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Triple hadronic-energy correlations in high-energy e e annihilation
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Triple hadronic-energy correlations are suggested as a natural means for characterizing three-jet
events and testing QCD in high-energy e e+ annihilation with y+Z exchange. The general
analysis of the triple correlation is given in terms of possible structure functions, and lowest-order
QCD contributions are presented.

I. INTRODUCTION

A few years ago Brown and collaborators' suggested a
hierarchy of increasingly finely grained, but still inclusive
cross sections, which can be calculated in QCD. This
hierarchy consists of energy. -weighted cross sections. So
far the most useful one has been the energy-energy corre-
lation cross section (or energy-weighted angular correla-
tion), extensively studied both theoretically ' and experi-
mentally in e e+ annihilation. What has been actually
measured is the normalized, angle-integrated energy-
energy correlation

1 dX
0'tot d COS

and the corresponding asymmetry, where 7 is the angle
between the two directions in which the hadronic energies
are detected. (One has to sum up over all the directions,
keeping X fixed. )

The next member of the hierarchy is the normalized tri-
ple energy correlation

1 d X
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In this case the energies deposited into three directions
(with unit vectors r&, r2, r3, respectively) should be mea-
sured. Actually, this is the first member of the hierarchy
including threefold energy correlations of three particles
belonging to three jets, while the double energy correlation
takes into account such cases by counting the three parti-
cles in the corresponding pairs. Obviously, it is again use-
ful to integrate over some angles in order to obtain quanti-
ties, which may be measured with better statistics. In the
present paper we define and calculate the triple energy
correlation for high-energy e e annihilation, i.e., in-
cluding both the virtual y and Z annihilation channels.
We argue that the normalized, angle-integrated triple en-
ergy correlation is a natural way to study both three- and
four-jet events.

Choosing the three calorimeters to lie in a plane, the tri-
ple energy correlation is measured as a twice-differential
quantity. Experimentally one measures
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where W means the total c.m. energy, A specifies the
events ( A =1, . . . , X), while a, b, c specify the individual
particles with energies E&„E~b,E&, . The momenta of
the particles a, b, c lie in a plane and the angle between the
momenta of particles a and b (a and c) is X~ to X~+AX~
(Xq to X2+bX2). The second sum runs over all triplets of
particles of the event A with the appropriate geometry.
Each distinct triplet of particles is counted only once,
while an individual particle may contribute in several trip-
lets. Since the three calorimeters lie in a plane, it is clear
that this quantity is sensitive to the three-jet events, and
the multijets contribute little.

Choosing the three calorimeters in nonplanar positions,
the triple energy correlation is measured as a threefold
differential quantity. Experimentally it is measured as
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where the meaning of X~ and X2 is the same as above and
the angle between the momenta of particles b and c lies
between X3 and X3+AX3. Since the kinematics is nonpla-
nar, this quantity is sensitive ta four-jet events; two and
three jets do not contribute. Including all the self-
correlations (b =c at X3——0, etc.) in Eq. (2) assures that
the integral of Eq. (2) over the whole allowed X~,X2X3
spaces is one.

Since triple-energy-correlation measurements involve
the determination of at least a twice-differential quantity,
1.e.,

1 d ~planar
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the most hopeful situation for measuring it is around the
Z peak. This is why we have included in our calculation
both y and Z exchanges. A measurement at the Z peak
is also advantageous from the point of view of fragmenta-
tion corrections and next-to-the-lowest-order QCD correc-
tions, which are much smaller at the Z peak than at
presently accessible energies. The fragmentation correc-
tion is expected to decrease as 8', i.e., we get almost a
factor-of- —,'0 suppression. Note that for the usual double
energy correlation the fragmentation correction decreases
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only as 1/8'.
The organization of the paper is as follows. In Sec. II

we discuss the triple energy correlation for general, non-
planar calorimeter positions. Section III deals with the
planar positions and the corresponding O(a, ) QCD con-
tributions. Section EV contains a discussion.

