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Geometrical scaling in high-energy hadron collisions
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The concept of geometrical scaling for high-energy elastic hadron scattering is analyzed and its
basic equations are solved in a consistent way. It is shown that they are applicable to a rather small
interval of momentum transfers, e.g., maximally for

l
t

l
(0.15 GeV2 for pp scattering at CERN

ISR energies {~s=30—63 GeV).

I. INTRODUCTION

The idea of geometrical scaling (GS) in high-energy
hadron collisions was first phenomenologically introduced
by Dias de Deus' in order to explain Koba-Nielsen-Olesen
scaling in a simple way. Formally it states that the inelas-
tic overlap function G;„(s,b ) scales, s being the total en-
ergy squared and b the impact-parameter value. G;„(s,b )
becomes a function of one variable p=~b /o;„only when
shoo, i.e., G;„(p); o;„(s) is the total inelastic cross sec-
tion.

The unitarity condition in the impact-parameter space
binds together this inelastic overlap function with the
elastic one in the following manner:

ImG, )(s,b )=
l G,)(s,b2)

l +G;„(s,b ) .

(1.3)

1 d ere)(s)
p(s, ~) = (1.4)

where ~=
l
t

l
;„odadna/dt is the corresponding 'dif-

ferential cross section, scales:

Generally, G,i(s, b ) is complex. In order to derive its
analogical scaling properties, Buras and Dias de Deus
were forced to accept the validity of the shadow-scattering
limit. In this case the real part of the elastic overlap func-
tion (i.e., elastic amplitude) can be neglected at each im-
pact parameter b. Using this assumption one can rewrite
Eq. (1.1) in the form

G,&(s,b 2) =—(1—[1 4G;„(s,—b )]' ) . (1.2)
2

The geometrical scaling in the inelastic overlap function
then implies the GS in the elastic one, i.e., G,&(s,b ) simi-
larly becomes the function of one scaling variable p only,
i.e., G,~(P) when shoo.

Using the Fourier-Bessel transform

F(s, t)- I b db Jo(b& t )G,i(s, b ),—
where t is the four-momentum transfer squared and Jo is
the Bessel function of zero order, one can easily derive (in
the shadow-scattering limit and with spin effects neglect-
ed) that the function

~= ltlcr„, . (1.6)

Further progress is also due to Dias de Deus, who has
suggested a prescription on how to construct the Pomeron
amplitude satisfying the GS requirements and describing
high-energy hadron collisions.

A differential equation for the invariant scaling func-
tion generating both the real and imaginary parts of the
elastic amplitude has then been derived by Dias de Deus
and Kroll. They have supposed that this equation can be
used in the whole region from t =0 to the dip and have
derived some predictions concerning the dip behavior for
the pp scattering at different energies. A similar approach
has been applied in Ref. 5 to pp scattering (see also Refs. 6
and 7). These predictions have, however, been disquali-
fied by the experimental data. The question can arise
whether the idea of geometrical scaling itself is disquali-
fied by these experimental data or whether the application
of the GS to the dip region is not justified. We will Show
in the following that the latter possibility is valid.

The rest of the paper is organized as follows: Section II
deals briefly with a Pomeron amplitude satisfying the GS
requirements; the basic equation for GS and its different
modifications suitable for numerical calculations are
given. Section III then contains a new solution of the
basic equation of GS for the case of pp elastic scattering
at various ISR energies. In Sec. IV the new shape of the
scaling function is discussed in comparison with previous
results.

p(~, ~) ~ p(~)S~ ao

By means of GS [see Eq. (1.5)], Buras and Dias de
Deusz have tried to explain some of the experimental
regularities in pp elastic scattering at the CERN ISR: the
rise of the total cross section a„„the rise of the slope of
the diffraction peak, and the decrease of the position of
the diffraction dip as the energy increases within the ISR
energy range. As the GS also predicts the constant ratio
a',i/o';„(cr, ~ being the total elastic cross section), one can
slightly change the definition of the scaling variable:
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II. BASIC EQUATIONS
DESCRIBING GEOMETRICAL SCALING

Equations (2.3) and (2.4) can be combined together in
order to obtain the do/d. r distribution

