Quarkonium production at $p\bar{p}$ colliders

V. Barger and A. D. Martin^{*}

Physics Department, University of Wisconsin, Madison, Wisconsin 53706 (Received 14 November 1984)

We evaluate cross sections for $\eta({}^{1}S_{0})$ and $\psi({}^{3}S_{1})$ quarkonium states of $c\overline{c}$, $b\overline{b}$, and $t\overline{t}$ from lowest-order $gg \rightarrow \eta, \chi_{0,2}({}^{3}P_{0,2})$ and $gg \rightarrow \psi g$ subprocesses, including $\chi_{J} \rightarrow \psi \gamma$ decays. Data on ppproduction of ψ and Υ are well described. High rates are predicted for η_{b} and Υ_{b} production at $p\overline{p}$ colliders. The much smaller $\eta(t\overline{t})$ and $\psi(t\overline{t})$ rates are critically dependent on the singular part of the confining potential.

The importance of hadroproduction searches for bound heavy-flavor states $\mathcal{O}(Q\bar{Q})$ has been dramatically demonstrated in the past by the discoveries of the J/ψ charmonium and the Υ *b*-quarkonium states in *pp* collisions. With higher-energy beams now available at $p\overline{p}$ colliders, it is pertinent to investigate the expected production rates for $c\overline{c}$ and $b\overline{b}$ bound states and to estimate whether $t\overline{t}$ bound states are likely to be produced with sufficiently large cross sections to be detected in forthcoming $p\overline{p}$ collider experiments. To address these issues we calculate quarkonium (\mathcal{O}) production from leading-order QCD subprocesses $(gg \rightarrow \mathcal{O} \text{ and } gg, g\overline{g} \rightarrow \mathcal{O}g)$ using \mathcal{O} wave functions at the origin obtained from nonrelativistic potential models. These calculations approximately reproduce the available data on pp, $p\bar{p} \rightarrow \psi$, χ_c , and Υ cross sections. Encouraged by this success, we make projections for quarkonium production at $p\overline{p}$ collider energies.

Previous QCD studies of ψ and Υ hadroproduction¹ at low transverse momenta were based on semilocal-duality arguments.² The cross section from $gg, q\bar{q} \rightarrow Q\bar{Q}$ subprocesses integrated between $2m_Q$ and the $2M(Q\bar{q})$ threshold was attributed to quarkonium production. Allowing for soft-gluon color rearrangements, a fraction of this cross section gives the vector quarkonium state. This calculation successfully described $d\sigma/dy(y=0)$ -versus- M/\sqrt{s} and $d\sigma/dx_F$ -versus- x_F distributions of ψ and Υ hadroproduction data up to $\sqrt{s} = 63$ GeV. The fraction of vector states was found to be strongly dependent on the quarkonium mass, so this duality approach does not lead to definite predictions for $\mathcal{O}(t\bar{t})$ production at $p\bar{p}$ collider energies. Also, duality arguments do not specify the relative abundance of the various quarkonium states, such as $\eta_c: \psi$ and $\eta_b: \Upsilon$.

An alternative perturbative QCD approach is to use quarkonia wave functions from a nonrelativistic potential model.³ The absolute cross sections for individual quarkonium states are then determined. This approach has been used previously^{4,5} to explain data on ψ and Υ production at high transverse momenta. For our present application to quarkonium cross sections integrated over p_T we consider the contributions from the lowest-order α_s^2 or α_s^3 diagrams shown in Fig. 1. Other contributions of order α_s^3 with divergent behavior at $p_T=0$ would be included as nonscaling effects in the initial parton distributions according to the factorization theorem, and by a semiempirical multiplicative K factor of order 2 analogous to that needed to account for electroweak W^{\pm} and Z production rates. In our analysis we neglect the small contribution from $gg \rightarrow \chi_1 g$, which may further enhance ψ production via $\chi_1 \rightarrow \psi \gamma$.