II. TRIPLE ENERGY CORRELATION IN THE
NONPLANAR-DETECTOR-POSITION CASE

In terms of exclusive cross sections, the triple energy
correlation cross section is defined' as

3 N N

N E EbE
X g 3 &(Ql Q)&—(Q2 Qb )5—(Q3 —Q ).b,

(3)

where d o/El '(d pl ) . . Ei»i '(d pN) denotes the exclusive N-particle cross section and Slv is a factor taking into ac-
count phase-space reduction for identical particles. The unit vectors pointing into the directions of the calorimeters will
be denoted by r„r2,r3, with the corresponding solid angles Ql, Q2, Q3. Inclusion of the diagonal terms (a =b,a =c, etc.)

assures that the integral of Eq. (3) with respect to any of the solid angles Q; reproduces the double energy correlation.
The calculation of the triple energy correlation goes parallel to that of the energy-energy correlation. We shall there-

fore follow Ref. 3. To lowest order in the electroweak interaction, the triple energy correlations are given by an energy-
weighted phase-space integral of a squared amplitude

I
T I, with

2

IT I'"2 &f+ l~yi Io& 2&ol jr le e+&+&f+ l~ -k, lo& 2 2 &oIJ"-kle e+& (4)

where jul „kl (W~ri~„kl) is the lepton (hadron) electromagnetic (weak) current, and
I f+ & is an arbitrary outgoing ha-

dronic final state that can occur. We rewrite this as

I
T I'"X

I
alU"&f+

I Vp. I
o&+a2U"&f+

I Ai I o&+a3a "&f+
I Vi I

o&+a4a"&f+
I Ai I

o& I'
f

where U" (a") is the matrix element of the vector (axial-vector) leptonic current and V& (Az) means the hadronic vector
(axial-vector) current. All the coupling constants as well as the y and Z propagators are included in a 1, . . . , a4, which
are given in Ref. 3 in the standard model, for hadron production through a quark-antiquark pair of flavor f.

As recognized by Brown and Li, the final state is effectively invariant under charge conjugation, therefore

X&ol v" If+ &&f+ IA" Io&=0.
f

Moreover, for massless quarks (i.e., much above any quark threshold) we also have for hadron production through one

qq pair

g & o
I
v"

I f+ & &f+ I

v"
I
o& =g & o

I
A"

I f+ & &f+ I
A"

I
o & =—v"' .

f f
Neglecting final state interactions, TCP invariance yields

P'PV P Vjtl

Now, we perform the necessary integrations and polarization sums over the final-state variables and multiply by the
necessary energy factors. The final result is denoted by V"". This is again a symmetric tensor depending on 8'and the
directions r „r2,r3. (In the planar case only r l, r2 enter. ) Thus, the triple energy correlation is proportional to

V&„[ui'u ( lal I + la2 I

2)+ai'a ( la3 I
+ la4 I

}+Ui'a (ala3+a2a4)+ai'U (ala3+a2a4)) .

The leptonic tensors v"u, . . . are easily calculated and are given, e.g., in Ref. 3. The leptons are taken to be massless,
therefore only the space-space part of Vik enters in Eq. (9). Vik is a symmetric tensor, hence we get the decomposition

Vik A ~i~k+A & (+i ~k+wi ~k)+A & (~iwk+~i wk)+A A»Ak+A 1 (A!Ak+AEAk) A wiwk (lo)

so that in general the six structure functions A; are sufficient for describing V' . The A s depend on W and the angles
X] X2 X3 (where cosX 1 r 1

.r2, cosX2 ———r—1 r3, cosX3 ——r2 r3 ) ~ Since the three detectors are interchangeable, we obtain rela-
tions among the A s:

A4(~1»~2»~3) A l(~l»~3»~2)» A6(~1»~2»~3) 1(~3»~2»+1)»

A3(~1»~2»~3) A2(~2»~1»~3)» A5(~1»~2»~3) A2(~3»~2»~1)»
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and

A 1(X1~X2~X3) A 1(XziXliX3)i Az(X1~X2~X3) 2(X1~X3~X2) (12)

Putting in a11 the details we have

d X
d Q~d Q2dQ3
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f

+a; Uk (a'tfa3f+Q zfQ4f )]

where the sum goes over quark flavors.
This expression is rather complicated. However, our purpose is to integrate out over some of the angles, eventually we

want to keep only the X1,Xz,X3 dependences. First, we transform

d Q 1dQzd Q3 dco——s81dp td cosOzdpzd cos83df3

to the set of new variables

d cosX1ti cosXzd cosX3d cos81d cosOzdp 1 .

