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We study the second-order weak correction to the muon anomalous magnetic moment in alterna-
tive electroweak gauge theories. The gauge-boson contributions are constrained by low-energy
weak-interaction phenomenology. We examine the Higgs-boson contributions in three classes of
models and find that they are potentially the dominant effect. Contributions of lepton-number-
violating Higgs-boson interactions are calculated and included in the analysis. Severe limits on the
spontaneous-symmetry-breaking scales and Yukawa couplings are found in some scenarios which
have a separate scale for fermion masses, including the standard model with more than one doublet
and a left-right model which naturally explains small neutrino masses. Higgs-boson effects may be
detectable when order-of-magnitude improvements are made in the measurement of the muon
anomalous magnetic moment.

I. INTRODUCTION

The anomalous magnetic moment of the muon
a„=(g„—2)/2, in addition to being a cornerstone of the
experimental verification of quantum electrodynamics,
can potentially provide an excellent laboratory for testing
electroweak gauge theories. The most recent measure-
ments of a& (Ref. 1) are in agreement with the sixth-order
quantum-electrodynamics (QED) corrections and hadron-
ic vacuum-polarization effect. Substantial reductions in
the present experimental error are currently under con-
sideration which will allow the probing of the eighth-
order QED and weak-interaction effects. On the theoreti-
cal side, the error in the eighth-order QED contribution to
a„has recently been reduced significantly; the largest
theoretical uncertainty comes from the calculation of the
hadronic contribution, and there is hope that it, too, can
be reduced. Therefore, the possibility exists that the
weak-interaction contribution a&"" will be detectable in
the near future.

The second-order weak correction has already received
much attention in the literature. Weak contributions in
the standard electroweak gauge model, including those of
the scalar Higgs boson, have been calculated. Some gen-
eral expressions have been derived for the gauge- and
Higgs-boson contributions in an arbitrary gauge model.
Limits on physical parameters from az have been found
for various nonstandard electroweak models, e.g., the
SU(2) XU(1) model with nonminimal Higgs sector, '

SU(2) XU(1) X6 natural models, a class of SU(2)
XU(1)XU(1) models, ' and certain left-right models. "
Often, the Higgs-boson contributions to a& are either ig-
nored or calculated only in the simplest cases. In this pa-
per we systematically examine the second-order weak
correction to az in a wide range of electroweak models.
We will place particular emphasis on the Higgs sector and
determine general criteria for when the scalar contribu-
tions may dominate the weak effect, and thereby be ob-
servable when the uncertainties in the measurement and

calculation of a& are reduced.
Our analysis shows that the gauge-boson contributions

to a& in any of the popular alternative electroweak gauge
models do not vary by more than 50%%uo from the
standard-model (SM) value. This is due to constraints on
the weak-interaction parameters already imposed by all
relevant low-energy data. This variation may be observ-
able if the uncertainty in a„can be reduced to the 1 part
per million (ppm) level, where the present accuracy is ap-
proximately 10 ppm. More interesting, but less certain,
are the Higgs-boson contributions to a&. They depend
crucially on the Higgs-boson Yukawa couplings to the
muon and on the Higgs-boson mass. Even in the minimal
standard model (MSM) with one Higgs doublet they dom-
inate a&" if the physical-Higgs-boson mass rntt is not
much larger than the muon mass, although for mH ) 1

GeV it is already less than 20%%uo of the gauge boson contri-
bution. Generally, we find that the contributions of the
Higgs bosons in various electroweak models fall into one
of the following classes:

(1) Fermion mass generation is achieved through large
Higgs-field vacuum expectation values (VEV's) and small
Yukawa couplings (analogous to the SM). Then the
Higgs-boson contribution a& is comparable to the gauge-
boson contributions only when m~(m&, and current
measurements of a& provide no useful limit on mIt or the
couplings.

(2) Fermion mass generation is achieved through small
VEV's and natural-sized (of order the gauge coupling) Yu-
kawa couplings, and there exists a light (mH -m&) Higgs
boson which contributes to a&. Then very stringent lim-
its already exist on the VEV and Yukawa coupling.

(3) Same as the case (2), except there is no light Higgs
particle with natural-sized Yukawa couplings which con-
tributes to az. Then loose limits presently exist on the
coupling and mass parameters and a& is comparable or
larger than the gauge boson contribution.

The latter two scenarios offer the intriguing possibility
that a&"" differs substantially from the SM value, even
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more than allowed by a nonstandard gauge-boson sector.
Thus, a significant improvement in the measurement of
a„may offer indirect evidence for the existence of Higgs
bosons. If we assume that the parameters in the Higgs
potential are of the order of gauge coupling and are not
arbitrarily tuned, then under certain general conditions
there are light Higgs bosons in the model. ' The light
Higgs bosons include neutral scalars; light neutral pseu-
doscalars can occur in certain models. No existing models
contain light charged Higgs bosons, given the above as-
sumptions on the parameters in the Higgs potential. In
the case of the SM with one or more light scalar bosons
of mass M~, current limits on a„require
hm„lgL m& & 10, where h and gl. are the Yukawa and
gauge coupling, respectively. Also, a version of the left-
right model in which m ~ m„ /m~ (W~ mediates

R

right-handed charge-current interactions) has a light sca-
lar Higgs boson with similar constraints.

Our paper is organized as follows. In Sec. II we discuss
the theoretical calculation of second-order weak correc-
tions to az arising from gauge- and Higgs-boson contribu-
tions. We pay special attention to the contribution from
Higgs bosons which couple to fermions via a b L =2
(lepton-number-violating) vertex and verify earlier results.
The Feynman rules for the b,L =2 processes are discussed
in the Appendix.

In Sec. III we apply the formulas of the preceding sec-
tion for the gauge-boson contributions to the general two-
Z models and give expressions for a& in terms of parame-
ters in the low-energy Hamiltonian. Predictions are ob-
tained for the special cases of left-right and
SU(2) XU(1)XG natural models. The implications of the
presence of heavy Majorana neutrinos are discussed.