In this section we briefly sketch a derivation of dif-
ferential equations for a Pomeron amplitude satisfying the
GS requirements. Following Dias de Deus, we define as
a Pomeron amplitude the dominant amplitude in the
fixed-t, s~ 00 region, corresponding to a singularity in a j
plane at j= 1 with a slope a(0)=1 and being crossing
symmetric under the v~ —v transform, where
v—:(s —u)/2. The simplest form of such an amplitude
exhibiting the GS can be written as

F(v, t) = — vexp i ——R v exp2

2

do dO
(s,r) = (s,O)

X q (r)+p' [ry(r)]
d'7

2

(2.7)

Comparing Eq. (2.7) with Eqs. (1.4) and (1.5) one can see
that the second term in Eq. (2.7) violates the original con-
cept of GS.

Equation (2.7) mutually binds together the following
quantities: the experimentally determined ratio of the real
and imaginary parts of the elastic amplitude in a forward
direction

tR v exp —i—2

2
(2.1) ReF(s, O)

IniF(s, O)

where

( )
ImF(v, O) Rg( )

and y and R are real analytic functions.
Expanding the function R (v) into a Taylor series

around a point g=lnv and keeping only a linear term, one
obtains

R g —i—=R (g) i —R—(g) .
2 2dg

Substituting (2.2) into (2.1), expanding

(2.2)

ReF(s, r) =ReF(s, 0) [rp(r) ] .d
d7

(2.4)

Note that these two equations can be derived only if the
following normalization conditions hold:

1 i R(g)t——
2 d

around R (g')t up to linear terms, collecting the real and
imaginary parts separately and using instead of the g vari-
able the s variable, one finally obtains

lmF(s, r) =ImF(s, O)q&(r)

and

the experimentally measured distribution do./dr and the
scaling function q&(r). Therefore if one postulates that
this equation correctly describes the elastic-scattering data
in a large interval of momentum transfers at present ener-
gies one can determine any of those quantities provided
the two remaining ones are given. In principle, there are
two ways it can be used: either one takes as the input
variables the p and the do/dr quantities and calculates
the scaling function y(r), or one starts with the function
y(r) and with the p value at some fixed energy and then
predicts the do/dr distribution for a given process as the
scaling function q(r) is supposed to be a common func-
tion to all interacting hadrons. The p value can be deter-
mined independently, e.g., by means of a dispersion-
relation technique.

If one further denotes

D( ) ( 1 z) do (syr )/dr
do(s, O)/dr '

then one derives for dy/dr an expression

(2.8)

I pp(r)+ [D(r) ——y (r)]'
p'7

(2.9)

the upper sign must be taken in Eq. (2.9) if q&'(0) is to be
finite. According to Eqs. (2.3) or (2.4) the function p(r)
must be real for real values of r Therefo. re, in the region
of applicability of the GS it must hold

g)(0) = 1 (2.5)
I V (r)

I
&[D(r)l'". (2.10)

d
[rV(r)]

d
dv

(2.6)

Clearly, condition (2.6) means that p'(0) must be finite.
Both Eqs. (2.3) and (2.4) are generally regarded as basic
equations for GS in elastic high-energy scattering. In the
present form they are practically the same as the equa-
tions of Martin which determine the scaling of the elastic
amplitude at asymptotic energies. Their scaling proper-
ties are based on the asymptotic behavior of the scattering
amplitude derived by Auberson, Kinoshita, and Martin. '

As was stressed before, the scaling function p(r) can be
determined by the numerical solution of Eq. (2.9), which
represents a rather hard problem as the differential cross
section or D(r) changes very rapidly. (practically in seven
orders of magnitude from forward scattering to the dip in
the case of pp collisions at the ISR); and this property
must be shared somewhat by the y function, too. This
difficulty can be removed, if some other functions which
may be energy-dependent are introduced:

(i) Making the substitution

(2.11)
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Eq. (2.9) can be transformed to

de, (r) f—(s, r)to, (r)+ —[1—co, (r)]'
P

where

1 dA(s, r)/dr
s~r = +

A(s, r)
and

(2.12)

(2.13)

A(s, r) = (s,r)do
d7.

