——", Z(M) go io i ~ (1+2ICi)+ (I+&i)+ ~ (I+2&g)
q4 4m1 2m 1m 2 4m, '

2m 1 m 2 4m1m2
(4.6a)
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where o i and o 2 are Pauli inatrices which act on the particle 1 and 2 spin wave functions, respectively; K, and K2 are
the (constant) chromomagnetic Pauli form factors and q is the momentum transfer, q=p', —pi. Following the usual
convention that the 1/q type of potential corresponds to linearly rising potential in the configuration space, we can
Fourier-transform Eq. (4.6a) as

o] L
V, (r)=—1 dV(r) o i.L

, (1+2K, )+r dr 4m i 2m )m2

o 2.Lo.2.L
(1+K,)+,(1+2K,)+

4m, ' 2m )m2
(1+K,)

o i.cT q V —( cr i V )( o 2. V )+ V(r)(1+K, }(1+K,},
4m &m2

(4.6b}

where

d3
V(r) = f e' q ' ' V(q),

(2n )
(4.6c)

(1+Kb) m,
m (8*)—m (8)= [m (D*)—m (D)] .(1+K, ) mb

(4.7c)

, Z(M)AM go
V(q) =—'

3 -+ 4
q

If we apply Eq. (4.6b) to the ground-state (L =0}mesons
and remember that

—(o i.V)(o 2. V)

does not contribute for a spherically symmetric potential,
then

m (8 ~) —m (8)= —, V V(r)(1+K)(1+Kb ),
mbm

(4.7a)

m (D*)—m (D) = —, V V(r)(1+K)(1+K,) .
mcm

(4.7b)

The only conclusion one can draw from Eq. (4.7a) and
(4.7b) is that

b and c quarks have large current-quark masses, and
hence Kb and K, are presumably small; hence (4.7c) is
essentially the result obtained by Eichten and Feinberg. '

This result agrees well with experimental numbers. '

However, Eq. (4.6b) has a lesser number of free parame-
ters than Eq. (6.2) of Eichten and Feinberg.

C. Reaction cross section of pp ~hadrons

In this subsection, we shall calculate essentially the re-
action cross section of qq~qq through one-gluon ex-
change (Fig. 4). For quark-gluon vertices we shall use
(3.22) and see the effect of the Pauli term over and above
the bare vertex. Since we are looking here at the processes
involving large momentum transfer, we shall use the con-
ventional form of the gluon propagator D„„(q)-q
External quark and antiquark lines are assumed to be on
the mass shell. If 8 is the scattering angle and
(p+ k) =(2E), then the differential cross section for this
process in the center-of-mass frame is given by

g 2/9
128 ~2E2

1+cos46/2 2 cos 6/2 +—1+cos 6
sin 6/2 sin 6/2

1+cos 6/2 cos 6/2+
2 sinbB/2 2 sin"6/2

128' 2E2

g4 2 P(M )M Ci cos~B/2 1+ 2 2 2 2 +
12877 E 9 pzE 2 sin26/2

C 13 (M }M C i 2 1+cosB 6+ sin 6+2 cosB sin 6+2 cosB+ . +
mE 9 2 sin 6/2 16sin 6/2 8sin 6/2

(4.8)

where the first two terms are the contributions coming
from the bare vertex part and the third term is the contri-
bution from the Pauli term. It is clear that for high ener-
gies, the contribution of the third term can be significant
only for very small values of B. To get an estimate of the
angle at which the contribution of the third term is of the
same order or one order of magnitude smaller than that of
the first term, we have

gkq2a p+Q

C'P M Ci —1 or 10
mE 2 sin 6/2

(4.9a) FIG. 4. Quark-antiquark scattering through one-gluon ex-
change.
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Even for I=10 MeV (a number which is usually assigned
at high energies) and E=50 CxeV, this gives

6-~10&&10 or 10 (4.9b)

Even if we use the full Dirac form factor (instead of just
1), fhe crude estimate (4.9b) Is unlikely to change. Thus it
will be difficult to detect the effect of the Pauli term this
way.

V. SUMMARY AND CONCLUSION

We have seen that the anomalous magnetic moment (of
the fermions) can be significant in theories where mass
generation occurs through dynamical symmetry breaking.
To calculate the AMM of light quarks we essentially used
the one-gluon-exchange approximation and employed
solutions of both kinds: solutions based on the asymptotic
and infrared behavior of QCD derived and used by vari-
ous authors. We found that all solutions cannot be used
for this calculation. Solutions for the gluon propagator
derived by Baker, Ball, and Zachariasen and the resultant
chiral-symmetry-breaking and confining solution for the
quark propagator derived by Ball and Zachariasen, in
particular, form a good combination. The result thus ar-