The leading-order subprocess of Fig. 1(a) for η , χ_0 , or χ_2 production has the cross section (see, for example, Ref. 6)

$$\widehat{\sigma}(gg \to \mathscr{O}) = \frac{(2J+1)\pi^2}{8M^3} \Gamma(\mathscr{O} \to gg) \delta\left[\frac{\widehat{s}}{M^2} - 1\right], \qquad (1)$$

where M is the quarkonium mass, J is its spin, and the widths in lowest order⁷ are given in terms of wave functions evaluated at the origin by

FIG. 1. Lowest-order QCD diagrams for quarkonium hadroproduction.

31

1051

 $\odot 1985$ The American Physical Society

TABLE I. Partial widths and radiative branching fractions for quarkonium decays calculated using the Wisconsin (Cornell) quarkonium potential. The $c\bar{c} \chi_J \rightarrow \psi\gamma$ branching fractions are taken from the Particle Data Group tables [Rev. Mod. Phys. 56, S1 (1984)]. To calculate $B(\chi_J \rightarrow {}^3S_1\psi)$ for t-quarkonium we have taken the partial width for χ single-quark decay to be 47 keV (Ref. 19).

	$\frac{\Gamma(\eta \rightarrow gg)}{(\text{MeV})}$	$\frac{\Gamma(\chi_2 \rightarrow gg)}{(\text{MeV})}$	$B(\chi_2 \rightarrow {}^3S_1\gamma) $ (%)	$\frac{B(\chi_0 \to {}^3S_1\gamma)}{(\%)}$
сē	18 (18)	1.2 (1.2)	15.5	4.3
bБ	6 (12)	0.14 (0.14)	20 (20)	5 (5)
tī	2 (26)	0.004 (0.05)	33 (64)	29 (42)

$$\Gamma(\eta \to 2g) = \frac{8}{3} \alpha_s^2 |R_S(0)|^2 / M^2 ,$$

$$\Gamma(\chi_2 \to 2g) = \frac{4}{15} \Gamma(\chi_0 \to 2g)$$

$$= \frac{128}{5} \alpha_s^2 |R'_P(0)|^2 / M^4 ,$$
(2)

where

$$\alpha_s = \frac{12\pi}{25} \ln(M^2/\Lambda^2)$$

we choose $\Lambda = 0.2$ GeV. Table I lists widths obtained from the wave functions of two representative potentials that describe ψ and Υ mass spectra. The more singular r^{-1} Cornell potential⁸ gives larger widths at high *M* than the $(r \ln r)^{-1}$ singular behavior of the Wisconsin potential⁹ that takes into account the Q^2 dependence of α_s . For the Cornell potential, $V_c(r) = -\kappa/r + ar$, we use the parameter choice¹⁰ $\kappa = 0.494$ and a = 0.173 GeV².

The hadroproduction cross sections are obtained by folding Eq. (1) with the QCD-evolved gluon distributions evaluated at $Q^2 = M^2$. Figure 2 shows the results obtained for the universal cross-section-to-width ratio

FIG. 2. Universal cross section to width ratio $\sigma(p\bar{p} \rightarrow gg \rightarrow \mathcal{O})/[(2J+1)\Gamma(\mathcal{O} \rightarrow gg)]$ for gluon-gluon-fusion production (with K=1) of heavy-quarkonia states $\mathcal{O}(Q\bar{Q})$ versus the quarkonium mass for several c.m. energies \sqrt{s} . Solid (dashed) curves are obtained with Duke-Owens (Eichten *et al.*) structure functions.

$$\frac{\sigma(p\bar{p} \to gg \to \mathscr{O})}{(2J+1)\Gamma(\mathscr{O} \to gg)K} = \frac{\pi^2}{8M^3} \tau \int_{\tau}^{1} \frac{dx}{x} D_g(x,Q^2) D_g\left[\frac{\tau}{x},Q^2\right], \quad (3)$$

where $\tau = M^2/s$ and D_g is the gluon distribution in a proton and K is a QCD-motivated enhancement factor. For our numerical evaluations we used two recent sets of structure functions, namely, the parametrizations of Duke and Owens¹¹ and Eichten, Hinchliffe, Lane, and Quigg¹² with $\Lambda = 0.2$ GeV. These structure functions give significantly differing results only at low M/\sqrt{s} as shown by the two sets of curves in Fig. 2. For quarkonium hadronic widths that are measured the *pp* or $p\bar{p}$ production cross sections can be directly read off from Fig. 2.