In Sec. IV we give explicit expressions for the Higgs-
boson contributions in a wide class of models. We discuss
the importance of the spontaneous-symmetry-breaking
scales and Yukawa couplings to fermions. Specific
models are classified as outlined above. The phenomeno-
logical implications and numerical limits for each model
are discussed. Some conclusions are drawn in Sec. V.

II. THEORY

Second-order weak corrections to the muon anomalous
magnetic moment are found by calculating the one-loop
graphs' like those shown in Fig. 1. Contributions from
these graphs can be written as

u (p')eI „(p',p )u (p)

=u(p')[ey&F, (q )+ieo„~ F2(q )l2m

+@5 terms]u(p)

in the conventions of Bjorken and Drell. ' The quantity
F2(q ) is the magnetic form factor and the muon
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FIG. 1. Diagrams which can contribute to a„: (a) Z boson,
(b) 8 boson, (c) lepton-number-conserving (LNC) singly
charged Higgs boson, (d) LNC neutral Higgs boson, (e) lepton-
number-violating (LNV) singly or doubly charged Higgs boson,
and (f) LNV doubly charged Higgs boson.

~.t= XP «vt" +C~)")")f&z,
f,X

(2)

where f sums over all contributing fermions and I over
all gauge bosons in the theory, the contribution to a&
from Fig. 1(a) is

anomalous magnetic moment is just F2(0). Since we are
dealing with spontaneously broken gauge theories, which
are renormalizable, F2(q ) will be finite as no Pauli-
coupling counterterms are allowed. However, the in-
tegrals representing F2(q ) are not absolutely convergent;
the finite part of the gauge-boson graphs in Figs. 1(a) and
1(b) may be ambiguous, depending on the choice of origin
in the loop integral. We use dimensional regularization to
define the loop integrals. Moreover, this allows us to
work in a particular gauge, such as the unitary gauge,
rather than the general R~ gauges. '

The contributions to a~ from graphs 1(a) through 1(d)
have already been calculated in Ref. 6, and we have veri-
fied the result. For the general gauge-boson interaction
given by

2
z —qfmap= dx Cv x(1—x ) x+

4~
2mf —2

2
P 3X

2mz

2
P71f 2—1 +x
mp

2mf
2

1
teal p

1—Vlf

+ C~'Imf ~—mf I [m„'x'+mz'(1 —x)+x(mf' —m„')]
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and from Fig. 1(b) is

2
w qz m„

a
Sm

2f Alp mf
0

dx C~ x —2x (1+x)+ x(1—x) —1
Pg~ PPg p7 my

2

rnf +x +Cz [m~~ —m~] .
mp

X[m& x +(m~ m—z )x+m~ (1—x)] (4)

Here the charges q~ of the fermion and q~ of the W are in units of e & 0, so that q&
———1.

For the general lepton-number-conserving (LNC) Higgs-boson interaction

WY„g, ,——g P(cs+Cpy )fH+H. c. ,
f,H

the contributions to a& are

qHmp ~ Cg x x + mf mp x x +Cp mf mf
8m 0 m„x +(mJI —m& )x+m~ (1—x)

from Fig. 1(c) and

—gf Pl & Cg X —x + Vlf Pl x +Cp PlZf ~—P71f

8m o m& x +(m~ —m& )x+mH (1 —x)

(6)

(7)

from Fig. 1(d), where q~ is the charge of the Higgs boson
in units of e & 0 and mH its mass.

The Higgs boson couplings in Eq. (5) allow only for
~J-=0 interactions. Many theories also have lepton-
number-violating (LNV) Al- =2 Higgs-boson Yukawa
couplings which take the form

W~„q,~,——QIJ C(cs+Cpy )fH+H. c. ,
f,H

(8)

where f~ and f2 are fermion field operators. The cou-
pling I'and I are related by

r=CrC', r—=y,r'y, .

In the present case

where C is the charge-conjugation matrix
C =C '=Ct= —C (Ref. 13). An example of such a
theory is the left-right model with a heavy right-handed
Majorana neutrino. The interaction given in Eq. (8) leads
to the graphs shown in Figs. 1(e) and 1(f). The arrows on
the fermion lines indicate the flow of lepton number.
Since the Yukawa couplings are not necessarily small,
these contributions must also be considered in any theory,
with &I' =2 interactions. We find that the final result is
nearly identical to the EI.=0 graphs. Equations (6) and
(7) hold true for Figs. 1(e) and 1(f), respectively, except
that Cg and Cp are replaced respectively by 2' and
2Cp when f=p. The factor 2 arises from the presence of
two identical field operators in the individual interaction
terms. Once this combinatorial factor is included, the
b,L=0 expressions may be used for the b,I.=2 graphs
with the help of the charge-conjugation matrix. In the
remainder of this section, we give a brief illustration of
the statement made above. More details can be found in
the Appendix.

Consider the lepton-number-violating Lagrangian

f,crf,4+f,crf, p, (9)

I =Cs+Cpy5

I =I =Cs —Cpzs-

Feynman rules supplementing the usual rules for the
lepton-number-conserving interaction can be derived from
Eq. (9). However, the presence of the charge-conjugation
matrix allows the conversion of the supplemental rules to
the usual ones. If we write Eq. (9) in the following form

f f Crf2$+f crc &f Ip (12)

which can be replaced by the corresponding lepton-
number-conserving Lagrangian

f,rf,0+f,r—f,0', (13)

in the derivation of the Feynman diagram. One impor-
tant difference froru the lepton-number-conserving in-
teraction exists, however, when f, =f2. Then the cou-
pling at the fermion-fermion-scalar boson vertex is 2I or
2t, where the factor 2 comes from the identity of the two
fermions involved at the vertex. Details will be given in
the Appendix.