rived at was used to check the experimental consequences
of the presence of the AMM (both electromagnetic as well
as chromomagnetic) term. It gave very good results for p
and n magnetic moments when regular SU(6) state vectors
for baryons were used. In fact, use of Eq. (4.2) alone gives
the correct ratio of magnetic moments of proton and neu-
tron; using dynamical mass (here the effective quark
mass) given by Eq. (3.13) and the resulting AMM term
given by Eq. (3.21d), one obtains correct values for the in-
dividual baryons. In the case of the spin-dependent-
potential calculation, we obtained a result which agreed
with an earlier calculation and, moreover, the potential
had a lesser number of free parameters; while in the case
of the differential-cross-section calculation of qq~qq, we
found that the effect of the presence of the Pauli term was
insignificant (at high energy) at any angle 8) 10
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APPENDIX

We have to perform the following integration:

d4k G(k 2) G(k2) (k p)~n +(k—p) n, —(k —p), (k p) n'—

(k —)' k' —k' " " n (k —p) [n (k —p)]'
1'~(r —2k )r. 4.—

k'=k+q .

First consider

(Al)

dQI, (k —p)~n~+(k p) n~—
+

(k —p) (q +2k.q) n (k —p)

Choose the gauge n p= n.q =0 and assume that p&
——aq&. Then

(k —p)g(k —p) n

[n (k —p)]
(A2)

dQI,

(k —p) (q +2k.q)

2n 1 2n S (k,q)
k +p +p q k& ~k —p ~

k2+p +p.q k
(A3)

where we have used [k =max( k 2,p 2)]

~&i 2~' p
(k —p) k& (k —p) k&

i
k —p

dQI, dQg~p
q +2k.q q +2k.q

1—
k

1/2

1 — 8 —k —=S(k,q),4k q
q2

where in the last integral (which is not defined for 2k ~ q) we have taken the principal value because in the context of the
whole integral (Al), it is the principal value which is relevant.

For those integrals in which (n k) or its power occurs in the denominator, we shall use the standard principal-value
prescription, ' which in simple cases reads
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(k n) '~ —,
' j[(k.n)+iE'] ' —[—(k.n)+it']

e de 0
cosO

(k.n) ~—, j[(k n)+i@'] +[ (—k n)+i@']
~ sin8d8

2
~

~

cos 0
Thus,

dQg =0,
(k p) —(q +2k q)(n. .k)

f dQgkg n~=I]
(k —p) (q +2k q)(n k) n

QQgn
4 2

2

(k —p) (q +2k.q)(n k)

1 8(q/4 —k )

k+p+pq k I(k —p) I
k+p+p. q k Ik —p I

Kk(q 4kq)—'/

where we have used

d Qkn 4%2(k 2+p 2)f (k p)"(n—k) k
I
(k —p )

2

~

2
~~

2

~
2 ~

~

2 t

dQ1n 4~~

(k p) (n—.k) k
I

k —p

f dQ1, n dQ1, n 4 ~g(q~/4 k&)—P
(q +2k q)(n k) (q +2k q)(n k) k (q 4k q )'/—

(where in the last integral we have again taken the principal value for the same reason as explained above),

dQ&kz 2~'(k +p )q1„&~q1„
(k —p)'(q'+2k q)(n. k)'

dAgkgk
+Bn~n ++~~

(k —p) (qua+2k q)(n. k)
where

1 I) k I3A= I2+ 3
2$ n n p

(A4a)

(A4b)

(AS)

(A6)

(A7)

(A8)

B= 3
2n

22+ 2n p
(A8a)

C= ——,
'

n 2 2 I2+
n p

dQk 2(k2+p2) (k2+p2)2
I3 ——— +

(q +2k q)(n. k)~ . (k —p) (k —p)

n. 0(q /4 k) p +k — 4m. K 1 8(q/4 —k) (k+p)
n~k~(q4 4k~q2)1/~ 2n~ ~kp+2 p+, q k2

I

k2 p2
I

Kk2(q4 4k2q2)1/2 4n

When Eqs. (A3) and (A5)—(A8b) are substituted in Eq. (A2), we get

q1.qn 1 & K(8p +5q p) g z kz ~ K(8p +3p q)
& kq q m' 1

q k 2p (k +p +p.q)~ 2p~(k +p +p q) 2 (k +p~+p. q)

(Agb)

q(k+p+pq) (q 4kq )'/(k+p+p— q) !
4

(A2')
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Next, we come to

dQkkp
Ip ——

(k —p) (q +2k q)

where

2+ 2
=21qp lq +B1npln

n (k —p)
(n.k)

(A9)

2~''=k e(p' —k') q' ~'K(8p'+4P q) 2 2 q' ~'K(8p'+4p q) g(k2 2)

p 4' 2p (k +p +p.q) 4m2 2p (k +p +p q)
r

q 2( k 2 +p 2 +p q )2 (q
4 4k 2q 2

)
1 /2( k 2 +p 2 +p q )