One source of the ${}^{3}S_{1}$ states $\psi(c\overline{c})$, $\Upsilon(b\overline{b})$, $\psi(t\overline{t})$, collectively denoted by $\psi(Q\overline{Q})$, is $\chi_{J}(Q\overline{Q}) \rightarrow \psi(Q\overline{Q})\gamma$ decays. The $\chi_{0,2}(c\overline{c}) \rightarrow \psi\gamma$ and $\chi_{2}(b\overline{b}) \rightarrow \Upsilon\gamma$ branching fractions have been measured. For the other transitions we use potential-model calculations of the partial width as expressed by

$$\Gamma(\chi_J \to \psi \gamma) = \left(\frac{4}{9}\right) \alpha e_Q^2 k_\gamma^3 \left| \left\langle R_S \left| r \right| R_P \right\rangle \right|^2. \tag{4}$$

For $t\bar{t}$ the photon momentum k_{γ} is calculated from the χ_J and ψ_t masses obtained from the potential models with $m_t = 40$ GeV as input.¹³ The branching fractions are summarized in Table I.

The lowest-order direct production of $\psi(Q\overline{Q})$ states occurs via the so-called bleaching-gluon α_s^3 subprocess³ of Fig. 1(b), whose cross section is given in terms of the $\psi \rightarrow 3g$ width

$$\Gamma(\psi \to 3g) = \frac{40(\pi^2 - 9)\alpha_s^{3}(M) |R_s(0)|^2}{81\pi M^2}$$
(5)

by

$$\widehat{\sigma}(gg \to \psi g) = \frac{9\pi^2}{8M^3(\pi^2 - 9)} \Gamma(\psi \to 3g) I(\widehat{s}/M^2) , \qquad (6)$$

where

$$I(\gamma) = \frac{2}{\gamma^2} \left[\frac{\gamma + 1}{\gamma - 1} - \frac{2\gamma \ln \gamma}{(\gamma - 1)^2} \right] + \frac{2(\gamma - 1)}{\gamma(\gamma + 1)^2} + \frac{4 \ln \gamma}{(\gamma + 1)^3} .$$
(7)

The calculated $p\bar{p} \rightarrow \psi \chi$ cross section due to the bleaching-gluon mechanism is comparable in size to that of ψ production via $\chi \rightarrow \psi \gamma$ decay. The values for $c\bar{c}$, $b\bar{b}$, and $t\bar{t} \ \psi({}^{3}S_{1})$ production are given in Table II for two

TABLE II. The cross sections (in nb) for $\psi({}^{3}S_{1})$ production via $gg \rightarrow \psi g$ and $\chi_{J} \rightarrow \psi \gamma$, respectively at $\sqrt{s} = 63$ GeV (620 GeV). The calculations are based on the Wisconsin quarkonium potential. For the Cornell potential, the $t\bar{t}$ cross sections would be an order of magnitude larger.

	cē	ЬБ	tī
$\sigma(p\bar{p} \rightarrow gg \rightarrow \psi g)$	280 (3000)	0.13 (19)	(3×10^{-5})
$\sigma(p\bar{p} \rightarrow gg \rightarrow \chi_J \rightarrow \psi\gamma)$	300 (1800)	0.24 (15)	(2.5×10^{-5})

FIG. 3. Comparison of $gg \rightarrow \chi \rightarrow \psi(Q\overline{Q})\gamma$ and $gg \rightarrow \psi(Q\overline{Q})g$ model predictions with data on $\psi(3.1)$ and $\Upsilon(9.46)$ production (a), (b) $d\sigma/dy$ at y=0 versus \sqrt{s} , (c) $d\sigma/dx_F$ versus x_F . Leptonic branching fractions $B(\psi \rightarrow \mu \overline{\mu})=0.074$ and $B(\Upsilon \rightarrow \mu \overline{\mu})=0.03$ are used. Data are from Ref. 14.