1/2

(2.14)

The to, (r) function must be real as well as the scaling
function y(r } The.refore,

i
to, (r)i ( I . (2.15)

(ii) Another possibility consists in introducing the phase
of the elastic amplitude

F(s,r)=i
i
F(s,r)

i
e

a, (r) determines its real and imaginary parts:

ReF(s, r) =
i
F(s,r)

i
sina, (r),

ImF(s, r)=
i
F(s,r)

i
cosa, (r) .

(2.16)

(2.17)

As
i
F(s,r)

i
-A (s,r), Eq. (2.9) can be transformed to

da, (r)
+ sina, (r) —f(s, r)cosa, (r) =0 .

ps

(2.18)

Both these new equations (2.12) and (2.18) are nonlinear
differential equations of the first order like Eqs. (2.7) and
(2.9). Their solutions are uniquely determined by initial
conditions

III. SCAI.ING FUNCTION
DETERMINED BY NUMERICAL SOLUTION
OF MODIFIED DIFFERENTIAL EQUATIONS

f(s, rp) =0 . (3.1)

It is, therefore, useful to examine the detailed behavior
of the function f(s, r) for r & 0 for different collision pro-
cesses. We have used the experimental data for pp elastic
scattering at the energies v s =30.7, 44.7, 52.8, 62.5 GeV
(taken from Ref. 11). The r dependence of f(s, r) at
Vs =52.8 GeV is given in Fig. 1; for other energies only
unsubstantial deviations exist. There are three zeros in
the region of interest; two of them lying between the dip
and the origin. If to, (r) is to remain real in the whole in-
terval, these zeros should coincide with the zeros in the
real part of the elastic amplitude; and any other zeros in
the considered amplitude should not exist.

As to Eq. (2.18) these zeros should coincide with
sina, (r) =0 or

As has already been mentioned, Eq. (2.9) together with
the initial condition (2.5) defines the scaling function y(r)
for any r&0. However, there are some troubles with the
numerical solution of Eq. (2.9) due to a rapid change of
the scaling function with increasing r. In analyzing Eqs.
(2.12) or (2.18) one is in a much better position.

We will start with the examination of Eq. (2.12). It is
evident that the zeros in imaginary or real parts of elastic
amplitude correspond to the zeros of co, (r) or dto, (r)/dr,
respectively (for the real part see Appendix). If one starts
from the initial condition (2.19) one can see from Eq.
(2.23) that the value of to, (r) increases slowly till it
reaches its maximum value to, (rp) =1. If Eq. (2.12) has a
real solution also for r & rp then an extremum must exist
at this point and the first derivative must be equal to zero,
which requires

to, (0)=
(1+ 2)1/2

a, (r) =km. .
(2.19) If a, &km. , Eq. (2.18) can be written in the form

(3.2)

and

a, (0)=arctanp, (2.20)

o(s, t)=Be '
dt

and the slope of the diffraction peak is in a simple rela-
tion to the first derivatives of the newly introduced func-
tions at v=0. It holds

(2.21)

q'(0) =-
& +2p 2~|;oc

2 2 in
b

(1+2p')(1+p')'" 2a«~

p b

1+2p 2o goy

a,'(0)=—

(2.22)

(2.23)

(2.24)

which are equivalent to initial condition (2.5}.
The differential cross section can be parametrized at

small values of t by

da, (7)
+f(s,r)cota, (r) . (3.3)

dr pr
If a, (r) tends to kn at other values of r [where f(s, r) is
nonzero] one would obtain an irregular solution with a
derivative growing to infinity. At such points the func-
tion co, (r) would become complex, and the same would
hold for the scaling function tp(r).

Consequently, an important question arises: Is the
solution of Eqs. (2.12), (2.18), and (2.9) regular in the
whole r region considered in the previous papers (quoted
in the Introduction) or at what r does this solution cease
to be regular and the consequences of GS become inap-
plicable to experimental data?