(8; and P; are polar and azimuthal angles measured in a coordinate system where the e moves along the z axis. ) The
result of this variable transformation is not simple, therefore we present only the result integrated over $1 and normal-
ized to the total cross section calculated to 1owest order in a, through y and Z exchanges:

1 dX
o«t d cosX1d cosXzd cosX3d cos81d cos8z

[At sin 81+2A2(cosX1 —cos81cosOz)+2A3(cosX2 —cos81cos83)+A4sin Oz
03——83,83+

+2A5(cosX3 —cos81 cos83)+A6 sin 83]
1~ 2&X1

where

sin 0)
X

~

(cosX1cos81—cos82)h(81 83 Xz) —el+ 5(81,82,X1)(cosX2cos81 —cos83)
~

(14)

—cosX3(cosX 1 cos81 —cos82) —cosX2( cosX 1 cos82 —cos81 ) +5(X1 pX2pX 3 )6(X1,81,82)
cos83+( )

=
2sm g)

el+1 1

——sgn[+6(X1 Xz,X3)(cosX1cos81—cos82)+5(X1,81,82)(cosX3—cosX1cosX2)]

4(a,P,y) = (1+2cosa cosI3cosy cos a—coszP—coszy—)'~2,

b(a, P,y) is real if cosy e [cos(a+P),cos(a —P)] .

This is the condition which ensures that a,P, y (0&a,P, y & 180') are the sides of a convex spherical triangle. The reality
conditions imposed on the various b. s entering Eqs. (14) and (15) restrict the possible values of the various angles. Car-
rying out the sum over 83 in Eq. (14) one has to use el+ for the 83+ term and e/ for the 83 term.

Equation (14) still looks quite complicated, however, its structure is simple. It is important, that initial-state polariza-
tions and weak-interaction parameters (i.e., Z mass and width and coupling constants) do not appear in Eq. (14). Simi-
lar results are valid for the normalized energy-energy correlations integrated over at least one azimuthal angle. Integrat-
ing over the remaining 8 angles 1eads to

dX 64m.
( 1+ 2 cosX1+2A3 cosX2+A4+2A3 cosX3+A6) (16)

tTtot COS 1 COS 2 COS 3 li 2~ 3

where 0 &X; & 180' with the condition b, (X1,X2,X3)=real. The right-hand side of Eq. (16) is invariant under interchanges
of the calorimeters, as may be checked using Eqs. (11)and (12).

The structure functions A; may be calculated in lowest-order QCD from the known e e+~qqqq, qqgg cross sec-
tions. Here we are concerned with the lowest-order QCD calculation for the planar case, when three-jet final states con-
tribute.

III. TRIPLE ENERGY CORRELATION IN THE PLANAR-DETECTOR-POSITION CASE

The analysis of the triple energy correlation in this case goes parallel to that of the nonplanar case. As a consequence
of the planarity the most differential quantity is
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d ~planar

dX,dXzd cos81d cos82d p 1

Still we may start the calculation from d X 1,„„/dQldQzdQ3, keeping in mind that this quantity contains a 5 function,
ensuring the planarity. The invariant decomposition of Vik can be written as

Vtk [S
'

k+S i k+S t
(

i k~ i k)+S haik]

X5 —[sin83 sin81 cos82 sin($1 —ttt3) +sin83 sin92 cos91 sin(t('13 —$2)+sin81 sin82 cos83 sin(t)ttz —$1)]a

a = (cos81 —cos82) sin83 cosp3+ (cos83 —cos81) sin82 cospz+ (cos82 —cos83) sin81cosp 1,
where the S s depend only on Xl,X2 and W. In a more suggestive form the 5 function can be rewritten as
5(r 3 ( r 1 xrz )la ), where r 1xrz denotes the vector product. The symmetry properties of the S s are

»n'(X 1+Xz)
Sl(X1~X2) . 2

1(2'tr Xl X2~X2)~ Sz(XI~X2) Sl(X1~ tr Xl X2) ~

Sm gl
sinXz sin(X1+Xz )

S3(X1,X2) = [Sl(Xz,X1)—S1 (Xl,Xz) ]— . Sl (XI, 2m —Xl —Xz),
sin(X, +Xz) S1HX2

S4(X1,X2)=S4(X1,2m —Xl —Xz) =S4(2n —Xl —Xz,X2) =S4(X2,X1) .