III. GAUGE-BOSON CONTRIBUTIONS

The formulas for the gauge-boson contributions to a&
given in the preceding section-may now be applied to
practical examples. The neutral-gauge-boson correction
a& can be found directly from the low-energy neutral-
current parameters. The charged-gauge-boson correction
a& can be written in terms of the $V boson-masses, the
left-right mixing angles, and the muon-neutrino mass.
Existing limits on these weakgarameters then constrain
the allowed values at a& and a&.

We use the formalism of the general two-Z model
described in detail elsewhere. ' The effective low-energy
neutral-current (NC) interaction is given by
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~N~c= [pI'(J9, )'+(P2JB, +nJ9„)'] (14)

where

m„'gz' ' (gv)' —5(g~)'
12m. i I mz, .

(15)

where Jg'R ——J3 —xL R Jg and J3 „are the usual V+A
neutral currents, J~~ is the electromagnetic current,
xL ——e /gL, and gL is the SU(2)L gauge coupling. In a
left-right model xR ——e /gR and is constrained to lie be-
tween 0 and 1 —xL. The neutral current then contributes
to a& via Fig. 1(a). We ignore any flavor-changing neu-
tral currents since they are not present in the above in-
teraction. For mz «mz we may apply Eq. (3)-with
mf =m?i alld find

gz exL (1 xL )
—1/2 —1/2

and g&z are the actual vector and axial-vector couplings
of the muon to Z;, with gv and gz normalized to
—

~ +xl and 4, respectively, in the limit of the SM. The
vector bosons Z1 and Z2 are the mass eigenstates, and are
equal to ZL and ZR, respectively, in the absence of mix-
ing. Thus, a& is proportional to a sum of effective vector
and axial-vector couplings. The values of the effective
couplings may be deduced from Eq. (14):

/

and

l 2

gz g 2
= [(PI +P2 )( & +XL) + 1 ( 4 +xR) + P29( e +XL)( 4 +xR)]2 gV) 8GF 2 2 i 2 2 i 2 1

i I mz, . 2

gz'y 2
=

~2 [PI+(P2—n) ](4»
i=1 ~Z.

l

so that

(17)

a = " [(pI'+p2')( —1 —2xL+4xL')+?1'( —1 —2xR+4xR)'+P2Y/(3 —2xL —2xR+8xLxR)] .
6v 2~' (18)

46~
~Nc= p'[(JC, )'+«Jg")'l (20)

Equation (18) reduces to the SM result in the limit pl ——1,
?1=p2——0. In left-right models, limits on the low-energy
parameters are known, and hence a prediction for a& can
be made. Using the allowed region in parameter space
from Ref. 15, we find

—2.35X10 &(a„)LR & —1.65X10

at the 10. level, where the SM value is
(a& )sM ———1.92 X 10 for XL ——0.233 and Mz ——88.7
GeV is the unrenormalized Z mass. Adding in the con-
straints on the 8'1 and Z1 mass from the CERN pp ex-
periments' does not significantly affect the range in Eq.
(19).

In models with no nonstandard fermion currents, i.e.,
ollly Jg J3L alld JY 2(Jg J3L ) Eq. (14) r—educes to

with p=1 for the case of the SU(2)XU(1) XG natural
models. Then it is easy to show that

z za Ii (a Ii )SM

(a?. )sM

4C
—1 —2XL +4XL 2 (21)

The quantity C is constrained by e+e ~p+p measure-
ments of DESY PETRA18 and SLAC PEP' to
C &0.010, so the change from the SM value is only a few
percent for models with WNc given by Eq. (20).

The 8' boson contributions arise from diagrams like
Fig. 1(b). The virtual fermion may be a (light) left-handed
neutrino (denoted v) or a (possibly heavy) right-handed
neutrino (N), and the two cases must be treated separate-
ly. Given the general interaction of Eq. (2), the 8'contri-
bution to a& may be expressed as

2
m?i GF m IV

Qp 81/2?r2, f mIV,

Cz and Cz are normalized to unity in the SM, andf

I, (z,e)= — dx
1 ' [—4zx +2x (1+x)e+x(x —1)(z+ex)(z —e) ]

0 [e x(x —1)+x+z (1—x)]

2
P +(C

Pl gr P1 g f ' m8.
'

mwl l l l

where mf is the mass of the intermediate state v or X, m?v is the W'mass in the SM determined from XL,

mlv ——(v 2e )/(8GFxL),
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If mf »m& to give z & 1 this integral is potentially
large. However, the interaction of N is right-handed so
that (Cf ) =(C~ ) and terms odd in m&/m~. will cancel.
The surviving terms in Eq. (23) are at most of order one;
the distinct handedness of the X limits its contribution to
a& regardless of the value of m~. The only deviation
from this result occurs when mixing effects are included.
If we define a WL-Wz mixing angle g and a v-X mixing
angle 8, deviations from the exact Cz ——C~ result are of
order

bution is always positive. If the left-right model is em-
bedded in an SO(10) grand-unified model, the fact that
SU(2)z is broken before SU(2)L, implies g~ &gL or
x~ &xL. If in addition we have m~ &2m~, which is

R L
derived from the low-energy constraints on the left-right
models, az is at most 25% bigger than the SM value.
The combined gauge-boson contribution in a left-right
model then lies in the range

sing sin8(m~/m„), 15)&10 ' &a +a (32)&10 (26)

2

g 5m~ GF
ap 1+— I2

12+2m 5 x~ m~„ w
(24)

where

[2x (1+x)+z x(x —1)(x—2)jI2z = dx
x+z (1—x)

The integral Iz varies from Iz(0)= —', to Iz(oo)= —', .
Thus, to leading order, the 8' contributions to a„ in a
left-right model are the SM result plus a term suppressed
by two powers of (m~ /m~ ). Note that the W contri-

so that the existence of non-negligible mixings could, in
principle, lead to substantial modifications to the zero-
mixing result.