The only way to obtain an answer is to solve the corre-
sponding differential equations with appropriate initial
conditions. These equations must be solved in a numeri-
cal way. As the values of der/dt are known in discrete
points and burdened by experimental errors, the deter-
mination of the derivative needed in establishing the
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+(co+cia)exp( d, r+d2r '+d3r ) . (3.4)

It would be possible to take a greater number of free pa-
rameters, but the formula (3.4) seems to be uite suff' '

Let us now denote the individual roots of f(s, r) seen in
Fig. 1by~0, v&, and~ res e

' . onypectively. Their values are only
wea ly energy dependent. The solution of E s. (2 18)

1 of '( )
p tively, is then given in Fig. 2. (Th d f'

,' r a ro [see Eq. (2.18)] can be determined b
analytical continuation. & OnOne can immediately see that
t e irst value of r fulfilling the condition (3.2)

va ues o many multiples of rr at the values of r not corre-
sponding to any root of f'(s r) Th fere ore, the solution of

values of (s r
solution

could bring some discrepancie d h
'on of differential equations. Th f

es uring t e

"smoothed" th
ere ore, we have

oo e the experimental data beforehand by ftttin
the differential cross section with th h 1 fe ep o the formula

8cT —(au+a, r)exp(b, r+ b r +b )

the differential e uation bq
'

n ecomes irregular at ~;=9

This bee&avior is in full agreement with the numeri

zero. Then ~
va ue co, = at ~=so where the first derivative is equal t

, ( ) tends to zero reaching this value at the
ua 0

same r where a, = —n/2' t
o the amplitude equals zero at this point. The value
co, = —1 is then reachedched at ~; showing again that co

ceases to be real for r It may happen that around ~~

an ~2 the m, will again turn real but this no longer has
any serious physical meaning.

We are forced to co
derived in Ref. 3

conclude that the equations of th GS
have their physical meaning in a ra h

o e

narrow interval v.e 0
in a rat er

~e, , r„only, where v„=8.5—9.5
b GeV (which corresponds to t H [0 0.2—

energy increases from ~s=30.7 to 62.5 GeV
'

lar e
pp e astic scattering. They cannot b 1 d

ger momentum transfers as the scalin
e app ie to

ceases to be r
e sca ing unction p(r)

o e rea', which contradicts one of th b
sum tions of

e asic as-

ener -inde
p

' of GS. For smaller values of tho r eyr) is
gy-independent in agreement with th GS

ments.
e require-

The calculated normalized rea
the h

'
ed real parts corresponding to

t e p ases from Fig. 2 are shown in Fig. 3. The curves
cross the zero line at ~=6.8—7.2 mb GeV i

= —016G Ve ', then rapidly decrease in order to in-



31 GEOMETRICAL SCALING IN HIGH-ENERGY HADRON COLLISIONS

0

I v
I

~s[eeV j——30Y
447

--- -- 52.8 .9
.8

I 1 I I I I I

&s [GeV]—30.7
44.7

---- 52.8

Q

O~~0)
LL LL
o

Cg I!

-2.-

-4—

-6.-

t

~

I

I

i I

I

I

I

i

I I I I I I I I I

'I 2 3 4 5 6 7 8 9 'l0 11

mb GeV

.6

.5

.3

0

—.2
-3

-5-
.6

- 7-
-.8

IRe F(s,r) d
Re Fts, o) dr

I I I I J

2 3 4 5 6 7

lm F(s,e) )
1m F(s,o

I I I

8 9 10 11

rnb GeV

FIG. 3. Plot of normalized real parts of elastic amplitudes vs
~ for pp scattering at different ISR energies and corresponding
to the phases n, (v ) given in Fig. 2.

crease again, leaving their minimum values roughly at
t= —0.18 GeV .

Similarly, the calculated normalized imaginary parts
are exhibited in Fig. 4. The corresponding curves slowly
decrease from their initial values and cross the zero line at
the point &=7.8—8.3 mbGeV . This figure also shows
the real parts from the previous figure in order to make a
mutual comparison of both the real and imaginary parts.
Gne can observe from Fig. 4 that the scaling function
y(r) is energy independent for

~

t
~

(0.15 GeV2, which is
the region of maximal applicability of the GS in pp
scattering at the ISR.

Because of a gap in the data" at the energy Vs =62.5
GeV at —t-0.1 GeV, Figs. 2—4 do not contain the cor-
responding curves at this energy.