In terms of V', d Xpl»ar/d Qld Qzd Q3 is expressed as in Eq. (13). Now, we transform to the variables
dXldXzd cos81d cos82dpld83 and integrate over the variables $1,83. The normalized result is again simple, independent
of initial-state polarizations and weak-interaction parameters. It reads as

1 d~planar 167' 2[Sl sin 81+Sz sin 8z+S3(cosX1—cos81cos82)+2S4] .
stot Xl X2 cos 1 cos 2 X1~ l~ 2

Integrating over the remaining angles, we get the following general form of the normalized planar triple energy correla-
tion:

1 d ~planar 6477 (Sl+Sz+S3 GosX, +3S„), (0&X„X2&180', 180'&X,+X,&360') .
0 tot d+ id+2

Using Eq. (18) it is easy to see that

1 d ~planar

Otot d&ld&2

(20)

2 1

( ~—2E1)(~—2E2) ( IV —2E1)( IV —2&3 ) ( ~—2E2)( IV —2E3)
+ +

(21)
S4(X1,X2)= —(S,+Sz+S3 cosX1),

where a, ( W) is the strong coupling constant,

is symmetric under exchange of any two of the angles X1,Xz,X3 ——360'—X1
—Xz. On the other hand,

dip»„„/d cosXld cosX2 is not a completely symmetric function. Equation (20) is again valid for arbitrary initial-state
polarizations and does not depend on weak-interaction parameters. The structure functions Sl,Sz,S3 may be easily cal-
culated from the known e e+~qqg cross sections in lowest-order QCD with the result

a, (W) Et Ez E3
S1 (Xl,X2)=- E 2

2~"

—»n(X1+Xz) Sly 2 S1~lE, =R' . , E2 ——El . ) E3 ——E2
sillX1+sinX2 —sin(X1+Xz)

' —sin(X1+Xz)
'

sinX2
(22)

El E2 E3 are the energies detected in the calorimeters 1,2,3 lying in the directions r &,r2, r3, respectively. S2 and S3 may
be obtained using Eq. (18). These expressions of S; determine

d ~p]anar

dXldXzd cos81d cos82dpt

even in the fully polarized case. The normalized and integrated energy correlation is obtained by combining the S s as
in Eq. (20). Finally
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1 dXp

o't~t dX)dX2

64a, (W) 1 Ei2+Ez~ 2++ 2 g 2+8
3~ W' (W —2Et)(W —2E, ) (W —2E&)(W —2E, ) (W —2E, )(W —2E, )

+ +

d ~planar W dX
cE cos+2 =

d cos+)d cos+2 E3 d cos+)

A simple check of this result is that the sum rule

—COSX )

—1

(23)

(24)

is valid, where dX/d cosX~ is the well known energy-energy correlation at lowest-order QCD. The O(a, ) result, Eq.
(23), is expected to be a good approximation (provided fragmentation corrections are also added), when the three angles
(Xf X2 X3—360'—Xt —X2) among the detectors are away from 0' and 180'. We may assume 5 (X;( 180 —5, with
5=20'—30 . Since we have conditions for all the three angles, this region is quite restricted. Figure 1 shows

1 planar

trt()t dX]dX2

as a two-variable function for 5=30'. The function is quite smooth, the smallest value is 0.0073, the largest value is
0.0175. If we choose a smaller value for 5, the function will be more sharply peaked at the edges. Obviously for X;=0'
or 180' the 0(a, ) result diverges.

Following Ref. 8, for comparison we have calculated the planar triple energy correlation in a theory with vector gluons
and scalar quarks. The result is

dX»,», 32a, (W) Et E2 E3 4 E]EzcosX] 4 E]E3COSX2
3

o',(), dX)dXz n' W 3 (W —2E))(W —2E2) 3 (W —2E))(W —2E3)

4 E2E3 cos(Xt+X2)
3 ( W —2Eq )( W —2E3 )

(25)

where o„, is the total cross section for scalar-quark pro-
duction. Although this function looks at first sight quite
different from the spin-half-quark result, numerically the
two functions are very close to each other. For 5=30'
they agree within 10%. Thus it would be difficult to dis-
tinguish experimentally QCD from the scalar-quark
theory from a measurement of

FIG. 1. Axonometric view of the normalized, planar triple-
energy-correlation function for 5=30. The largest value of the
function is at gI ——60', g2 ——1SO', g~ ——1SO, g~ ——60';
g~ ——g2 ——150', while the smallest value is at g» ——g2 ——120'. For
X~+Xq & 180'+5 (a region where the QCD result is not applic-
able) the function has been arbitrarily set equal to zero.