To estimate the size of this effect, we consider the left-
right model with Higgs multiplets that transform as
(1,0,2), (0,1,2), and ( —,, —,,0) under SU(2)L, X SU(2)z
XU(1)z. L. Two other Higgs multiplets, a ( —,',0, 1) and a
(0, —,', 1), have been considered in the literature in various
combinations with the above three multiplets, but cannot
couple directly to fermions. Therefore, we do not consid-
er them here, although, in principle, they could affect the
Higgs-boson self-couplings. There are two popular
scenarios ' and in each case the contribution due to the
mixing terms is small:

(i) There is only one of each type of multiplet, and the
mixing angles g and 8 are of order m~ /rn~ or smaller.
We also have m /m~-(m~ /m~ ) in this case so that

L R

singsin8(in&/m&) m„/m-& «1
and the mixing effect can be ignored.

(ii) There are two ( —,, —,',0) multiplets with large and
small VEV's, respectively, and only the latter couples to
fermions. There is one each of the other multiplets. Then
8-m&/m~ and the mixing effect is of order g, which is
known phenomenologically to be small.

As we are interested only in the leading effects in az"",
we can safely ignore neutrino mixing and W mixing and
consider only terms even in (mflm~) in Eqs. (22) and

(23).
Given this simplification, we can assume left-handed

v-O'L, and right-handed N-8 z interactions. Using
m„«m& &&m~ and the observed fact that m~ is ap-

proximately the SM value, ' we have

If the right-handed neutrino mass is less than about 100
MeV, stricter limits can be placed on m~ . The recent

muon-decay experiment at TRIUMF in this case gives
the limit m~ & 5m~, which reduces the upper limit of
Eq. (26) to 24X 10 ' . However, the most thoroughly in-
vestigated models ' favor a very heavy right-handed neu-
trino, and thereby circumvent this stricter limit.

In the natural. models with the gauge group
SU(2) XU(1)X G, the low-energy charge-current interac-
tion is identical to that of the SM and there are no right-
handed charge currents. It is easy to show that a&~ is
then the same as in the standard model, so the total gauge
boson contribution a&+a& varies only slightly from the
standard result in the natural models. Also, models which
differ from the minimal SM only in the Higgs sector and
have no heavy neutrino, such as the Gelmini-Roncadelli
model or the SM with more than one doublet, will agree
with the SM in their predictions for a „+ a& .

IV. HICiGS-BOSON CONTRIBUT fONS

While the gauge-boson contributions to az are con-
strained by low-energy weak-interaction data, very little is
known about the Higgs sector. Higgs-boson masses in
gauge theories are generally independent parameters, de-
pending upon the form of the Higgs potential and the
value of the coupling parameters. As is evident from Eqs.
(6) and (7), contributions to a& from Higgs bosons are
critically dependent on the size of the Yukawa coupling
and Higgs-boson mass. Typically, Yukawa couplings are
assumed to be of order mf /m~ (when fermion and gauge
boson masses are derived from the same VEV) or of order
the gauge coupling (when different mass scales are ex-
plained by the existence of different symmetry breaking
scales). The Higgs-boson mass will be of the order of a
symmetry-breaking scale if the parameters in the Higgs
potential are not too large or too small (1;e., of the order of
the gauge coupling) and in the absence of fortuitous can-
cellations. If the fermion masses arise from a separate
VEV, called the fermion mass scale, a light Higgs boson
(mH-mf) may result and az will be enhanced. Models.
which have large Yukawa cou lings and small Higgs-
boson masses tend to increase a& and are therefore severe-
ly restricted by current, a& measurements; models in
which one of these situations occurs will be tested by fu-
ture measurements. It is therefore important to know
which situation exists in any given model.
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Physical Higgs-boson masses may all be heavy even if
there is a small symmetry-breaking scale. The scale of the
Higgs-boson masses depends on the gauge group in the
model and any additional symmetries of the Higgs poten-

tial. For example, consider an SU(2)&&U(l) model which
has two Higgs doublets N1 and @2, with VEV's
($2) =u2 « ($1)=ul. The most general SU(2)&&U(1)-
invariant Higgs potential which conserves CP is

91@1+1+P2~ 2@2+93(@2@1+@2@2)+~1(@1@1 ) +~2(@2@2) +~3+le 1C 2@2
2 f 2

+ [~4@1@1+~5@2@2+~6(@2@1+@1@2)](@2@1+@1@2)+~7(@2@1 @1@2)2 (27)

will accomplish this. The p3, A,4, and A, 5 terms in the
Higgs potential must vanish under this symmetry, and
one neutral scalar boson with a mass proportional to u2

appears. If the coupling parameters in the Higgs potential
are natural sized, i.e., comparable to the gauge coupling,
then this Higgs boson will be light, of the order of a fer-
mion mass. Roughly speaking, as long as the Higgs po-
tential was complex enough, all physical Higgs particles
received a mass at the larger symmetry-breaking scale;
when an additional symmetry is introduced which elim-
inates certain terms in the potential, one Higgs boson will
be shielded from the heavy mass scale and falls to the
lower scale. ' This shielding occurs only for neutral Higgs
fields.

We now calculate the contributions of the Higgs bosons
to a& in the SM with two Higgs doublets. In the limit
u2«ul, the physical Higgs particles are pz, Im(pz),
Re($2), and Re(pl); the p~ and Im(pl) become the longi-
tudinal parts of 8'—+ and Z, respectively. With the
discrete symmetry in Eq (28) th.e scalar boson Re(gz) has
a mass of order u2, while the others are all at the scale v1,
i.e., of order m 11 . We define

mH —rgl. V2

for the mass of Re(gz), with r expected to be of order one.
With the discrete symmetry of Eq. (28) imposed, the al-
lowed Yukawa interaction for the muon is

h [p p Re( p 2 ) + lp 1 5p Im (42 ) +I L &„6
+&pRpdz f ~ (30)

where L,R = —,(I+@5) and h is arbitrary but in the
present scenario is presumed to be of order gL, the gauge
coupling. We therefore define

p=h ~gL, (31)

'I

and expect p-1 in this scenario. The parameters r and p
measure how far the Higgs-boson mass and muon Yu-
kawa coupling deviate from their "natural" values. The
muon mass is given by hv2. we can now use the interac-