IV. DISCUSSION

Some previous applications of GS led to some in-
teresting conclusions concerning the relations between dif-
ferential cross sections at different energies for larger
momentum transfers. The fact that the application of the
Taylor series expansion of the scaling function at the dip
region gives a very good agreement with experimental
data if the appropriate values of p are used could be im-
pressive and could suggest that some deeper relation
might exist. %'e have, therefore, performed a similar

FIG. 4. Plot of the normalized imaginary parts of elastic am-
plitudes vs ~ for pp scattering at different ISR energies and cor-
responding to the phases u, (w) given in Fig. 2. For comparison
this figure also contains the graphs of normalized real parts of
elastic amplitudes shown in Fig. 3.

analysis with different values of p. It is possible to show
that the fits with the same g /DF values can be obtained
practically for any value of p ranging from 0.02 to 0.10
(at the dip region). Moreover, we have also used this
method in the other regions of the ~ variable, especially
for small values of ~'s We have ob. tained the fits with the
same value of g /DF for completely different values of
the p quantity (e.g., differing in two orders of magnitude).
Therefore one must conclude that the method of the Tay-
lor series expansion is not reliable.

Another problem concerns the v dependence of the scal-
ing function qr(w) suggested in Ref. 4. The given behavior
was obtained under some additional assumptions added to
the basic assumptions of GS. It was supposed that the
q&(w) exhibits a monotone decrease from the forward
scattering to the dip reaching the zero value just at the
dip. It follows from our analysis that these additional as-
sumptions are in contradiction to the used GS basic as-
sumptions as the solution of differential equations of the
first order is fully determined by one initial condition, i.e.,
by y(0) =1. A false behavior for higher values of v could
be easily obtained when Eqs. (2.7) or (2.9) was made use of
as a starting point for the numerical solution of the given
problem.
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An identical crossing-symmetric formula for elastic
amplitude valid for asymptotic energies but for infini-
tesimally small values of

~
t

~

has been derived also by
Martin from rather general assumptions concerning the
amplitudes of collision processes. Our results show that
the idea of GS can be applied to elastic pp scattering for
small momentum transfers already at the ISR energies.

At the present time it is not possible to give a definite
answer as to whether the consequences of GS can be ap-
plied to larger momentum transfers or not. Our limita-
tion concerns Eq. (2.7) only. However, this equation is a
result of some approximations applied to the general
Pomeron amplitude (2.1). It follows from the approach
leading to Eqs. (2.3) and (2.4) that the energy dependence
appearing for —t &0.15 GeV can be in principle com-
pensated by the s dependence of o„, and that also the
range of applicability of GS can be fundamentally
broadened. However, if the given effect were taken into
account the simplicity of the GS idea would be lost.

V. CONCLUSION

By introducing some other variables in addition to the
scaling function y(1.), it has been possible to solve the
basic equation of GS numerically in a consistent way.
The scaling function determined in such a way then
differs significantly from the previous suggestions (see
Ref. 4). It also follows that the applicability of the basic
GS equation (2.7) is limited to a rather small interval of

~

t
~

&0.15 GeV . The applicability range could be prob-
ably broadened if the more general crossing-symmetric
amplitude (2.1) represented the actual starting point of the
GS analysis.
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APPENDIX

1 d[D(r))'~2ld1.
o+ [D( )]

If one again uses Eqs. (2.4) and (A2), then

1p[D(1p )] f(s &p )co, (1 p )

(A2)

+1p[D(1 p)] to (1p) =0 ~ (A3)
dT

But as 1p[D(1p)] +0 fo1,7p+0, because of (Al) one ob-
tains that

f(s, 1.p) =+co,'(rp) . (A4)

With the help of Eqs. (2.17) and (2.18) one immediately
observes that the real part of the elastic amplitude has a
root 1.p if and only if the co,'(1.) function has a root at the
same 7o.

Let us suppose that 1.p is a root of the real part of elas-
tic amplitude. Then using Eqs. (2.4) and (2.9) one obtains

co, (1.p) =+1 .

Using Eqs. (2.13), (2.14), and (2.8), one can derive that the
following equality must hold
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