(A9a)

B1 is not of interest to us. From Eqs. (A2), (A2'), (A9), and (A9a), we get

G(k2) (k p)2n—+(k —p) n2

(k —)' k' —k' " " n (k-p)ed~ —2k )). 4.— +
(k —p)2(k p) n-

[n.(k —p)]

2' K(8P +4p q)G(k ) " „2'K(8p +4p q)G(k )~

~ ~2p (k +p +p q) 1' 2p (k +p2+p. q)

p2/4 2 (q4 4k2q2)1/2G (k2) 2G(k 2)

p q2(k2+p2+p q )2 (q4 4k2q2)1/2(k2+p2+p q )

2—2~ " dk G(k )
q2 0

1 q m K(8p +4p.q) " 2q m. K(8p +4p.q)G(k )

p 4n. 2p2(k2+p2+p q) r' 4m. 2p (k +p +p.q)

+n.& terms .Pq2(k2+p2+pq)2(q44k2q2)1/2(k2+p2+pq)
Next, consider the following integration:

d k G(k') (k p)2n—~+(k p)~n2 (k——p)2(k —p) n'

(k —p) k' —k2 " " n (k —p)
1'2.(X —2k )). 52,.— +

[n (k —p)]

d k G(k ) (k p')2n—~~(k p') n2„—(k —p')2(k p') n—2

, r2.(r1e' 2k' +2—q1 4' 4 —
k

+
(k —p') 2k q —q n.k n k

(A10)

+5-'function part (if any), (A 1 1)

where p'=p+q. Also define pz ——~'q„. Then,

dQk (k —p')2n +(k —p') n2

(k —p') [q +2k ( —q)] n k

(k —p')2(k —p') n

(n.k)

12. (p~p q'p~ q p

K'(8p' 5p'.q) @,2 —
k2)

K'(8p' 3p'q) 2—,2 1 1

q k 2p' (k +p' p'q) 2p—' (k +p' —p'.q) 2 (k +p' —p' q)

(q —4kq )' 2

q (k +p' —p'. q) (q —4k q )'/ (k +p' —p'.q)
8(q l4 —k ) (A12)

Here, k +p' —p'.q=k +p +p q. It can be easily checked that

f I,.k'dk = f I2,.k dk =0.
Hence by shifting the variable, as in Eq. (All), the apparent (infrared-) divergent nature of the integral does not intro-
duce any 5 function.

In a similar way,
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(k —p') n
Ip ——

~ 4 2(k —p') (2k q —q ) (n k)
lip+B)
Pl

(A13)

where

/I t =A ) (p —+p, q 'p ~—q p, K~—K )

e(p' —k )
p&2

q ~ a'(8p' —4p' q) ~,z kz q & K'(8p' —4p'q)
4~2 2p 2(k2+p 2 —p q)2 4~2 2p'2(k2+p'2 —p'.q)2

q2(q44k2q2)1/22'
2 qz(kz+p'z —p'.q)z (q4 4kzqz)—'/z(k'+p' p'q)—8(q /4 —k ) (A13a)

Substituting Eqs. (A12)—(A13a) in Eq. (A11), we get

dk 6(k') (k p)~—n +(k p) —n~

(k )4 ktz kz Yk 7 pq p YC7 f10' (k )
( —2k) 5

l

(k —p)q(k —p) n

[n (k —p)]'

fy'dkzg(kz) + '(8p' —p'.q) f "dkzg(kz) ~'~'(8p' 4p'.q)—
0 2p' (k +p +p.q) 2pl2(k 2+p z+p, q )z

T

0 q (k +p +p q) (q 4kzqz)'/ (k—z+p +p q)

qt' ft''dkzg(kz) H~ (8p —4p .q) f dkzg(kp) ~ ~'(8p' 4p'.q)—
2 2p'z(k +p +p q) y' 2p'z(k +p +p q)

e'/4 (q 4k q )' 6—(k ) 26(k )

q (k +p +p.q) (q4 4k q )'/ (—k~+pz+p. q)

&2

f dk G(k )+n„ terms . (A14)

Substituting Eqs. (A10) and (A14) in Eq. (Al), we get

p d k 6(k ) 6(k ) (k —p),n +(k —p) n). (k —p),(k —p) n'

(k —)' k' k' —" " n (k —p) [n (k —p)]'Xd7'

u' z 6(k')(2p' —p'. q )=q„[y y„] n Ic', dk p'«+p +p q)

n. f dk 6—(k )
0

(q4 4k2q2)1 /2

2+q2(k 2+p 2+p, q )2 (q4 4k2q2)1/2(I 2+p 2+pq),
9P, 2 1 P' 1 P'"2n. f dk 6(k ) — f dk G(k ) +n„ terms . (A15)
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