When the minimum of the Higgs potential is found and
the physical Higgs-boson masses solved for, one discovers
that, barring fortuitous cancellations, the masses are all of
order V1. If we want u2 to be the scale for fermion
masses, and assume that the Yukawa couplings are about
the same size as the gauge couplings, we must prevent the
fermions from coupling to C&1. The discrete symmetry

(28)

I

tion of Eq. (30) to find ag from Eqs. (6) and (7). In the
limit m& &&m~

2 2
P' 2I,

8~2 ' p'
r 2—I4
p2

where

2

mph'

+ I4
mp

2
mp

12 m~2
(32)

and

1 X 1I3(z)=—I dx 2
——(lnz ——,

'
)

x +z(1—x) z

I4(z) = Jdx — =—(lnz ——, ) .
1 X 1 11

x +z(1 —x) z

(33)

(34)

The approximation is valid only for z &&1. For simplicity
we put the masses of the charged- and neutral-
pseudoscalar-Higgs-boson masses to be m~. Our result is
independent of this precise identification of the heavy-
Higgs-boson masses. The first two terms in Eq. (32) are
from the Re($2) contribution and dominate for r-l.
However, the coefficient in front of the bracket is the size
of a typical weak contribution so that existing data will
put strong limits on P and r Either. P is small, which
means that u2 is larger than the fermion mass scale, or
r ~~1, i.e., there are large parameters such as A, 1 in the
Higgs potential of Eq. (27) that make m~ much larger
than the scale of V2.

To find quantitative limits on r and p in this scenario,
we must first subtract the nonweak theoretical values for
a& from the experimental number. The current experi-
mental limits are'

a '"P' = ( l l 659 370+ 120) )& 10

a'"+~'=(11659 110+110)X 10
(35)

where the p and p+ result should be identical if CPT is
conserved. The most recent theoretical calculations of the
QED (up to eighth order) and hadronic and 7. vacuum po-
larization contributions to a& are

ap~ ——(11658476+3)X 10

a &' ——(702+ 19) )& 10 (36)

ap ——4.2& 10

If we combine the results of Eq. (35), and subtract the
theoretical contributions of Eq. (36), we deduce the weak
contribution
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weak (4 7+69)x 10 10 (37)
10

In the SM with two Higgs multiplets considered here the
gauge-boson sector is identical to the minimal SM, so we
can subtract the standard weak contribution
a&""(SM)=20X 10 ' to get the limit

a„=(27+69) && 10 (38)
h/g

&ppiying Eq. (38) to the calculation of Eq. (34), the al-
lowed values of mH/m& r/p ——and h/gL ——/3 can be
found. The 2o limits are shown in Fig. 2.

In the left-right model with a separate symmetry-
breaking mass scale for fermions, ' light neutral Higgs bo-
sons can appear, ' and so we expect that similar limits on
the Higgs-boson mass and coupling will be obtained. Be-
cause the Higgs-boson sector is much more complicated,
we examine it in detail. The theory has four Higgs multi-
plets @ ( —,', —,',0), Nf ( —,', —,',0), AL (1,0,2), and b R (0, 1,2),
where the three numbers in parentheses denote, respective-
ly the SU(2)L, SU(2)R, and U(1)R L quantum numbers.
These Higgs multiplets are given explicitly below:

6, 6,

io-3—

Io

mH/m+

io3 io4

~Yukawa h 1 4L @f1iR +h 2 4L @fWR

+ih5[QLCr2bLQL+(I. ~R )]+H.c. , (40)

FIG. 2. Upper limits, derived from a„, on the light-Higgs-
boson coupling to muons versus Higgs-boson mass in the stan-
dard model with two doublets.

5L /~2
go

'5+/~2

g++
L

—5L /~2
g++

R

—5+/~2

(39)

The nonzero VEV's will be denoted as ( 5R ) =vR,
(5L ) =UL, (p„1)=~, and (/f1) =~f. For simplicity of
computation we set (/~2) =0 and (p 2) =0. Our results
are independent of (/f 2) and (pw2) in so far as they are
of the same order of ~f and ~~, respectively. The leptonic
Yukawa potential is

where gL (vL, e——L ), fR —(¹,eR ), N' is the charge conju-
gate to N=C(VR), and 4f =r24&fr@. In this scenario,
the VEV's obey the relation UL («f ((+
discrete symmetry N ~i N has been imposed to give the
desired VEV hierarchy and to forbid couplings of @~ to
fermions. Thus fermion Dirac masses arise from
which is small. Majorana masses to left- and right-
handed neutrinos come from uL and UR, respectively. In
the limit UI «vf « Ir~, U the physical Higgs bosons
which can contribute to a„are listed in Table I. The 5R+

contribution is just the part of the physical Higgs boson-

(+w5R +~2URff 2)/( war+ 2UR

TABLE I. Higgs-boson Yukawa couplings which contribute to a„ in the left-right model with a
separate fermion mass scale.

Higgs particle

g++
R

(p'&)
((y'. , )'+(5.')')'" "

Re(pf, )

Im(pf ()

Re(/f2)
Im(pf 2)

Nfl

Diagram

(e),(f)

(e)

(e),(f)

(e)

(d)

(d)

(d)

(d)

(c)

Coupling

h5
p C(1—y5)p

2
h5

p C(1—y, )~vz

p C(1+y5)p
2

p C(1+y, )N'
2

h Ipp
h &pl p5p

h2pp
—h2pl pgp

hl h2

2
&(1+y5)p — & '(1 —y5)p2

h) , h2

2
X '(1 —y5)p — v(1+yq)p

2
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which couples to fermions. The couplings given in Table
I can be applied to the formulas derived in Sec. II. Of
course, the Higgs-boson masses are not known, but if we
assume that all parameters are natural-sized, i.e., of the
order of gL, then the symmetry-breaking scales will
roughly determine the masses. For simplicity, all Higgs-
boson masses at the weak boson scale are set at m w . An