1 d ~planar

trtot dXidX2

Similar statements have been made for several other
angle-integrated quantities in Ref. 8.

IV. DISCUSSION

In summary, we have worked out triple energy correla-
tions for high-energy e e+ annihilation. There are two
kinematical configurations in which triple energy correla-
tions may be studied. The planar case is a measure of
three-jet production, while in the nonplanar case the
four-jet final states contribute.

It is a new feature of the triple energy correlation that it
provides a possibility to study both the three- and four-jet
events. A similar treatment of the usual energy-energy
correlations (i.e., double energy correlations) leads to a
trivial result. In that case the two possible kinematical
configurations are back-to-back directions (r

&
—— rz ) and-

r» —r2. The former is sensitive to two-jet events, while
the latter is sensitive to three-jet events. However, in this
case the analog of dXp&,„„/dX,dX2 is the fully integrated
energy-energy correlation, i.e., the total cross section.

The calculation of triple energy correlations has been
carried out for arbitrary initial-state polarizations. It is
important that after normalization with the total cross
section and integrating over at least one azimuthal angle,
initial-state polarization and weak-interaction parameters
(i.e., Z mass and width and coupling constants) drop out.
This is similar to what happens with the double energy
correlations.

There is no doubt that measurements of
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1 d ~planar

o, , dXJdX2

will be easier than those of

1 dX
0 tot- dy Jdy2dy3

The QCD result for the planar case is given by Eqs, (22)
and (23). We emphasize that for measuring triple energy
correlations a detailed event-by-event analysis is not re-
quired. This is a common advantage of the whole hierar-
chy of energy-weighted cross sections. We beheve that

1 d ~planar

olol d&ld&2

probes the three-jet final state in a more natural way than
the double energy correlation. In this case all the three
jets figure in the same way, while in the double energy
correlation one of the jets is always integrated over. The
Z -peak energy region will be a particularly good possibil-
ity for measuring these quantities. At this energy the to-
tal cross section is large, and fragmentation and higher-
order QCD corrections are expected to be small.

APPENDIX

To determine the size of the fragmentation correction
the best method is to perform a complete Monte Carlo
calculation making use of one (or more) of the existing
fragmentation models. While we postpone this to a forth-
coming publication, we present here a simple treatment,

(26)

d hl d hz d h3
0 0 0 f3(hl~hz h3iP)

h, h h

where hl, h2, h3 denote the momenta of the produced
hadrons. By energy-momentum conservation we have the
sum rules'

f d AJ
ll hfdf 1(hl'P)=S"

I 0

3d hz
0 hzfz(hl hz'P) =(s'"—h 1 )fl(hl'p»Ao

3d h3
0 h3f3(hl~hz~h3~P)=(u" —h 1

—h2 )f2(hl~hz~p)
3

(27)

In terms of the functions f~ we express the contribution of
the qq final state to the triple energy correlation as

which already determines the energy dependence of the
fragmentation correction. The line of reasoning strictly
follows Ref. 9.

The average number of hadrons, hadron pairs, hadron
triplets produced by a quark moving with three momen-
tum p is given in terms of the functions fl(hl, p),
fz( h, , hz, P ), and f3( h „hz, h3; P ), resPectively, as

d hJ
dn =

0 fl(hl, p),
h',

dhl dhz
d n =

o 0 fz(h, , hz;p),
hJ h2

d3yef f d~ f hl dhl hz dhz h dh

dQJdQ2dQ3 de h J A2 h 3

0 0 0h Jh2h3
I[fl(hl', p)fz(hz, h3', —p)+f1(hz,'p)fz(hl, h3 p)

+f1(h3 P)f2(hl h2 P)+f3(hl h2 h3 P)

+h15(hl —hz)f1(h 1, p )f 1(h3,' —p)+h15(hl —hz)fz(h 1, h3, p )

+h,'5(h, —h, )f, (h„p)f, (h „—p)+h', 5(h, —h3)fz(h3p h 1, p)

+h 35(h, —h3)f1(h3~ P )f1(hzi —P )+h 35(h 1
—h3)fz(h3~ hzi P )

+h 15(hl —hz)h25(hz —h3)fl(hl, p)]+[p~—p] I, (28)

where do/dQ& is the cross section of qq production. The inclusion of self-correlations in Eq. (28) ensures the normali-
zation condition

d 3ygg d 2yg'g

d Qld Qzd Q3 d Qld Qz
' (29)

where the right-hand side is the qq contribution to the usual double energy correlation. Introduce now the new func-
tions I' J,I'2, I'3 as
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=2 2Fl(gl)= ll 1 dhl f1(hl, p),
2