typical energies, $\sqrt{s} = 63$ and 620 GeV. For $c\bar{c}$ at $\sqrt{s} = 63$ GeV the bleaching-gluon and χ -decay contributions are about equal in accord with experiment.¹⁴

An additional bleaching-gluon contribution originates from $q\bar{q}$ fusion [Fig. 1(c)]. The threshold divergence in $q\bar{q} \rightarrow \chi_J g$ at $s = M^2$ (equivalent to the singularity in $\chi_J \rightarrow q\bar{q}g$ decays) is due to the breakdown of the nonrelativistic model for quarkonium states and can be regularized by requiring $(\hat{s})^{1/2} > M + \Delta$ with $\Delta \sim 0.3$ GeV. However, the η and ψ (from $\chi \rightarrow \psi \gamma$) cross sections obtained from $q\bar{q} \rightarrow \mathcal{O}g$ were found to be insignificant in comparison with the gg initiated subprocesses. As a consequence the quarkonium production rates in pp and $p\bar{p}$ collisions should be equal, which is compatible with the available $\psi(3.1)$ production data¹⁵ at accelerator energies.

This model for vector-quarkonium production is compared with data on $\psi(3.1)$ and $\Upsilon(9.8)$ production¹⁴⁻¹⁶ in Fig. 3, taking K=2. The normalization of the cross section, the M/\sqrt{s} dependence of $d\sigma/dy$ at y=0, and the shape of the x_F distribution are reasonably well reproduced $(\Upsilon',\Upsilon''$ contributions are not included in the calculation). The y and x_F variables are defined as in Ref. 1.

The predicted energy dependence of the η and ψ quarkonium cross sections are given in Fig. 4. The following statements can be made about the results.

(i) For any hidden flavor, η production is larger than ψ by about an order of magnitude (see also Ref. 4).

(ii) With the present CERN $p\bar{p}$ collider integrated luminosity of approximately 100 nb⁻¹ at $\sqrt{s} = 540$ GeV about 100 000 η_b would have been produced. The rare decay mode $\eta_b \rightarrow \gamma \gamma$, with branching fraction of order 0.1% or less, or the expected $\eta_b \rightarrow \Lambda \bar{\Lambda}$ mode may provide a possible means to search for the η_b in $p\bar{p}$ data.

(iii) An Υ cross section of about 30 nb is predicted at $\sqrt{s} = 540$ GeV and so the existing data sample should contain about 100 $\Upsilon \rightarrow \mu^{+}\mu^{-}$ events. Detection of these requires muon identification down to transverse momentum of $p_{T} \simeq 5$ GeV.

(iv) Enormous numbers of η_c and $\psi(c\bar{c})$ events are produced at $p\bar{p}$ collider energies but only those at high p_T are likely to be detected.^{4,5}

(v) The predictions for $\mathcal{O}(t\bar{t})$ production depend very sensitively on the singular part of the potential, with larger cross sections expected for a 1/r behavior at small r. t-quarkonium detection will be difficult at collider energies up to $\sqrt{s} = 2$ TeV. The higher-cross-sections predictions in Fig. 4 at 2 TeV are $\sigma(\eta_t) \sim 1$ nb and $\sigma(\psi_t) \sim 20$ pb. The expected branching fractions^{4,17} $B(\eta_t \rightarrow \gamma \gamma) \sim 0.2\%$ and $B(\psi_t \rightarrow \mu^+ \mu^-) \sim 3\%$ suppress these detectable modes.

(vi) If a light Higgs boson exists, the radiative decay¹⁸ $\psi_t \rightarrow H\gamma$ provides a good *t*-quarkonium signature of a high- p_T photon. In the standard model $B(\psi_t(80) \rightarrow H\gamma) \leq 1\%$.