L

analysis of the Higgs potential shows that there are two
light Higgs bosons, Re(QI ) and Im(QI, ), with masses of
order ~I, which will be taken to be equal in the following
discussion. For this model we redefine P and r as

H =PgLKy
(41)

h ) ——hp ——Pgg,

mp =PgL, IcI (42a)

Furthermore, in the left-right model the neutrino masses
are approximately

m~ ~~A5Ug

m pgi KI /u~2
(42b)

where we expect uz -m~ /gz. If m~-m~„, then

h5-gz and these Yukawa couplings are also natural-
sized. The total Higgs-boson contribution to az can then
be written

where for simplicity, we have set h&
——hz. We also have

the relation

H
ap = Il52 2 2 m

' —34 +24p ~ I3 ~ +I3
96& mw gi m„p

2mw

2
mp

—4P 1+Is
2m~
2mw

hq—8 I5
Kw +2' g

2mw
(43)

where I&(z) is defined in Eq. (33) and

6x (1—x)Is(z) =
o x+z(l —x)

(44)

Since mw &~m&, the second term in the bracket dom-
L

inates. To find the numerical limits we must first take
a&"" from Eq. (37) and allow for the variation in gauge
boson contributions given in Eq. (26) for left-right models.
This yields the allowed range

as Eq. (40) except NI is replaced by @~. No discrete sym-
metries are necessary so that all Higgs-boson masses are
expected to be of order m~ (Ref. 25) for natural-sized

parameters. In the limit Ui «K~ &&U~, the physical
Higgs bosons which can contribute to a& are listed in
Table II. We assume for simplicity that the Higgs-boson
masses are approximately the same and introduce the
parametrizations for this scenario

—123&&10 ' &a & 170&(.10 (45) m~ =I'mw
L

at the 2o. level. The corresponding limits on
m~/m„=r/p and h/gi ——p are very similar to those
shown in Fig. 2 for the SM with two Higgs doublets since
each is dominated by a term proportional to

mp
hi =hz=Pgz

mw

(46)

(P /r )(m~ /m~ )ln(r /P ) .

Another possible scenario in left-right models is to omit
the NI multiplet. Then fermion masses are the result of
small couplings to 4; the Yukawa potential is the same

where again we expect r —p-1 for natural-sized cou-
plings. The muon mass and neutrino masses are given by
Eq. (42), respectively, with zI replaced by a~. Then using
the formulas of Sec. II we find

2 2 2 m mIl5 WL
ap ——

z z z
—34 +12P r 4Is rP 96~2mw 2 r2 gL2 mp mp

2

2 Lmw—I4 r
2

2 2
4Ug mpp-

K~ +2vg mw

ua'p'(m~'/m w, ')+~~'(h s'/g, ')

K~ +2Ug
2 2 5

m~

m~ h5 K Ug—48 P I6
mwL gL, K~ +2U+

2

2m~
(47)
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TABLE II. Higgs-boson Yukawa couplings which contribute to a„ in the left-'right model without a
separate fermion mass scale.

Higgs particle

g++

& pm 1 )'8 +~2 & '5R )gw 1

(&y' )'+2&&' )')'"

Re((()„I )

Im(tI)„I)
Re($„2)

Diagram

(e),(f)

(e)

{e),(f)

(c),(e)

(d)
(d)
(d)

Coupling

h5
p C(1—y5)p

2
hg

p C(1—y&)vvz
h5

p C(1+y~)p
2

( & (t I ) +2(5R )')'"[h v( & +y5)p& &g )
2 0—h, Nr(1 —y~)p&&g )

h, N—(1+ys)p&4 i)]
A Ipp

h lPl P5P
h2pp

where Is(z) is given in Eq. (44) and Yv„q,„, h[ v(1+——y )5pg++Pp Re(P )+Piy5p Im(P )
' 2x(1 —x)dx

0 x+z(1 —x) (48) +P(1—ys)~Pl (50)

In order to have a light v, we require K QQvg which im-
plies m ~ &&m ~, i.e., parity is broken at a very high en-

ergy. Because the muon mass is achieved with very small
couplings of order mz/mw, the terms in az involving
these couplings contribute very little. If we assume
gL~w ~gave ™w~~rnw„~

where m„=h &P ). In this model the three Higgs bosons
that contribute to az can be shown to have the same
mass, which we denote as m~. For this model, we
parametrize the mass and coupling unknowns as

m~ =rm p
(51)

2 2 2
mp gI. 1 ~5

96vr m r g

m~ p m~ 2

X —34—24 zI6
m8'~ ~5

(49)

h=PgL .

2 2
2m' 2m~—1+24r I r

mp mp

The contributions to a& come from diagrams le and ld
and are easily calculated to be

a m«P2 2 2

a
96~2m~2 r'

For P-r —1, only weak limits are placed on the parame-
ters from the current experimental measurements.

From the preceding examples, we see that CP-
conserving models which have a separate symmetry-
breaking scale for fermion masses often will have a light
Higgs boson if the same type of Higgs multiplet is neces-
sary for both fermion and gauge-boson masses. If a
discrete symmetry. is impos|„d to shield the fermion
masses from the large VEV, the Higgs potential is simpli-
fied and a light Higgs boson will be the result. The mea-
surement of a& then puts severe limits on the Higgs-boson
couplings and masses. One might speculate whether a
model can be constructed which avoids this problem. In
fact, one already exists: the SU(2) &&U(1) X SU(2)' natural
model where the fermions transform in the standard way
under SU(2)XU(1) and are neutral under SU(2)'. The
Higgs multiplets are P( —,, 1,0), g(0, 1,—,

'
), and rj( —,,0, —,),

and the latter two are sufficient for giving large gauge-
boson masses. The fermions couple exclusively to the
P( —,', 1,0), so there can be a separate fermion mass scale
without imposing any discrete symmetries. Therefore no
Higgs bosons are shielded from the large mass scale and
all Higgs-boson masses are hkely to be of order m~. The
fermion —Higgs-boson Yukawa potential relevant to a& is

(52)

This gives only loose constraints on r and P. Thus a
model which has a separate symmetry-breaking scale for
fermions need not have a light Higgs boson, and therefore
will not be severely restricted by current data. However,
the Higgs-boson contributions are potentially as large or
larger than the gauge-boson contributions and might be
detectable when the limits on a@ are tightened.