F2(gl&g2&X1)= ll 1 dh lh2 dh2[f2( hl, h2', p)+h 15(hl —h2)fl(hl, 'p)] (30)

3

F3(gl g2 l3 Xl X2 X3)
2 2 2 2
8' h1 dh1h2 dh2h3 dh3

X[f3(hl&h2&h3&p)+h15(hl —h2)f2(h„h3&p)

+ll 25( h2 h3)f2( h3& h 1& p ) +ll 35(h 1
—h3)f2( h3& h2& p )

+(ll 1) 5(hl —h2)5(h2 —h3)fl(hl, p)],
where g; is the angle between h; and p; and the meaning of X; is as before. The normalization conditions are

f «1F1(gl)=1, f dQ2F2(glg2X1) Fl(gl), f dQ3F3(gl g2g3X1X2X3) F2(gl g2X1)

In terms of these functions we have

(31)

d X~~ do
dQ1dQ2dQ2 ' ~ dip8 dQ [ 1(gl )F2(lr g2&lr g3&X3)+F1(lr gl)F2( g2&g3&X3)

+F1(g2)F2(lr gl& lr g3&X2)+F1( lr, g2)F2(gl&g3&X2)

+F1(g3)F2(lr gl lr g2 XI)+F1(~ g3)F2(gl g2 Xl)

+F3(g„g2,g3,X1,X2,X3)+F3( gl g2& g3&X1&X2&X3)) . (32)

The properties of the functions Fl,F2 have been determined in Ref. 9 under the assumption of scaling, limited transverse
momentum, and no backward production. The properties of F3 are determined in a similar way. The results are as fol-
lows. F 1 (g ) has a peak at g =0 with a height ~ W and width o: 1/W', while for g && ( ll 1 ) /W

F1 (g ) =C(h 1 ) /2lr W sin3g,

with C(hl ) constant. When both gl and g2 are large compared to 1/ W, F2(g„g2,X1)~ 1/W, and it is strongly peaked
when either g1 or g2 becomes very small. Similarly,

F3(gl, g2, g3,X1,X2,X3) ~ 1/W'

when all g; are large compared to 1/W, and it is strongly peaked whenever one g; becomes very small. The existence of
the peaks for small g; follows from the normalization conditions (31).

Using the above properties we observe that the integral in Eq. (32) yields nonleading contributions as W~ co except
for small angular regions about directions which are aligned either collinearly or anticollinearly with the detection direc-
tions Ql, Q2, or Q3. Note that we assuine X;&0, X;&m. Consider, e.g., the region when g1-0, i.e., Q&-Q1, Xl-g2,
X2 Q3 % e get in this case

1 do
[F2(m.—Xl&m. —X2,X3) f dQ1F1(gl)+F1(m. —Xl) f dQ1F2(gl&g3&X2)+F1(~ X2) f dQ—1F2(gl&g2&X1)

1

I do+f Q1F3(gl&g2&g3&X1&X2&X3)]
8 d

[F2(~ Xj&lr X2&X3)+F1(lr Xl)F1(X2)+F1(lr X2) 1(X1)
1

+F2(X1,X2,X3)] .

Adding up all the other contributions we get the leading contribution

d X~~ 1 da
2('lr Xl& lr X2&X3)+F1(~ Xl )Fl(X2)+ 1('lr X2)F1(X1)+F2(X1&X2&X3)]

(33)

1 dCT+ 4 dQ [Fl ( lr Xl )Fl(X3)+F2(lr Xl&lr X3&X2)+F1( lr X3)F1(XI) +F2(XI&X3&X2)]

1 do.+
4 Q

[Fl(lr X2)F1(X3)+F1 ( lr X3)F1(X2)+F2( lr X2&'lr X3&X1)+F2(X2&X3&X1)]
3

(34)
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Since the arguments of the Ft and F2 functions which enter Eq. (34) are away from the peaking regions, we can use the
estimates Ft cc 1/W, F2 cc 1/W together with the well known expression of der/dQ& to secure the result

(35)

Similarly to the double-energy-correlation case, Eq. (35) does not imply that at present energies ( 8'=30 GeV) the correc-
tion is small. The only point we want to emphasize is the energy dependence of this correction.
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