FIG. 4. Predicted cross sections with K = 2 for heavy-quark bound states, resulting from $gg \rightarrow \eta$, $\chi_{0,2}$ and $gg \rightarrow \psi g$ production with $\chi_{0,2} \rightarrow \psi \gamma$ decays, versus the c.m. energy \sqrt{s} . The shaded regions for production of $b\bar{b}$ and $t\bar{t}$ (80 GeV) states are representative of the uncertainty in potential model calculations; the lower (higher) curves correspond to the Wisconsin (Cornell) potential (Refs. 8–10). Solid (dashed) curves correspond to use of Duke-Owens (Eichten *et al.*) structure functions.

ACKNOWLEDGMENTS

We thank K. Hagiwara, W. F. Long, and M. G. Olsson for useful discussions and S. Jacobs for performing potential model calculations. This research was supported in part by the University of Wisconsin Research Committee with funds granted by the Wisconsin Alumni Research Foundation, in part by the Department of Energy under Contract No. DE-AC02-76ER00881, and by the U. K. Science and Engineering Research Council.

*Permanent address: University of Durham, Physics Department, Durham, England.

¹V. Barger, W. Y. Keung, and R. J. N. Phillips, Z. Phys. C 6, 169 (1980).

- ³W.-Y. Keung, in *Proceedings of the Z⁰ Physics Workshop, Ithaca, New York, 1981*, edited by M. E. Peskin and S.-H. Tye (Cornell University Report No. 81-485, 1981); E. L. Berger and D. Jones, Phys. Rev. D 23, 1521 (1981); L. Clavelli, P. H. Cox, and B. Harms, *ibid.* 29, 57 (1984).
- ⁴R. Baier and R. Ruckl, Z. Phys. C 19, 251 (1983); Nucl. Phys. B208, 381 (1982).
- ⁵F. Halzen, F. Herzog, E. W. N. Glover, and A. D. Martin, Phys. Rev. D 30, 700 (1984).
- ⁶V. Barger, H. Baer, and K. Hagiwara, Phys. Rev. Lett. **53**, 641 (1984).
- ⁷R. Barbieri, R. Gatto, and R. Kögerler, Phys. Lett. **60B**, 1976 (1976).
- ⁸E. Eichten, Phys. Rev. Lett. **34**, 369 (1975); E. Eichten and K. Gottfried, Phys. Lett. **66B**, 286 (1977); E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev. D **21**, 203 (1980).
- ⁹K. Hagiwara, S. Jacobs, M. G. Olsson, and K. J. Miller, Phys.

Lett. 131B, 455 (1983).

- ¹⁰K. J. Miller and M. G. Olsson, Phys. Rev. D 25, 2383 (1982).
- ¹¹D. Duke and J. Owens, Phys. Rev. D 30, 49 (1984).
- ¹²E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 579 (1984).
- ¹³UA1 collaboration, C. Rubbia, talk at Neutrino '84 conference, Dortmund, 1984 (unpublished); D. DiBitonto, talk at VIIth European Symposium on Antiproton Interactions, Durham, 1984 (unpublished); V. Barger, A. D. Martin, and R. J. N. Phillips, CERN Report No. TH. 3972, 1984 (unpublished).
- ¹⁴C. Kourkoumelis et al., Phys. Lett. 81B, 405 (1979).
- ¹⁵K. J. Anderson et al., Phys. Rev. Lett. 42, 944 (1979).
- ¹⁶L. Camilleri, in Proceedings of the 1979 International Symposium on Lepton and Photon Interactions at High Energies, Fermilab, edited by T. B. W. Kirk and H. D. I. Abarbanel (Fermilab, Batavia, Illinois, 1980); A. L. S. Angelis et al., Phys. Lett. 87B, 398 (1979); J. H. Cobb et al., ibid. 68B, 104 (1977); E. J. Siskind et al., Phys. Rev. D 21, 628 (1980).
- ¹⁷J. P. Leveille, in Proceedings of the Z⁰ Physics Workshop, Ithaca, New York, 1981 (Ref. 3), p. 241.
- ¹⁸F. Wilczek, Phys. Rev. Lett. 39, 1304 (1977).
- ¹⁹J. H. Kuhn and S. Ono, Z. Phys. 21, 395 (1984).

²H. Fritzsch, Phys. Lett. 67B, 217 (1977).