As a final example, we consider a model first proposed
by Gelmini and Roncadelli, an SU(2)L, XU(1)r model
with standard Higgs doublet and an additional lepton-
number-violating Higgs triplet. The VEV of the triplet,
vz, is constrained by the known equality of charged and
neutral-current strengths to be much smaller than the
doublet VEV uD. The gauge-boson mass scale is deter-
mined by vD. Although the triplet cannot give the usual
Dirac masses to the fermions, it can give a light Majorana
mass to the left-handed neutrino, of order vT, which can
be made quite small (-1 eV) if desired. Lepton-number
conservation is imposed on the unbroken Lagrangian and
is violated only by the spontaneous symmetry breaking of
the triplet. This additional condition eliminates trilinear
terms in the Higgs potential and leads to a light neutral
scalar, with a mass of order uT. The breakdown of global
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U(1)&, „„symmetry also leads to a massless Cioldstone bo-
son, the majoron; the other physical Higgs bosons have
mass of order m~. Details of the Higgs. sector are given
in Ref. 8. Because the muon mass does not come from
U~, the light Higgs boson does not contribute to a„with
any appreciable strength (there is a small coupling of or-
der m~m~/m~ due to mixing). The muon coupling of
the doublet Higgs boson is standard and gives also a very
small contribution; the effect of the heavy Higgs boson
from the triplet has been calculated and shown to be
small. Therefore, we see that a& will be detectable only
if the muon mass comes from a small VEV.

In. the models we have considered the Higgs Yukawa
couplings to fermions are directly proportional to the fer-
mion mass, so that processes involving heavy fermions
might put additional restrictions on the Higgs couplings
and masses. The most stringent limits would come from
charged Higgs-boson contributions to the EL-Eq mass
difference and radiatively induced flavor-changing
neutral-Higgs-boson interactions. Both of these process-
es can put a limit on the Higgs-boson coupling but not on
the light-neutral-Higgs-boson mass. These processes also
involve virtual t quarks in a one-loop diagram so that the
limit they provide is subject to uncertainties. Although
greatly dependent on six-quark mixing angles, a KL-Eq
mass-difference calculation implies that

(53)

when the charged-Higgs-boson mass is near its natural
scale of m~. Saturation of the above limit plus the a„
constraint of Eq. (38) then implies m~) 10m&. If the
neutral Higgs boson is light enough, it can be produced in
the flavor-changing decay b~sH . The H can then de-
cay to p+p or perhaps EIC if its mass is above the ap-
propriate threshold. Limits on such decays, in principle,
will restrict h/gL, although cancellations can occur in
the induced coupling for certain values of charged-Higgs-
boson and t-quark masses.

It has been suggested that the state g(2. 2) observed in
the decay P~yg, g~IC+X,K,X, is a Higgs boson.
The branching ratio for this decay would imply
b/gL -4m„/m~. With this coupling and a mass of 2.2
GeV, if the g is in fact a neutral Higgs boson, its contribu-
tion to a& could be as much as +7& 10 ' in the scenario
of the Higgs potentials considered in Sec. IV. This could
be detectable once the improvements on the measurement
and calculation of a& are implemented.

More complicated scenarios are also possible. For in-
stance, there could be separate Higgs multiplets for gen-
erating lepton and quark masses. Then the Higgs cou-
plings which contribute to a„are not constrained by pro-
cesses involving quarks. Thus a signal for Higgs bosons
would not necessarily be present in both the quark and
lepton sectors. Another scenario is to have the weak-
isospin-up members of the fermions to couple to one
Higgs multiplet and the isospin-down members to anoth-
er. Two types of models can be constructed in this
scenario: (a) There is a third multiplet which is respon-
sible for the gauge-boson masses and the first two multi-
plets are used to give masses to fermions. Then there are

Higgs bosons with masses proportional to the light mass
scales. Such models have been used in theories of spon-
taneous CP violation, ' although Higgs-boson masses and
spontaneous-symmetry-breaking scales are not discussed
in this context. (b) There are only two multiplets; then no
naturally light Higgs bosons will result from spontaneous
symmetry breaking. A scenario which proliferates with
Higgs fields is to have a separate Higgs multiplet (and
hence a separate mass scale) for each generation. Howev-
er, there would be strict limits on Yukawa couplings with
first-generation fermions, which were previously
suppressed. Also, tree-level flavor-changing neutral
currents, due to quark mixing, would put severe limits
on the couplings.

V. CONCLUSIONS
We have examined in detail the weak contribution to

the anomalous magnetic moment of the muon in a variety
of electroweak models, including the effects of Higgs sca-
lars. We find that gauge-boson contributions to a& may
vary up to 50% from the standard result in left-right
models, while models which do not have any additional
fermion currents, such as the SU(2)XU(1)XG natural
models, give virtually the same result as the standard
model for the gauge boson graphs. As for the Higgs sec-
tor, models in which light-fermion masses are a conse-
quence of small Yukawa couplings &as in the standard
model) and not small vacuum expectation values will not
have any significant contribution to a&"" unless the
Higgs-boson mass is of order the muon mass, a situation
which requires small parameters or fortuitous cancellation
among the coupling parameters in the Higgs potential.
On the other hand, in models where fermion masses are
generated through natural-sized couplings (of order the
gauge coupling) and small vacuum expectation values, i.e.,
a separate symmetry-breaking scale, the contribution to
a& from Higgs particles can be just as large or larger than
that from gauge bosons. If there are one or more light
Higgs bosons with masses of order the muon mass the
corrections to a& are potentially quite large. Examples of
this situation are the standard model with an additional
doublet that undergoes spontaneous symmetry breaking at
a fermion mass scale and the left-right-model scenario
which explains light left-handed Majorana neutrinos and
Dirac fermions as resulting from separate spontaneous-
symmetry-breaking scales. Current limits on a& put
severe limits on the Higgs-boson masses and coupling in
these models, so that the original'motivation of them is to
some extent lost. Models which have a separate fermion
mass scale but do not have a light Higgs boson, such as
one scenario in the SU(2) XU(1)XG natural models, are
modestly restricted by current data, but could have signi-
ficant deviations from the standard value for a&"", al-
most all of which come from the Higgs sector.

The implications of the above analysis are intriguing.
Although the effects of the Higgs boson in the standard
model on the muon anomalous magnetic moment are
probably negligible, we find that in many alternative
models they can be a significant, if not dominant, fraction
of the total weak contribution. Therefore, despite the
many uncertainties about the exact structure of the Higgs
sector, any significant deviation of a „"" from the
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minimal-standard-model results could be a signal for
some kind of richer Higgs structure, and may provide a
guide as to where to look for them. In light of this, im-
provements to the experimental measurements and
theoretical calculations of a& by an order of magnitude
could lead to a much greater understanding of the elec-
troweak interactions. (0) (b)
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p+q Ji -(p+ q)

APPENDIX

qP

(c)

For lepton-number-violating (LNV) interactions like
Eq. (9), the graphic rules for the external lines can be read
off directly from the expression of the Lagrangian, but a
slight complication arises for fermion propagators. The
necessary rules can be derived using the standard Wick
expansion and no new elements are present in the deriva-
tion. However, in view of the fact that the LNV-diagram
rules are less well known, some details will be given in this
appendix. It will be shown also, by examples, that these
LNV-diagram rules can be reduced to corresponding con-
ventional rules for lepton-number-conserving (LNC) in-
teractions.

Recall that in writing down the amplitude of a LNC
process from its Feynman diagram, two directions can be
defined for each segment of a fermion line. The first is
the direction of the fermion number flow which is in the
same direction of the momentum for leptons, but in the
opposite direction of the momentum for antileptons. We
note that a fermion number can still be defined for a fer-
mion line even though the fermion number is not con-
served at the vertex. The second direction is a direction
along which a fermion line is read as in the amplitude;
this direction is fixed for a given fermion line. For LNC
interactions, the direction of the fermion number flow is
always opposite to the direction of reading the line seg-
ment. In the case of LNV interactions the direction of the
fermion number flow is reversed when a LNV vertex is
passed. Therefore the line-reading direction and the
fermion-number-flow direction for some of the line seg-
ments will be parallel. These are the parts of a diagram
which require new rules. These new rules are stated in the
following.

(a) For an external fermion line, the transpose of a suit-
able spinor wave function is associated: u (p), u (p),
U (p), or U (p).

(b) For an internal line segment the transpose of the
negative of the corresponding fermion propagator is asso-

FIG. 3. Diagrams of three LNV processes and their corre-
sponding equivalent LNC processes.

ciated. Recall that for an internal fermion line segment,
its momentum is assigned in the same direction of the fer-
mion number flow.

(c) At a LNV vertex, fermion numbers of the associated
lines either flow into or flow out of the vertex. When lep-
ton numbers flow into [out] a vertex, the factor i(n!)CI
[i(n!)CI ] is associated, where n is the number of identi-
cal particles occurring at the vertex, where C is the charge
conjugation matrix, and I" and I are given in Eqs. (10)
and (11). In Eq. (9), n = 1 iff&&fq and n =2 iff& f2. ——

In the following we give three examples to show that
the above rules can be reduced to the conventional ones.
We also show at the end of the appendix how the fermion
statistics is satisfied.

A. Self-energy of a doubly charged boson

The Feynman graph, drawn according to the LNV in-
teraction, is given in Fig. 3(a). The arrow on a fermion
line indicates the direction of the fermion number flow.
The direction in the loop indicates the line-reading direc-
tion. According to the Feynman rules stated above the
amplitude is

2i(CI C ')C C
I'—m

(A 1)
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where the factor ——,
' is a conventional factor associated

with the fermion-loop contribution to a boson self-energy
diagram. The momentum integrals are defined in n di-
mensions so that the integral is regularized. From Eq.
(10) and the properties of the charge conjugation matrix'

C '=C=C = —C

and

We can rewrite Eq. (Al) as

FIG. 4. Relative sign of the LNC process in relation to the
LNV one [see (c)] for the reaction e e ~e e

(A2)

This final expression corresponds to the diagram in Fig.
3(b), which is the LNC equivalent graph, except for the
factors of 2 multiplying the couplings due to identity of
the two fermion lines.

B. e +e —. +e

The LNV interaction contributes to the diagram in Fig.
3(c). The amplitude for this diagram is

u(p')2iCI u (q')
2

u (q)2iCI u(p)
(p+q) —ms

= u(p')2it v(q') u(q)2it u(p),
(p+q) —ms

where the following identities are used:

Cu (p) =v(p), Co (p) =u(p),
u (p)C=v(p), u (p)C=u(p) .

This final expression corresponds to the diagram in Fig.
3(d), obtained from the corresponding LNC interaction.

Figure 3(c) alone already satisfies Fermi statistics. This
can be demonstrated as follows. Consider the upper ver-
tex of Fig. 3(c) and interchange p' and q':

u(q')2iCI u (p')=u(p')2iC(C I C )u (q')

= —u(p')2iCI u (q'),

where Eq. (12) is used. Similarly, it can be shown that the
lower vertex also satisfies Fermi statistics.

Note that the overall sign of the expression given in Eq.
(A3) is arbitrary. However, the relative sign between Eq.
(A3) and the amplitude of the corresponding LNC contri-
butions is not arbitrary. Take as an example the reaction
e e ~e e . The phase relationships between Fig. 3(c)
as given by Eq. (A3) and the diagrams resulting from the
LNC interaction Lagrangian given in Eq. (12) are shown
in Fig. 4.
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